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The nature of the ground state of the spin S = 1/2 Heisenberg antiferromagnet on the kagome lattice with

breathing anisotropy (i.e., with different superexchange couplings J△ and J▽ within elementary up- and down-

pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and

Monte Carlo methods. We analyze the stability of the U(1) Dirac spin liquid with respect to the presence of

fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J▽/J△, the size scaling

of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the

energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system

size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible

for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by

the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy

gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss

the competition with the “simplex” Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic

states in the strongly anisotropic regime, i.e., J▽ ≪ J△.

I. INTRODUCTION

In the past two decades, considerable effort has been de-

voted towards understanding the properties of the S = 1/2
Heisenberg model on the kagome lattice, which represents the

purest example of geometric frustration in two dimensions.

This is reflected in the fact that the ground state fails to de-

velop long-range magnetic order, thus potentially realizing a

quantum spin liquid phase [1], which features high entangle-

ment, low-energy excitations with fractional quantum num-

bers, and possibly topological order [2–4]. Even though in-

vestigations of the Heisenberg model on the kagome lattice

started in the 1990s [5–7], a considerable boost was given

by the discovery of Herbertsmithite [ZnCu3(OH)6Cl2], which

proves to be an excellent embodiment of the nearest-neighbor

S = 1/2 Heisenberg model on the structurally perfect kagome

lattice, with only minor longer-range super-exchange cou-

plings [8–11]. Experimental investigations have revealed the

absence of long-range magnetic order or frozen magnetic mo-

ments; however, in the resulting quantum spin liquid, it has

been particularly challenging to reach a definite conclusion as

to the presence/absence of a spin gap in the excitation spec-

trum which is expected to be tiny [12–14]. Similarly, the-

oretical approaches have long wrestled with the question of

the nature of the ground state and properties of its low-energy

excitations, which turn out to be particularly elusive and re-

main perplexing. Indeed, early density-matrix renormaliza-

tion group (DMRG) calculations reported the presence of a

finite S = 1 gap [15, 16], suggestive of a topologically or-

dered Z2 spin liquid ground state [17]. In contrast, recent

calculations based upon Gutzwiller projected fermionic wave
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functions [18–21], DMRG [22, 23], and tensor network ap-

proaches [24] provide strong evidence in favor of a gapless

spin liquid with signatures of Dirac cones in the spinon spec-

trum.

In order to reach a consensus on the low-energy proper-

ties of the S = 1/2 Heisenberg model on the kagome lat-

tice, and the possibility of it describing the experimental fea-

tures observed in ZnCu3(OH)6Cl2, it proves enlightening to

look at variations of the model arising from distortions of the

geometrically perfect kagome lattice. On a more conceptual

level, it is a recurrent motif in theoretical physics to intro-

duce interpolation parameters in order to facilitate the model

analysis of a particular parameter limit. As it has been sug-

gested early on that the nearest neighbor S = 1/2 Heisen-

berg model might be located close to a first order phase tran-

sition, it appears useful to introduce a geometric distortion

parameter, and study the model family as it approaches the

isotropic limit. Concretely, it may offer an alternative route

for the study of quantum spin liquids. One example is given

by Volborthite [Cu3V2O7(OH)2 · 2H2O], where the elemen-

tary triangles that build up the kagome lattice are no longer

equilateral but isosceles, leading to different antiferromag-

netic couplings along short and long bonds. In this case, there

is some evidence for a magnetic ground state, even though

unusually slow spin fluctuations persist down to low tempera-

tures [25–33]. Another interesting deformation is one leading

to alternately sized equilateral triangles, dubbed the trimerized

or breathing kagome lattice [34], in analogy to the breathing

pyrochlores [35]. Correspondingly, the kagome lattice fea-

tures an alternation of interactions, with the triangles pointing

up (having a superexchange coupling J△) and those pointing

down (with J▽) [36]; see Fig. 1. Originally, this model was

considered by Mila [37, 38], in order to explain the large num-

ber of singlet excitations at low energies detected within ex-

act diagonalizations on small clusters for the isotropic limit
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FIG. 1. Breathing kagome lattice is defined with nearest-neighbor

superexchange coupling J△ on up-pointing triangles (thick solid

lines) and J▽ on down-pointing triangles (thin solid lines). A

schematic illustration of the Z2[0, π]β
∗ spin liquid Ansatz (Ref. [42])

is also shown. The auxiliary (spinon) Hamiltonian requires a 2×1
doubling of the three-site geometrical unit cell. Nearest-neighbor

(next-nearest-neighbor) bonds are shown by solid (dashed) lines. The

green (blue) bonds represent sij = νij = +1 (sij = νij = −1) in

Eq. (2). The fact that the hopping and pairing amplitudes on nearest-

neighbor bonds belonging to up- and down-pointing triangles are al-

lowed to be different is represented by a difference in the thickness

of bonds.

with J△ = J▽ [7]. Remarkably, vanadium oxyfluoride

(NH4)2[C7H14N][V7O6F18] (DQVOF) provides a realization

of the breathing kagome lattice with J▽/J△ = 0.55(4) [39].

