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Abstract

Plant economic performance is most often related to the operating point, specifically the mean values of the process
variables; meanwhile, most existing performance assessment techniques involve examining the variances or covari-
ances of the controlled variables. A combined approach is to determine the appropriate trade-off between variances
of different process variables in order to operate the plant at the point that provides maximum economic benefit while
satisfying the operating constraints. This problem is referred to as the minimum backed-off operating point selection,
and previous works have formulated it as a non-convex constrained optimization problem. In the current work, a new
technique is introduced that can provide the optimal plant operating point. Additionally, this method provides the
weights for a finite horizon controller that results in the optimal trade-off in process variable variances that will allow
satisfaction of the operating constraints at the optimal operating point. In this method, the plant and disturbance mod-
els for the given process are used to generate data representing possible trade-offs between process variable standard
deviations. Employing a piecewise linear regression to describe the sample points of this standard deviations data
allows for the operating point selection problem to be solved as a small number of linear programs. The advantages
of this approach are demonstrated through the use of mathematical and simulation case studies.

Keywords: Multivariate control loop performance assessment; Optimal plant operating point; Generalized principal
component analysis; Piece-wise linear regression

1. Introduction

In process systems, the manipulated inputs are typically bounded by physical constraints, such as the opening
range of a control valve, while process outputs are more likely to be bounded by safety or quality constraints. These
two types of operating restrictions are termed hard constraints and soft constraints, respectively. Temporary, infrequent
violations of soft constraints occurring as part of the dynamic system response are often tolerated at some level, say
for example, a controlled temperature that is allowed to exceed its upper bound for short periods.

It almost always occurs that higher profit operating regions occur at the operating boundary created by the intersec-
tion of constraints [1]. For single-input single-output (SISO) systems, this has led to the observation that decreasing
the variance of the output allows the operating point to be moved closer to boundary, thus increasing the profitability
[2]. This phenomenon is illustrated in Fig. 1 for the case of a variable y whose mean value we wish to maximize,
but whose value is limited by a hard constraint yub. Initially, y has a distribution characterized by mean value ȳa and
standard deviation σa. If through some means this standard deviation could be reduced to σb, then y could be moved
closer to yub, allowing this variable to take on more profitable operating value ȳb.

∗Corresponding author
Email address: raghur@iitm.ac.in (Raghunathan Rengaswamy∗,1,3)

Preprint submitted to Elsevier December 24, 2015

 
© 2016. This manuscript version is made available under the Elsevier user license  

http://www.elsevier.com/open-access/userlicense/1.0/

http://ees.elsevier.com/jprocont/viewRCResults.aspx?pdf=1&docID=4982&rev=1&fileID=116836&msid={F4C36C88-D19B-47B4-A1AA-2B0B7CD78CD0}


This connection between output variance and profitability led to the creation of the minimum variance index (mvi)
as a measure of the control system performance in SISO control loops [3]. The minimum variance index benchmarks
the current variance of the controlled output against the theoretical lower bound of achievable output variance. The
mvi has seen wide adoption in the process industries, as its use provides a measure of performance that requires the
use of only routine operating data along with knowledge of the process time delay in its calculation[4].

Due to the successful application of the minimum variance index to SISO systems, researchers have attempted to
extend the idea of variance benchmarking of control loops to multivariate systems. Methods which rely on knowledge
of the system interactor matrix [5, 6], as well as methods that do not require this device [7], were introduced in order
to provide the theoretical minimum sum of output variances achievable for a given set of process and disturbance
models. However, the utility of minimum variance benchmarking for multivariate systems is less clear than that
for SISO systems, as decreasing the variance of one process variable can often cause other variables to increase in
variance which may force the whole system to be further backed-off away from the optimal operating region. Even
for SISO systems, the trade-off of variance between the controller output and process output should be considered in
many cases [8].

Another way to look at the input and output variances, providing a clearer connection to plant economics, is as
limitations on the choice of the plant operating point. The standard deviations of plant variables determine how close
that the actual plant operating point can come to the optimal operating point that lies upon the boundary formed
by operating constraints. Finding the optimal backed-off point is called the minimum backed-off operating point
selection [9, 10]. This usually involves transforming the original operating constraints on input and output values
into a probabilistic form, wherein the constraint on each variable is written in terms of the standard deviation of
that variable. Then the choice of operating point, along with the target variance of each process input and output,
is selected within an optimization problem, with an objective function representing the process economics. A brief
overview of the various approaches ( along with their limitations) used to solve the minimum backed-off operating
point selection is discussed.

1.1. Motivation & Important Contributions

The work of Chmielewski and Manthanwar [11] along with that of Peng et al. [12] formulated the minimum
backed-off operating point selection as a problem with a linear objective function with convex and reverse convex
constraints. They required the use of a branch and bound solution technique to solve for the optimal operating point.
Nabil et al. formulated the problem in a similar manner, and used an iterative solution technique to deal with the non-
convexity [13]. Zhao et al. considered a more restricted problem in which not all of the input and output variances
were free to vary [14].Their formulation was valid for any model type provided that the control weightings describing
the trade-off between the variances of the process variables were predetermined.

The current work seeks to consider the determination of controller weights as part of the overall optimization
problem. However, unlike the aforementioned earlier works, herein the problem’s constraints are linearized in order
to eliminate the need for non-convex or iterative programming. The method proposed is capable of minimizing the
variance of input and output variables in an integrated manner, hence suitable for multivariable process. Further, the
proposed method obtains the solution to the optimization problem by solving a number of linear optimization tasks,
one of the important contributions of this work. This is possible because of the use of the ideas of gpca (generalized
principal component analysis) and k-DOP (discrete oriented polytopes). These ideas have not been used before in
multivariate controller performance assessment.

The proposed methodology requires a multivariate finite impulse response model of the plant and the disturbance
affecting the process. A large sample of the closed-loop standard deviations of the process variables is then generated
for the system under analysis. A piecewise linearization and subspace bounding procedure for this generated data
is then used to generate linear equality and inequality constraints to describe the relationship between the standard
deviations of different process variables. The economically optimal operating point can then be determined by solving
a small set of linear programs. Section 2 provides an introduction to some of the existing data handling and modelling
techniques (Generalized Principal Component Analysis (gpca) and Discrete Oriented Polytopes (DOP)) applied in
later sections. Section 3 contains the formulation of the operating point and variance tradeoff problem to be solved.
Section 4 contains the proposed method for solving this problem. Section 5 contains both mathematical and simulation
examples to demonstrate the proposed approach. Finally, conclusions are provided in Section 6.
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2. Preliminaries

This section introduces several techniques that will be applied in later sections. The first two techniques are for
piecewise linearization and bounding of a multidimensional surface, while the last is useful for modeling step-type
process disturbances.

2.1. Generalized principle component analysis
Generalized principle component analysis (gpca) is a technique that allows for simultaneous data segmentation

and model estimation for a data set that has come from a collection of linear subspaces of potentially unknown number
and dimension [15]. gpca formulates either a set of factorable polynomials or else a basis for this set, allowing for
an algebraic solution for the determination of the unknown data subspaces. A statement of the problem which gpca
serves to solve is as follows: Given a data set {x j}

Np

j=1 consisting of Np points existing in RK , drawn from k linear
subspaces {S i ⊆ R}ki=1 of dimension Ki = dim(S i), identify the following [15]:

1. the number of subspaces (k) and the dimension of each (Ki)
2. a basis for each subspace S i

3. the membership of each data point x j ( j = 1 . . .Np) in one of the subspaces S i.

Fig. 2 shows the outcome of this procedure for an illustrative example. In Fig. 2(a) data is plotted on its original set
of axes. In Fig. 2(b) three gpca-determined subspaces are plotted that are proposed to represent the data. Subspaces
S 1 and S 2 are each of dimension 1, while S 3 is of dimension 2. In addition to giving the number of subspaces and
their basis vectors, gpca will also provide the membership of each point. In Fig. 2(c), the data points are projected
onto their respective subspaces, and the transformed points are shown in the local subspace coordinates.