An earlier muon spin resonance (µSR) study [40] and a more

recent nuclear magnetic resonance (NMR) study revealed no

magnetic order, with the latter pointing to an essentially gap-

less excitation spectrum [39, 41]. These results have provided

a renewed impetus to understand whether a gapless spin liquid

may be stabilized in realistic spin models with SU(2) symme-

try.

The Hamiltonian for the breathing kagome lattice is given

by

Ĥ = J△
∑

〈ij〉∈△

Ŝi · Ŝj + J▽
∑

〈ij〉∈▽

Ŝi · Ŝj , (1)

where Ŝi = (Ŝx
i , Ŝ

y
i , Ŝ

z
i ) is the S = 1/2 operator on a site

i and 〈ij〉 indicate nearest-neighbor pairs of sites i and j that

belong to up-pointing (〈ij〉 ∈ △) or down-pointing (〈ij〉 ∈ ▽)

triangles. The crystallographic unit cell of this lattice con-

sists of three sites located at (0, 0), (1, 0), and (1/2,
√
3/2)

(forming an up-pointing triangle); the primitive vectors are

a1 = (2, 0) and a2 = (1,
√
3). For our calculations, we

consider toric clusters that are defined by T1 = La1 and

T2 = La2, and thus consist of N = 3L2 sites. Notice that, for

J▽ = 0 (or J△ = 0) the Hamiltonian corresponds to uncou-

pled up-pointing (or down-pointing) triangles. At this special

point, the ground state is highly degenerate, since each in-

teracting triangle has a doubly degenerate ground state with

an energy per triangle E△ = −3/4J△ (E▽ = −3/4J▽) and

spin S = 1/2. In the weakly coupled limits J▽ ≪ J△ (or

J△ ≪ J▽), the massive degeneracy is expected to be partially

or completely lifted. A perturbative treatment around the un-

coupled limit, unfortunately, gives rise to a complicated ef-

fective model [37], which contains both spin and pseudospin

degrees of freedom and whose solution cannot be obtained in

a straightforward manner.

Recently, the Heisenberg model on the breathing kagome

lattice has been investigated theoretically by using a

projective-symmetry group (PSG) analysis supplemented by

Monte Carlo simulations of variational wave functions [42]

and by DMRG calculations [43]. The latter one pointed to

the existence of an extended gapless spin liquid phase which

shows signatures of Dirac cones, similar to what has been

found at the isotropic point [22]. In the limit of strong breath-

ing anisotropy J▽ ≪ J△, the existence of a lattice-nematic

state, i.e., a state with inequivalent nearest-neighbor spin-

spin correlations, was claimed for in the regime J▽/J△ .
0.13. In contrast, the variational Monte Carlo study claimed

that a gapped Z2 spin liquid ground state is obtained within

Gutzwiller projected fermionic wave functions. However, this

conclusion was based only upon a calculation of the varia-

tional parameters and energies for a few system sizes without

a finite-size-scaling analysis.

In this paper, we report a high-accuracy systematic study of

both the U(1) Dirac state and the gapped Z2 state that is ob-

tained from the U(1) Dirac state by an inclusion of a fermionic

pairing term. By performing calculations on very large sys-

tem sizes (up to N = 2352 sites), we show that the variational

parameters that are responsible for a finite spin gap are van-

ishing in the thermodynamic limit and, therefore, the energy

gain of the gapped Z2 state with respect to the U(1) Dirac

state scales to zero for N → ∞. Moreover, in the strongly

anisotropic limit J▽ ≪ J△, we show that the U(1) Dirac spin

liquid undergoes a dimer instability, giving way to a valence-

bond crystal (VBC) ground state for 0 < J▽/J△ . 0.25. In

addition, in this regime, a “simplex” Z2 resonating-valence-

bond (RVB) spin liquid is found to have an energy between

the U(1) Dirac state and the VBC state.

The paper is organized as follows: in Sec. II, we describe

the variational wave functions that are used in this work (and

also the simplex RVB state that is constructed and used within

a tensor-network approach); in Sec. III, we present our results;

finally, in Sec. IV, we draw our conclusions.