The gpca algorithm works by formulating the segmentation and projection problem as an algebraic problem de-
scribed by a polynomial and its derivatives. gpca allows for the subspaces to have arbitrary intersections with each
other and can be used alone or as an initialization method for other segmentation techniques such as k-subspaces or
expectation maximization [16]. For details on the exact steps of the gpca procedure, the reader is referred to the works
by Vidal et al. [16, 15]. In Section 4, it is proposed to use the polynomial differentiation algorithm implementation of
gpca in order to determine a piecewise linear approximation to a surface in high dimensional space.

2.2. Discrete oriented polytopes
Discrete oriented polytopes have been widely applied in the field of computer graphics for use in performing fast

collision detection between moving objects [17]. A k-DOP is a discrete oriented polytope that is constructed from k
hyperplanes. Besides bounding of computer graphics objects, a k-DOP can be constructed to bound any collection
of multidimensional data. For bounding a set of data points with a k-DOP, in each of κ directions, the maximum
projected magnitude of data projected onto that direction gives the point of intersection for the hyperplane normal to
that direction. Fig. 3 illustrates the construction of a k-DOP on an example data set. The number and orientation of
the bounding hyperplanes is user-defined, where the only requirement is that the choice of hyperplanes is sufficient to
form a closed bounding volume.

In Section 4, the use of gpca provides a piecewise linear approximation to a bounded set of data in high dimension;
however, the hyperplanes that are generated by gpca for this purpose are unbounded and extend to infinity. Therefore
it is proposed to project the original data set onto the piecewise linear subspaces determined via gpca, and then use
k-DOPs upon each set of projected data, thus providing a bounded piecewise linear approximation to the surface
described by the original data set.

2.3. Modeling of step-type disturbances
Processes are often affected by step type disturbances that last much longer than the controller time step. Distur-

bances of this type have been termed ‘deterministic’, but, as the value of the disturbance at any future time cannot
be predicted with certainty, they are also of stochastic nature. One common way to represent step disturbances as
stochastic processes is the use of an integrated white noise model; however, a disturbance following this model will
become unbounded as t → ∞ [18]. This means that the disturbance cannot be canceled by a bounded set of input
moves, and either the input or output of the process will become unbounded when this disturbance model is used.
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In order to avoid this unbounded behavior, a stochastic discrete-time model for step disturbances similar to the
one defined for pulses in chapter 3 of [19] is used in this work. Let Tc denote the controller sampling time, and
suppose that the disturbance has a mean time between step changes of µs samples, where µs is integer-valued. Then
the disturbance model is

dt =

at if t ∈ {µs, 2µs, 3µs, . . . }

dt−1 otherwise
(1)

where at is a Gaussian white noise process with mean zero. Here we consider the process as,t with as,t = at for every
µs and zero at all other samples. Then the step-type disturbance can be written in finite response filter form,

dt = f (z−1)as,t (2)

= (1 + z−1 + · · · + z−(µs−1))as,t

where z−1 is the backshift operator. With the above representation, if the original process at has variance σ2
a, then the

sampled version as,t will have variance σ2
a/µs [19].

For a multivariate system, if vector dt contains nd step disturbances, denoted dt,i, i = 1 . . . nd, each having a
respective mean step length of µs,i samples, then the (i, i)th entry of multiple-input multiple-output (MIMO) diagonal
step filter F(z−1), can be expressed

Fii(z−1) = 1 + z−1 + · · · + z−(µs,i−1) . (3)

The input is vector white noise process as,t of length nd, wherein each element is constructed by sampling white noise
process at,i according to respective step length µs,i (i = 1 . . . nd). Each of the diagonal entries of Σa, the covariance
matrix of as,t, can be computed according to

(Σa)ii = σ2
a,i/µs,i (4)

where σ2
a,i is the variance of the ith scalar white noise process sampled in order to construct vector process as,t. Finally,

the resulting vector of step disturbance processes can be simply written

dt = F(z−1)as,t (5)

Matrix Σa and the disturbance model of Eqns. 3 & 5 will be used in the following sections to compute the closed-loop
variances of process variables as these quantities depend on the properties of the disturbance.