II. VARIATIONAL WAVE FUNCTIONS

A. Gutzwiller projected Ansätze

The variational wave functions are written in terms of

Abrikosov fermions [44]. In the following, the noninteracting

state, defined in the fermionic Hilbert space, is obtained by

taking the ground state |Φ0〉 of the following auxiliary Hamil-

tonian, which has the form of a generalized Bardeen-Cooper-
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Schrieffer (BCS) Hamiltonian:

Ĥaux{Z2[0, π]β
∗} = χ△

∑

〈ij〉∈△,α

sij ĉ
†
i,αĉj,α

+
∑

〈ij〉∈▽

sij{χ▽

∑

α

ĉ†i,αĉj,α +∆▽(ĉ
†
i,↑ĉ

†
j,↓ + h.c.)}

+
∑

〈〈ij〉〉

νij{χ2

∑

α

ĉ†i,αĉj,α +∆2(ĉ
†
i,↑ĉ

†
j,↓ + h.c.)}

+
∑

i

{µ
∑

α

ĉ†i,αĉi,α + ζ(ĉ†i,↑ĉ
†
i,↓ + h.c.)}; (2)

Here, 〈ij〉 ∈ △ and 〈ij〉 ∈ ▽ denote sums over pairs of

nearest-neighbor sites belonging to up- and down-pointing

triangles, respectively, while 〈〈ij〉〉 denote sums over pairs

of next-nearest-neighbor sites; sij and νij encode the sign

structure of the nearest- and next-nearest-neighbor pairs of

sites, as depicted in Fig. 1. The variational wave function

thus obtained contains six variational parameters (upon fix-

ing χ△ = 1 as the overall energy scale), namely, the nearest-

neighbor hopping (χ▽) and pairing (∆▽) on down-pointing

triangles, the next-nearest-neighbor hopping (χ2) and pairing

(∆2), the onsite chemical potential (µ), and real on-site pair-

ing (ζ). In order to have a nondegenerate ground state of the

auxiliary Hamiltonian, we choose antiperiodic and periodic

boundary conditions along a1 and a2, respectively.

The form of this Ansatz is dictated by the PSG classifica-

tion [42], and it describes both the gapless U(1) Dirac state

(when all the fermionic pairing terms ∆▽, ∆2, and ζ are iden-

tically zero) and a generalization of the so-called Z2[0, π]β
state that was obtained for the isotropic limit [45] (when at

least one pairing amplitude is nonzero), and hereafter is re-

ferred to as the Z2[0, π]β
∗ spin liquid. In total, the PSG ap-

proach for the breathing kagome lattice allows for six differ-

ent Z2 Ansätze [42]. However, two of them do not allow any

amplitudes on nearest-neighbor pairs of sites nor any on-site

(chemical potential and pairing) terms, thus making the varia-

tional Ansatz unplausible for a model with J△ 6= 0 and J▽ 6=
0; for another two Ansätze, the on site and nearest-neighbor

pairings are not allowed, which again renders them energeti-

cally unfavorable; finally, among the remaining two options,

one has the uniform flux structure with sij = νij = +1, which

gives a rather high variational energy, while the last one (the

Z2[0, π]β
∗ spin liquid) is parametrized by the Hamiltonian of

Eq. (2).

A bona fide spin liquid wave function, which lives in the

correct Hilbert space with one fermion per site (corresponding

to the physical Hilbert space of the spin model), is obtained by

applying the Gutzwiller projector to the noninteracting state

|Φ0〉:

|ΨSL〉 = PG|Φ0〉, (3)

where PG =
∏

i (n̂i,↑ − n̂i,↓), n̂i,α = ĉ†i,αĉi,α being the

fermionic density per spin α on the site i. The variational

energy and correlation functions over |ΨSL〉 can be calcu-

lated in a straightforward manner by using Monte Carlo sam-

pling [46]. In addition, a stochastic optimization is possible to

FIG. 2. (a) Local tensors defining the RVB PEPS on the kagome

lattice. Straight (wiggly) lines denote virtual (physical) degrees of

freedom, spanning a Hilbert space of dimension D = 3 (d = 2). In

the simplex RVB, one applies the operator I − αP3/2 on the three

wiggly lines. (b) After grouping the three sites of the up triangle, one

obtains a rank-5 four-coordinated tensor.

obtain accurate estimations of the variational parameters con-

tained in Eq. (2) [46, 47].

We would like to mention that the Gutzwiller projected

wave function, with only χ△ = 1 (or χ▽ = 1) and all the

other parameters equal to zero, gives the exact energy in the

limit of decoupled triangles with J▽ = 0 (or J△ = 0) and

represents, in the general case, an excellent approximation for

the isotropic case with J▽ = J△ [48].

The accuracy of the variational wave functions can be easily

improved by applying a few Lanczos steps on the variational

state [49]:

|Ψp−LS〉 =
(

1 +

p
∑

k=1

αkĤk

)

|ΨSL〉, (4)

where {αk} is a set of variational parameters. On large clus-

ter sizes, only a few steps can be efficiently implemented, and

here we consider the case with p = 1 and p = 2 (p = 0 corre-

sponds to the original trial wave function). In addition, an esti-

mate of the exact ground-state energy may be achieved by the

method of variance extrapolation. In fact, for sufficiently ac-

curate states, we have that E−Eex ≈ σ2, where E = 〈Ĥ〉/N
and σ2 = (〈Ĥ2〉−〈Ĥ〉2)/N are the energy and variance per

site, respectively; therefore, the exact ground-state energy Eex

can be extracted by fitting E vs σ2 for p = 0, 1, and 2. Also, in

the presence of a few Lanczos steps the energy and its variance

can be obtained using the standard variational Monte Carlo

method.
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FIG. 3. For different values of the breathing anisotropy J▽/J△, we show the finite-size scaling of the energy gain of the Z2[0, π]β
∗ spin liquid

with respect to the U(1) Dirac spin liquid, i.e., E(Z2)−E(U(1)) (first row). The finite-size scaling of ∆▽, ∆2, ζ, the variational parameters

responsible for opening a gap, are also shown (second row). Here, lines are quadratic fits [50] of the results. The largest cluster considered

corresponds to L = 28 and has 2352 sites. The results for the isotropic limit J▽/J△ = 1 are also reported for comparison.

B. The simplex RVB as a Projected Entangled Pair State

Other types of spin liquids can be constructed using the

framework of projected-entangled pair states (PEPS) [51, 52].

On a kagome lattice, a PEPS can be defined in terms of rank-3
tensors (i) As

λ,µ on the sites and (ii) R△

λ,µ,ν and R▽

λ,µ,ν in the

center of the up- and down-pointing triangles, respectively,

where s = 0, 1 are qubits representing the two Sz = ±1/2
spin components and λ, µ, ν ∈ {0, 1, . . . ,D} are virtual in-

dices, as shown in Fig. 2(a) [53]. One can then group three

sites on each unit cell (for example, on the up-pointing tri-

angles) to obtain a rank-5 tensor (of new physical dimension

23 = 8) connected on an effective square lattice, as shown in

Fig. 2(b). The amplitudes of the PEPS in the local Sz basis

are then obtained by contracting all virtual indices.

The original nearest-neighbor (NN) RVB state [54] defined

as an equal weight (and equal sign) summation of all NN sin-

glet coverings (NN singlets are all oriented clockwise on all

the triangles) also belongs to the class of short-ranged (topo-

logically ordered) Z2 spin liquids. Such a state can in fact be

represented as a PEPS with bond dimension D = 3 [53, 55]

and involving the above rank-3 tensors, As
λ,µ on the sites,

and R△

λ,µ,ν = R▽

λ,µ,ν = Rλ,µ,ν in the center of the trian-

gles. More precisely, As
2,s = As

s,2 = 1, and zero otherwise,

and R2,2,2 = 1, and Rλ,µ,ν = ǫλ,µ,ν otherwise, with ǫλ,µ,ν
being the antisymmetric tensor. Note that the RVB state is

also equivalent to a projected BCS wave function [56] and

is perfectly (spatially) isotropic. It has been studied in de-

tail in Ref. [55] and its energy density was found to be rather

poor compared to variational wave functions or DMRG. In

fact, the NN RVB wave function has a fixed proportion (1/4)

of “defect triangles” with no singlet bonds (characterized by

λ = µ = ν = 2 on the three bonds of the correspond-

ing PEPS R tensor), equally distributed between the up- and

down-pointing triangles. In the isotropic case J▽ = J△, defect

triangles are energetically costly. However, in the regime with

strong anisotropy, i.e., J▽ ≪ J△, placing defects predom-

inantly on the down-pointing triangles will be energetically

very favorable [38]. Such an improvement can be performed

easily within the PEPS formalism. Choosing the up-pointing

triangles as the three-site units, one then acts with the opera-

tor I − αP3/2 on every unit (where I is the identity operator,

P3/2 is the projector on the fully symmetric subspace of three

spins 1/2, and α is a variational parameter [57]). As a re-

sult of this projection, we expect longer range singlet bonds

to appear in the RVB state, with a nontrivial sign structure.
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When α = 1, one projects exactly onto the (two-dimensional)

S = 1/2 manifolds of all up-pointing triangles.

III. RESULTS

A. Competition between the U(1) Dirac and gapped Z2 spin

liquids

Our main results are shown in Fig. 3. Here, we report the

finite-size scaling of the on-site ζ, nearest-neighbor ∆▽, and

next-nearest-neighbor ∆2 pairing terms for J▽/J△ = 0.1,

0.3, 0.5, 0.7, and 0.9; the isotropic case J▽/J△ = 1 is also

reported for comparison. For all ratios of J▽/J△, we consid-

ered clusters for which L = 4n with n ranging from 1 to 7
(the largest cluster thus has N = 2352 sites), except for the

isotropic point, where the maximum is n = 4, since already

for n = 3 the pairing terms are vanishing. In addition, we

also report the energy gain of the Z2[0, π]β
∗ state due to the

presence of these pairing variational parameters with respect

to the U(1) Dirac state that contains only hopping terms, i.e.,

the gain ∆E = E(Z2)−E(U(1)) [see Supplemental Material

(Ref. [58]) for values of energies of the U(1) and Z2[0, π]β
∗

spin liquids].