3. Problem Formulation

In this section, an optimization problem is formulated for choosing the operating point for a certain class of
constrained linear systems subjected to stochastic disturbances. The operating point can be expressed as a pair of
vectors, (ȳ, ū), where ȳ contains the mean value of each of the process outputs while ū contains the mean values of the
controller outputs. The present method requires that the system under analysis is able to be described with linear finite
impulse models of both the process and disturbance, with each disturbance driven by a Gaussian white noise process,
as shown in Fig. 4. In that case, the process output can be expressed as

yt − yo = H(z−1)(ut − uo) + N(z−1)dt (6)

where yt and ut are the process output and controller output vectors at sample time t, (yo, uo) is the linearization
point around which Eqn. 6 is valid, dt is a disturbance of the type in Eqn. 5, and H(z−1) and N(z−1) are multivariate
discrete finite impulse response models of the plant and disturbance, respectively. The plant and disturbance models

can be expressed as H(z−1) =

NH∑
i=0

Hiz−i and N(z−1) =

ND∑
i=0

Niz−i, respectively, with NH and ND being the order of each

finite impulse response model, while Hi and Ni are the matrix coefficients of the respective models. It is a standard
assumption that there is a delay separating the change of any controller output from its effect on the plant output, so
that H0 = 0.
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Eqn. 6 can also be expressed in terms of deviation variables as

y∆
t = H(z−1)u∆

t + N(z−1)dt (7)

where y∆
t = yt − yo and u∆

t = ut − uo.
Within the process industries, it often occurs that input variables are restricted by physical constraints, such as the

amount that a valve can open and close, whereas output variables are constrained by quality, safety, or operational
concerns that allow for temporary violations; these restrictions are termed “hard” constraints and “soft” constraints,
respectively. As in previous works on operating point selection [12, 14], the current method uses a probabilistic
description of constraint satisfaction. In this way, soft constraints on each of the outputs yi (i = 1 . . . ny) can be written
as

Pr{ylb,i ≤ yt,i ≤ yub,i} ≥ 1 − αi (8)

where Pr{·} is the probability operator, ylb,i and yub,i are the lower and upper bounds on output i, and αi is the permis-
sible level of constraint violation. If yt,i is generated from a Gaussian process having mean ȳi and standard deviation
σy,i, the previous constraint will be satisfied if

ylb,i + zy,iσy,i ≤ ȳi ≤ yub,i − zy,iσy,i (9)

where zy,i is the z-score associated with violation level αi/2. For example, if yt,i is required to stay within its bounds
(ylb,i, yub,i) 95% of the time, then αi is 0.05 and the corresponding zy,i equals 1.96. In this case, yt,i ≤ ylb,i is expected
to occur less than 2.5% of the time, with this same violation rate expected for yt,i ≥ yub,i, leading to the satisfaction of
Eqn. 8.

For consideration of hard constraints during operating point selection and controller design, a similar framework
as above can be used. While this probabilistic formulation cannot enforce hard constraints, it can make violations of
them unlikely enough that performance differences versus the real process are negligible. If each set of lower and
upper bounds, (ulb, j, uub, j), for controller output ut, j ( j = 1 . . . nu) is written as

ulb, j + zu, jσu, j ≤ ū j ≤ uub, j − zu, jσu, j (10)

then setting zu, j equal to 3, for example, ensures that the violations of the bounds are predicted to occur less than
0.3% of the time. In practice, actuator saturation will occur instead of constraint violations, but the low frequency of
occurrence should allow for negligible differences between the real and modeled processes.

For a system which allows for this description of process, disturbance, and constraints, the problem of optimizing
an economic objective function with linear profit dependency on the mean values of the process variables can be
expressed as

max
ȳ, ū, σu, σy

J = cT
y ȳ − cT

u ū

subject to: ylb + zyσy ≤ ȳ ≤ yub − zyσy

ulb + zuσu ≤ ū ≤ uub − zuσu

y∆
t = H(z−1)u∆

t + N(z−1)dt

(ȳ − yo) = K(ū − uo)

(11)

where J is a measure of economic performance, cy is a vector of coefficients giving value to the level of each output
variable, cu is a vector of cost coefficients associated with each controller output level, K is the steady state gain,
while ylb, zy, yub, σy, ulb, zy, uub, σu are vectors of the associated indexed quantities defined in Eqns. 8-10. This linear
objective function is usually applicable to cases where the output represents the product with cy denoting its cost while
the input u is the total energy (cu is the associated cost) incurred to develop the product. This is one of the widely
used objective functions in linear programming problems. However, this linear objective function could be modified
depending on the control problem at hand, provided the model and other constraints in the above optimization problem
of Eqn. 11 are valid. For instance, the objective function could be modified to minimizing the sum squared deviation
of the process and controller outputs (as discussed in Nabil et al. [13]) from a reference value of interest.

The optimization problem of Eqn. 11 is not yet in a solvable format since the connection between the process
model and the process variable standard deviations is not explicit. The following section details how to generate a
surface of Pareto optimal standard deviation values, σy and σu, from the impulse response model of Eqn. 7 and to
furthermore create a bounded piecewise linear approximation of this curve so that the optimization problem of Eqn. 11
can be solved as a series of linear programs.
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4. Solution Method

This section first details how a relationship among and between the entries in the vectors σy and σu can be
generated. Following this, a procedure for the piecewise linearization of this relationship is introduced. This novel
method allows the optimization of Eqn. 11 to be obtained via the solution of a small set of linear programs.

4.1. Generating Pareto Optimal Standard Deviations

The objective and each of the constraints in Eqn. 11 are linear, except for the process description of Eqn. 7. Also,
it is not yet explicit how the allowable set of output and input variances (σy, σu) are to be generated. This section
will show how the set of admissible σy and σu are obtained as part of the solution to a set of finite horizon control
problems relevant to the process of Eqn. 7. Much of the following developments in this subsection are based on the
framework used for minimum variance performance benchmarking introduced by Ko & Edgar [20], but are presented
with appropriate modification for the different problem now considered.

In this section, it is desired to solve a control problem for the system of Eqn. 7. Consider a finite horizon length
control law which selects NU moves for each controller output, which means that the plant response can be calculated
for NH + NU total time steps. Now considering the disturbance model of Eqn. 5 along with the disturbance term in
Eqn. 7, the step filter F(z−1) has NF = max j∈1...nd (µs, j) coefficients which, when convoluted with filter N(z−1), gives a
total disturbance response of length ND + NF time steps. To create equivalent length plant and disturbance responses,
take N = max(NU +NH ,NF +ND), then append zero coefficients to either the plant response filter H(z−1) or disturbance
response filter N(z−1) so that finally plant and disturbance both have equal response length N = NU + NH = NF + ND.
Also, it will be useful in the following analysis to redefine the disturbance impulse response filter in Eqn. 7 to be
driven by noise as,t instead of step disturbance dt. To do so, the disturbance filter N′(z−1) is defined by

N′(z−1) = N(z−1) ∗ F(z−1) (12)

=

ND∑
i=0

Niz−i
max(N−i,NF )∑

j=0

F jz− j =

N−1∑
`=0

N′`z
−`

where the coefficients of filter N′(z−1) must be calculated according to the convolution product.
Since it is desired to compute the variances of both plant inputs and outputs, it is useful to augment the plant and

disturbance models with the plant inputs treated as additional outputs. The augmented model takes the form

ỹt =

[
y∆

t
u∆

t

]
=

[
H(z−1) 0

0 I

]
u∆

t +

[
N′(z−1)

0

]
as,t (13)

= H̃(z−1)u∆
t + Ñ(z−1)as,t

where H̃(z−1) is the augmented plant filter, and Ñ(z−1) is the augmented disturbance filter, which can be expressed

as H̃(z−1) =

NH∑
i=0

H̃iz−i and Ñ(z−1) =

N−1∑
i=0

Ñiz−i, respectively. Note again that u∆
t and y∆

t represent deviation variables

and not increments in yt and ut.
From the MIMO plant filter impulse coefficients H̃i that make up plant model H̃(z−1), the dynamic matrix GN , can

be defined as:

GN =



H̃0 0 0 0
...