We find that for all values of J▽/J△ the pairing amplitudes

scale to zero (within error bars) in the thermodynamic limit

indicating that the Z2 spin liquid is not stable in the Heisen-

berg model on the breathing kagome lattice, and that its oc-

currence, as reported in a previous variational Monte Carlo

study [42], is a finite-size artifact. We emphasize that, in the

isotropic case, the pairing terms are essentially vanishing for

L > 12, as already reported in Refs. [48, 59]. Correspond-

ingly, the thermodynamic extrapolation of ∆E is found to

be vanishing for J▽/J△ > 0.3 (within the error bar) and for

J▽/J△ = 0.1 (within two error bars). In the latter case, the

extrapolated result is tiny anyway, i.e., ∆E = 0.00002(1).
At this point, we would like to make a brief comment on

the optimization procedure, which is particularly relevant for

the isotropic point. In particular, it has been suggested that

finite pairing amplitudes are obtained up to large system sizes

and in the thermodynamic limit [60], in contrast to what we

have previously obtained [48, 59]. Indeed, on each size, it is

possible to stabilize finite values of the pairing terms (ζ and

∆2), whenever the chemical potential µ does not correspond

to the one of the Dirac state. However, once µ is correctly

placed (i.e., within the highest occupied and the lowest unoc-

cupied levels of the Dirac spectrum on each finite cluster), all

the pairing amplitudes optimize to zero (within the error bar)

for L > 12. In any case, also when the chemical potential is

misplaced (and finite values of the pairings are obtained), the

energy gain ∆E is still negligibly small on any finite system

and scales to zero (within error bars) in the thermodynamic

limit. Therefore, for understanding whether a gap opens up

or not in reality, it is not sufficient to analyze the size scal-

ing of the variational parameters alone, but rather a complete

study of the energy gain on large finite systems together with

a thermodynamic extrapolation must be afforded.

The stability of the U(1) Dirac spin liquid with respect to
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)
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∗

FIG. 4. For J▽/J△ = 0.5, the Lanczos step extrapolation (employ-

ing a quadratic fit) of the ground-state energy for the U(1) Dirac and

the Z2[0, π]β
∗ states on the 48- and 192-site clusters.

the opening of a (topological) gap leading to the formation of

a Z2 state is not an artifact of the variational approach. In or-

der to prove this statement, we have performed one and two

Lanczos steps on both the gapless U(1) and gapped Z2 states

for L = 4 and 8 clusters at a given J▽/J△ = 0.5, also per-

forming the zero-variance extrapolation that allows us to get

a (nonvariational) estimation of the exact ground-state energy.

The results are shown in Fig. 4 [see also the Supplemental Ma-

terial (Ref. [58])] and a few aspects should be stressed. First of

all, we must emphasize that the finite-size energy gain of the

Z2 Ansatz decreases from p = 0 to p = 2, suggesting the fact

that the fermionic pairing does not reflect the correct way to

improve the original U(1) state. Moreover, the zero-variance

extrapolated estimate of the energy for the U(1) Dirac state is

slightly lower compared to the Z2[0, π]β
∗ state on the 48-site

cluster, and this difference in energy increases on the 192-site

cluster, implying that the Z2[0, π]β
∗ wave function performs

worse with increasing system size. Even though an accurate

extrapolation to the thermodynamic limit of the zero-variance

energy is beyond the goals of the present work, we are confi-

dent that these results will be important for future comparisons

that employ complementary numerical methods.

B. Strong breathing anisotropy limit

For completeness, we now focus on the strong anisotropy

limit J▽ ≪ J△ where other states compete with the U(1) spin

liquid. In particular, we shall investigate (i) the simplex topo-

logical RVB liquid (which can be written as a simple PEPS)

and (ii) a VBC that is adiabatically connected to the projected

U(1) state.



6

0 0.1 0.2 0.3
1 / L

-0.128

-0.127

-0.126

-0.125

-0.124

-0.123

C
oe

ff
ic

ie
nt

  c
1

average
even sector
odd sector

0 0.1 0.2 0.3
J∇ / J∆

-0.31

-0.3

-0.29

-0.28

-0.27

-0.26

-0.25

-0.24

E
ne

rg
y 

pe
r 

si
te

U(1) Dirac SL
VBC

c
1

= −0.1243(3)

E / J∆= − 0.25 + c
1
(J∇ / J∆) + c

2
 (J∇ / J∆)2 + …

         RVB (α=1)

U(1) Dirac SL

c
1

= −0.119(1)
c

2
 = −0.079(1)

VBC

c
1
 = −0.125545(20)

c
2
 = −0.055(25)

     RVB (b)(a) Z2

Z
2

FIG. 5. (a) Coefficient c1 (extracted from the energy at α = 1
of infinitely long cylinders of finite circumference L) plotted versus

1/L. To minimize finite size effects, we consider the average over

the two topological sectors. The error bars represent the energy dif-

ference (in units of J▽) between strong and weak bonds in the down

triangles (nematicity), giving a tight bracketing of the extrapolation.