. . . 0 0
H̃NH · · · H̃0 0

0 H̃NH · · · H̃0

0 0 H̃NH · · ·

...
. . . · · ·

...

0 · · · 0 H̃NH


. (14)
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Also, matrix DN =


Ñ0
...

ÑN−1

 can be constructed from disturbance filter impulse coefficients Ñi describing the total

disturbance effect resulting from a single white noise vector impulse a0 from sequence as,t. Therefore, the effect of a0
on augmented output ỹt can be written

y∆N = GNu∆N + DNa0 (15)

where y∆
N =


ỹ0
...

ỹN−1

 and u∆
N =


u∆

0
...

u∆
NU−1

.
Suppose it is desired to achieve the minimum of a weighted sum of input and output variances

σ2
W =

ny∑
i=1

wy,iσ
2
y,i +

nu∑
j=1

wu, jσ
2
u, j (16)

through proper manipulations of u∆
t . First, letting wy and wu be the vectors whose entries are wy,i and wu, j, respectively,

construct weighting matrix W = diag(
[
wT

y wT
u

]
) along with matrix WN , which contains N repetitions of W on

its block diagonal. Then, minimizing the weighted sum of variances is equivalent to minimizing the expectation
E(y∆

N
T WN y∆

N). The solution of this weighted linear least squares problem is well known, with the optimal u∆
N given by

u∆
N = UNa0 =


U0
...

UNU−1

 a0 (17)

= −(GT
NWNGN)+GT

NWN DNa0

where UN is the projection matrix −(GT
NWNGN)+GT

NWN DN , and each coefficient Ui, i = 0 . . .NU−1, is of size nu×1. If
the values of the random shocks as,t are either known or can be estimated, the coefficients Ui can be used to construct
a feedforward controller. Due to the statistical independence of the white noise sequence as,t in time, the principle of
superposition holds [20], and this controller takes the form ut = −

∑NU−1
i=0 Uias,t−i. Similarly, the closed-loop response

to shock a0 can be written as

y∆
N = YNa0 =


Y0
...

YN−1

 a0 (18)

= [I −GN(GT
NWNGN)+GT

NWN]DNa0

where each Yi is a (ny + nu)× 1 coefficient. Then, the response to sequence as,t can be computed via the filter equation
yt = −

∑N−1
i=0 Yias,t−i.

It follows that the covariance matrix Σỹ of the augmented process output ỹ that corresponds to the minimized σ2
W

is computed through

Σỹ =

N−1∑
i=0

YiΣaYT
i (19)

with this result due to the statistical independence of any terms within white-noise sequence as,t, which provides
cov(as,t−i, as,t− j) = 0 [8]. Finally, the vectors σy and σu can be obtained by taking the square root of the diagonal
elements of Σỹ. The standard deviation points generated in this manner are Pareto optimal, meaning that lowering the
value of any entry in σy or σu requires that one or more of the other values within these vectors must be increased.
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To create the Pareto optimal surface of (σy, σu) values, this procedure should be carried out repeatedly over a wide
range of values of the weights within matrix W (by varying the entries in wy and wu from 10−4 to 104, for example).
The resulting surface of these points in (σy, σu) space represents a description of the possible trade-offs in variation
between different process variables.

4.2. Linearization of (σy, σu) Space
The Pareto optimal standard deviations will create an open surface within a space over (nu +ny) dimensions, where

nu is the number of inputs and ny the number of outputs. In order to proceed, it is proposed to create a piecewise-linear
approximation of the Pareto surface. For this purpose, the technique of Generalized Principle Component Analysis
(gpca) is employed [15]. For data points in the K-dimensional space of real numbers, gpca can determine the optimal
division of these points into a set of linear subspaces {S i}

k
i=1, along with simultaneous determination of the basis for

each linear subspace.