(b) Energy (per site) in units of J△ vs J▽/J△ of (i) the U(1) wave

function, (ii) the simplex RVB at fixed α = 1, and (iii) the optimal

VBC state. Fits up to second and third order in J▽/J△ are used for

the U(1) (dashed line) and the VBC (full line) states to extract the re-

spective c1 and c2 parameters (with error bars). The VBC has lower

energy up to J▽/J△ ≈ 0.25.

1. Competition with the simplex RVB liquid

Here, we consider the simplex RVB written as a PEPS [57]

and consider a Taylor expansion of the energy per site (in units

of J△) in the strong anisotropy limit:

E

J△
= −0.25 + c1

J▽
J△

+ c2

(

J▽
J△

)2

+ · · · . (5)

The constant −0.25 and the coefficient c1 of the linear term

are captured by setting α = 1 appearing in the operator

I − αP3/2 acting on the up-pointing triangles (hence pro-

jecting exactly on the S = 1/2 manifold of all up-pointing

triangles). Note, however, that an optimization over the pa-

rameter α would be required at finite J▽ (and to get higher

order terms in the Taylor expansion). From the energy per

site E = −0.25J△ + c1(L)J▽ that is obtained for α = 1
on infinitely long (vertical) cylinders of perimeter L = 4,

6, and 8 unit cells (in each even or odd topological sector),

we can extract the coefficient c1(L). Then, by performing

the extrapolation L → ∞ as shown in Fig. 5(a), we obtain

c1 ≃ −0.1243(3). Instead, a fit of the energy of the U(1)

state gives c1 ≃ −0.119(1), definitely above the value of

the simplex RVB; see Fig. 5(b). This implies that the sim-

plex RVB has a lower energy than the U(1) wave function at a

sufficiently small value of the coupling J▽/J△, whatever the

respective values of the coefficient c2 of the quadratic term.

σσ σ

(a) (b)

FIG. 6. Schematic illustration of nearest-neighbor hopping ampli-

tudes of the auxiliary Hamiltonian [Eq. (2)] for (a) VBC and (b) ne-

matic states (no pairing terms are considered here): maroon (green)

bonds within the up-pointing (down-pointing) triangles are stronger

compared to the black (gray) bonds within the same triangles.

2. Evidence of a VBC ground state

Now, we address the issue of the stability of the U(1) Dirac

spin liquid towards dimerizing into a VBC. For simplicity, we

choose a VBC with a unit cell of six-sites, i.e., composed of

two geometrical unit cells, and impose a chosen pattern of am-

plitude modulation of nearest-neighbor hoppings on top of the

uniform U(1) state; see Fig. 6(a). This dimer pattern breaks

both the translational and the threefold rotational symmetry

of the lattice, but preserves the reflection symmetry about an

axis perpendicular to the primitive lattice vector a1. There-

fore, the VBC wave function has two different hopping am-

plitudes within up-pointing triangles, i.e., the maroon (strong)

and black (weak) bonds, and also down-pointing triangles,

i.e., green (strong) and gray (weak) bonds. This results in an

enlarged variational parameter space and hence allows for po-

tential lowering of energy. We optimize the VBC wave func-

tion for various values of the breathing anisotropy and find

that, starting from the isotropic limit down to J▽/J△ ≈ 0.25,

the optimization yields back the uniform U(1) spin liquid as

the lowest energy state. Then, for J▽/J△ . 0.25, the opti-

mization of the VBC wave function yields an energy which
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FIG. 7. For different values of the breathing anisotropy J▽/J△,

the finite-size scaling of the energy gain (in units of J▽) of the six-

site unit-cell VBC with respect to the U(1) Dirac spin liquid, i.e.,

[E(VBC)−E(U(1))]/J▽. The clusters considered are L = 8, 12,

16, and 20.
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is significantly lower compared to the U(1) Dirac state [see

Fig. 7 and the Supplemental Material (Ref. [58])]; therefore,

the resulting wave function is characterized by a strong dimer-

ization of the hopping amplitudes, with the maroon and green

bonds [in Fig. 6(a)] being considerably stronger compared to

the black and gray bonds. Most importantly, we find that the

gain in the energy of the VBC with respect to the U(1) Dirac

state, i.e., E(VBC)−E(U(1)), stays essentially constant with

increasing system size from L = 8 to L = 20 (see Fig. 7)

pointing to the fact that the VBC wave function does not lose

accuracy as N → ∞, i.e., it is size consistent (unlike the

gapped Z2 spin liquid). The variational energy of the opti-

mal VBC state is also slightly lower than the simplex RVB

state that is constructed by using PEPS; see the analysis on

the Taylor expansion of Eq. (5) reported in Fig. 5(b). These

results thus provide strong evidence for a VBC ground state

of the model in the regime 0 < J▽/J△ . 0.25.

We would like to mention that consideration of VBCs with

larger unit cell with 12 or 36 sites, as defined in Refs. [61, 62],

and their optimization could possibly lead to further lower-

ing of energy due to the enlargement of variational space;

nonetheless, the fact that already for a six-site unit-cell VBC

we obtain an appreciable and size-consistent energy gain is

conclusive proof enough of a VBC ordered ground state in

this parameter regime.

3. Search for nematic order

We finally consider the case of a lattice-nematic state,

which only breaks the threefold lattice rotational symmetry

but preserves the translational symmetry; see Fig. 6(b). By

optimizing such a case for various values of the breathing

anisotropy and starting from different points in variational pa-

rameter space (i.e., having different hopping amplitude mod-

ulations), we find that the optimization always returns back

to the uniform U(1) Dirac state as the lowest energy one. In

particular, in the regime of strong anisotropy, this points to

the fact that in order to gain energy with respect to the U(1)

spin liquid, it is crucial to break translational symmetry along

with rotations. This fact is in contrast to the results obtained

by the DMRG approach in Ref. [43], which claimed a pure

lattice-nematic without any translational symmetry breaking.

We want to stress that the simplex RVB wave function ob-

tained within PEPS also showed nematicity [see Fig. 5(a)];

however, this is an artifact induced by finite-perimeter cylin-

ders (manifesting itself in the spatial anisotropy of spin-spin

correlations) and drops off with increasing perimeter. In ad-

dition, there is no further energy gain by allowing a nematic

bias in the R△ tensor.

IV. CONCLUSIONS

We have investigated the nature of the ground state of

the S = 1/2 Heisenberg antiferromagnet on the breathing

kagome lattice employing Gutzwiller projected wave func-

tions analyzed with variational Monte Carlo methods. Based

on high-accuracy and large-scale calculations, supplemented

by a finite-size scaling analysis, we showed that the true ther-

modynamic ground state is a U(1) Dirac spin liquid for a wide

span of breathing anisotropies, starting from (and including)

the isotropic point J▽/J△ = 1 down to large anisotropies

J▽/J△ ≈ 0.25. Our findings concerning the remarkable sta-

bility, robustness, and extent of the U(1) Dirac spin liquid

are in excellent agreement with those from a recent DMRG

study [43]. The results are of direct relevance to the breath-

ing kagome material vanadium oxyfluoride DQVOF, as the

strength of breathing anisotropy estimated using series expan-

sion is J▽/J△ = 0.55(4) [39], which securely places DQVOF

inside the regime of stability of the U(1) Dirac state. Our re-

sults are thus consistent with the gapless spin liquid behavior

observed in spin-lattice (T1) measurements [39] and lend sup-

port to the view that spin liquid behavior observed in DQVOF

is likely to be intrinsic to the breathing kagome lattice. In ad-

dition, our results would suggest that couplings between the

S = 1/2 V4+ ions within the breathing kagome planes to the

inter-layer S = 1 V3+ ions is not a necessary ingredient to

generate spin liquid behavior.

In the regime of strong breathing anisotropy J▽ ≪ J△, we

revealed the presence of a phase transition whereby the U(1)

Dirac spin liquid undergoes a dimer instability and gives way

to a VBC ground state for J▽/J△ . 0.25. This finding is at

variance with that from DMRG [43], which claimed a pure

lattice-nematic state that preserves translations. Nonetheless,

the remarkable agreement between the conclusions obtained

from variational Monte Carlo and DMRG on the nature and

extent of the ground state in a wide span of parameter space

represents a milestone which hitherto could not be foreseen.

It also highlights the quantitative and qualitative accuracy of

projected fermionic wave functions (while only involving a

few parameters) for spin models hosting a spin liquid ground

state.
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—Supplemental Material—

J▽/J△ 48 192 432 768 1200 1768 2352
1.0 −0.4293926(15) −0.4287314(23) −0.4287114(3) −0.4287160(6) −0.4287168(27) −0.428717(7) −0.428708(9)
0.9 −0.4081210(5) −0.4074947(7) −0.4074783(7) −0.407480(1) −0.407487(2) −0.407492(3) −0.407492(4)
0.7 −0.3669648(5) −0.3664411(5) −0.3664274(7) −0.3664297(10) −0.3664373(15) −0.3664426(25) −0.3664442(35)
0.5 −0.3282543(4) −0.3278732(4) −0.3278664(5) −0.3278714(9) −0.3278738(13) −0.327876(2) −0.327881(3)
0.4 −0.3101170(3) −0.3098222(4) −0.3098184(9) −0.309822(2) −0.309826(3)
0.35 −0.3014232(3) −0.3011736(4) −0.3011720(9) −0.3011782(16) −0.301181(3)
0.3 −0.2930111(3) −0.2928055(3) −0.2928074(4) −0.2928122(6) −0.2928132(9) −0.2928167(15) −0.2928176(20)
0.25 −0.2849048(2) −0.2847442(4) −0.2847466(10) −0.284751(2) −0.284760(3)
0.2 −0.2771349(2) −0.2770175(3) −0.2770210(8) −0.2770233(15) −0.277021(2)
0.15 −0.2697295(2) −0.2696521(3) −0.2696563(7) −0.2696576(13) −0.2696626(21)
0.1 −0.26271957(11) −0.26267520(13) −0.26267882(13) −0.26268176(23) −0.2626831(4) −0.2626840(6) −0.2626847(8)
0.05 −0.25613379(5) −0.25611611(8) −0.2561187(2) −0.2561202(3) −0.2561216(5)