First define σ =

[
σy

σu

]
and let {σ j}

Np

j=1 be a set of σ vectors generated using the procedure of the previous section,

where Np is the total number of standard deviation samples generated. This set is assumed to be representative of the
surface of Pareto optimal σ values. Then, the gpca technique can be used to determine the number of linear subspaces
k and the basis vectors for each of these subspaces that best represents the σ data. Using the subspace basis vectors
and membership of each data point, both of which are determined via the gpca procedure, each point in the set {σ j}

Np

j=1
is projected onto its assigned subspace. If Vi is the matrix whose columns are the basis vectors of the subspace S i of
the standard deviation data, then

PV,i = Vi(VT
i Vi)+VT

i (20)

is the projection matrix for Vi, where (VT
i Vi)+ denotes the pseudoinverse of the product VT

i Vi. Therefore, if point σ j

was determined to belong to subspace i, its projection onto the linear subspace S i, expressed in the original coordinates
(σy, σu), is given by

σ̃ j = PV,i(σ j − µσ,i) + µσ,i (21)

where µσ,i is the mean of the σ j belonging to subspace i. Therefore, it follows that any σ belonging to the ith linearized
subspace must satisfy:

(PV,i − I)(σ − µσ,i) = 0 (22)

With Eqn 22, a set of constraints has been formulated that restricts σ of Eqn 11 to a set of linear subspaces {S i}
k
i=1.

However, these subspaces will be unbounded and thus allow for σ points far outside of the original Pareto surface.
To restrict σ to a bounded set that represents the original standard deviation data, the k-DOPs method introduced
in Sec. 2.2 is applied to each of the gpca-determined subspaces. If vector s is a chosen bounding direction within
subspace S i, then the boundaries on σ in directions s and −s can be expressed as:

min
σ j∈S i

(sT PV,iσ j) ≤ sT PV,iσ ≤ max
σ j∈S i

(sT PV,iσ j) (23)

where the σ j are the Pareto optimal standard deviation points determined to belong to subspace i.
Then, after this procedure is carried out over a set of directions {s} on each subspace S i, the model satisfaction

constraint, Eqn 7, is transformed into a pair of matrix equality and inequality constraints that describe a series of
hyperplanes approximating the σ relation in addition to the bounds of each hyperplane, as follows:

Ai
[
σy

σu

]
≤ bi Ci

[
σy

σu

]
= di (24)

where Ai, bi,Ci, di are coefficient matrices corresponding to the ith linearized subspace, i = 1 . . . k, where k is the
number of subspaces identified, and

Ai =

[
sT PV,i

−sT PV,i

]
bi =

[
maxσ j∈S i (sT PV,iσ j)
−minσ j∈S i (sT PV,iσ j)

]
Ci = PV,i − I di = (PV,i − I)µσ,i (25)
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with the result that the surface of σ data has been approximated with a set of linear and bounded subspaces. At this
point, the optimal operating point and σ can be found by solving Eqn. 11, with the substitution of Eqn. 24 in the place
of model Eqn. 7. This proposed framework for piecewise linearization and optimization is summarized in Fig. 5.
Detailed examples, illustrating how this procedure is used, follow in the next section.

Remark 4.1. In the proposed approach, controller weights are obtained by mapping the σ [σy, σu] space to the space
of controller weights. With the help of this mapping, the optimal controller weights are obtained based on the optimal
σ values obtained by solving the equation 11 as per the method outlined in Figure 5. In the proposed approach,
controller weights are obtained by mapping the variance space to the space of controller weights. With the help of
this mapping, the optimal controller weights can always be obtained in the least squares sense. It should be noted that
since approximations are used (whether piece-wise or nonlinear), there is no guarantee that controller weights are
globally optimal for the particular values of the variance. Nonlinear mapping (like neural networks used in section 5
and other Kernel methods) approaches might perform better in some specific cases.

Remark 4.2. The proposed approach tackles the optimization problem defined in equation 11 using an approximation
of the σ space resulting in a solution using a number of linear optimization tasks. In this sense, the proposed approach
is numerically efficient compared to several other approaches discussed earlier. However, theoretically, there is no
guarantee that the proposed approach will yield globally optimal results.