TABLE S1. For various values of the breathing anisotropy J▽/J△, the variational ground-state energies per site E/J△ of the gapless U(1)
Dirac spin liquid on different cluster sizes (labelled by the total number of sites) is given. The U(1) Dirac spin liquid Ansatz employed

includes both the nearest-neighbor and optimized next-nearest-neighbor hopping. The calculations are done using mixed boundary conditions,

i.e., anti-periodic along a1 and periodic along a2. All the clusters are of the type 3×L×L, and do not explicitly break lattice symmetries.

J▽/J△ 48 192 432 768 1200 1768 2352
1.0 −0.4295356(12) −0.4287638(23) −0.4287266(4) −0.4287204(7) −0.4287177(37) −0.428725(10) −0.428711(12)
0.9 −0.4082574(4) −0.4075283(5) −0.4074916(9) −0.4074900(12) −0.4074925(14) −0.407491(2) −0.407493(3)
0.7 −0.36708095(33) −0.3664724(5) −0.3664417(8) −0.3664408(11) −0.3664425(13) −0.366440(2) −0.366437(3)
0.5 −0.32834733(26) −0.3279079(3) −0.3278864(7) −0.3278839(10) −0.3278842(10) −0.3278835(15) −0.3278794(26)
0.3 −0.29309867(26) −0.2928537(3) −0.2928370(5) −0.2928321(7) −0.2928300(6) −0.2928278(11) −0.2928240(14)
0.1 −0.26283227(10) −0.26275058(10) −0.2627398(3) −0.2627301(2) −0.2627241(5) −0.2627230(6) −0.2627147(7)

TABLE S2. For various values of the breathing anisotropy J▽/J△, the variational ground-state energies per site E/J△ of the gapped Z2[0, π]β
∗

spin liquid on different cluster sizes (labelled by the total number of sites) is given. The calculations are done using mixed boundary conditions,

i.e., anti-periodic along a1 and periodic along a2. All the clusters are of the type 3×L×L, and do not explicitly break lattice symmetries.

Size 0-LS 1-LS 2-LS 0-LS 1-LS 2-LS U(1)σ2=0
Z2[0, π]β∗

σ2=0

48 −0.3282543(4) −0.33174706(30) −0.3328861(9) −0.32834733(26) −0.33175460(23) −0.3328805(9) −0.334835(30) −0.334702(27)
192 −0.3278732(4) −0.3307906(6) −0.331946(4) −0.3279079(3) −0.3308047(6) −0.331947(3) −0.334564(78) −0.334167(83)

TABLE S3. At J▽/J△ = 0.5, the variational ground-state energies of the U(1) Dirac spin liquid (columns 2−4) and the Z2[0, π]β
∗ spin liquid

(columns 5−7), with p = 0, 1, and 2 Lanczos steps on different cluster sizes obtained by VMC are given. The (non-variational) estimate of

the ground-state energy of the S = 1/2 Heisenberg model on different cluster sizes obtained from a zero-variance extrapolation (employing a

quadratic fit) of the 0, 1, and 2 Lanczos step energies of both the U(1) and Z2[0, π]β
∗ spin liquid Ansätze is given in columns 8−9.

J▽/J△ 48 192 432 768 1200
0.05 −0.25640035(4) −0.25640896(11) −0.2564084(5) −0.2564069(5) −0.2564057(7)
0.1 −0.26305787(9) −0.2630934(2) −0.2630934(6) −0.263081(2) −0.263088(1)
0.15 −0.2699562(1) −0.2700349(3) −0.2700379(7) −0.270037(1) −0.270030(2)
0.2 −0.2771352(2) −0.2772260(4) −0.277236(1) −0.277230(1) −0.277222(2)

TABLE S4. For various values of the breathing anisotropy J▽/J△ inside the valance-bond crystal ordered phase, the variational ground-state

energies per site E/J△ of the 6-site unit-cell valence-bond crystal on different cluster sizes (labelled by the total number of sites) is given. The

valence-bond crystal is obtained by dimerizing the nearest-neighbor hopping amplitudes of the U(1) Dirac spin liquid, whereas the second-

nearest neighbor hoppings are not dimerized. The calculations are done using mixed boundary conditions, i.e., anti-periodic along a1 and

periodic along a2. All the clusters are of the type 3×L×L, and do not explicitly break lattice symmetries.
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