5. Examples

In this section, two case studies are presented which demonstrate the use of the proposed operating point and
controller selection technique. In the first, the calculations described in Sec. 4 are presented for a simple 2-input 2-
output discrete time plant model. In the second example, the method is applied to a 3-input 3-output continuous-time
simulation model.

5.1. Wood & Berry Column Model

The first system studied is a discrete approximation of the Wood & Berry column model [21] with additional
transfer functions defined to allow for two output disturbances. The plant H(z−1) and disturbance N(z−1) transfer
functions used were

H(z−1) =

 0.744z−2

1−0.9419z−1
−0.8789z−4

1−0.9535z−1

−1.302z−4

1−0.9329z−1
−0.5786z−8

1−0.9123z−1


and

N(z−1) =

 2z−1

1−0.8z−1
0.9

(1−0.7z−1)(1−0.7z−1)
0.9

(1−0.7z−1)(1−0.7z−1)
2z−1

1−0.8z−1


The disturbances d1 and d2, which are the inputs to noise filter N(z−1), were of the form of Eqn. 2 each with a mean

step time µs = 20. The noise covariance was Σa =

[
0.125 0

0 0.125

]
. The proposed method requires transformation

of the plant and disturbance models to finite impulse response form, and so the multivariate discrete transfer function
matrices H(z−1) and N(z−1) were approximated by NH = 100 and ND = 130 impulse response coefficients, respec-
tively. A control horizon of NU = 50 was selected, leading to the closed-loop disturbance impulse response between
each disturbance di and output yi to have 150 coefficients.

The linearization point was [y1, y2, u1, u2]T = [90, 90, 55, 55]T , while each input was constrained to operate within
the (hard) bounds (ulb, uub) = (0, 60) and each process output was required to stay within the bounds (ylb, yub) =

(0, 100) at least 95% of the time.
The objective function to be optimized was:

max
ȳ, ū, σu, σy

J = cyȳ − cuū =
[
5 5
] [y∗1

y∗2

]
−
[
2 2
] [u∗1

u∗2

]
(26)
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The procedure of Sec. 4.1 was used to minimize the weighted sum wy,1σ
2
y,1+wy,2σ

2
y,2+wu,1σ

2
u,1+wu,2σ

2
u,2 repeatedly,

wherein each of the weights wy,1,wy,2,wu,1,wu,2 were varied in the range 10−4 to 104, and approximately 35000 points
in (σu,1, σu,2, σy,1, σy,2) space were obtained. Subspaces of the resulting 4-dimensional space are shown in Fig. 6(a-c).

By following the procedure in Fig. 5, the original (σu,1, σu,2, σy,1, σy,2) space was then approximated in the form
of k = 7 piecewise linear and bounded spaces. Fig. 6(d) shows each σ point of 6(c) projected onto its gpca-identified
subspace. There is minor distortion of the σ data observable, but the general bounds of the data are preserved. The
gpca and k-DOPs procedures led to equations of the form Eqn. 24 for each linear subspace. The optimization of
Eqn. 11 with objective function defined by Eqn. 26 was carried out once for every linear space, then the results for
each were compared in order to select the optimal operating point and associated controller weights. In the following,
this way of determining controller weights via the technique proposed in this work is referred to as Case I or the
“optimized case”. The resulting closed-loop disturbance impulse response of each of the process variables to white
noise process as,t are shown in Fig. 7 for this case. It is observed that the variables y1 and y2 have significant variation
in their response for 10-20 time steps, whereas the form of matrix H(z−1) suggests a deadbeat control response could
be achieved in as little as 4 time steps.

Therefore, the case traditionally referred to as “minimum variance” or “singular LQ” control was also considered
for comparison against the present technique. In minimum variance control, the controller weights are set as wy,1 =

wy,2 = 1 and wu,1 = wu,2 = 0. Using these weights within Eqn. 19 to generate the standard deviations of yt and ut, the
optimization of Eqn. 26 was then carried out subject to the constraints on the operating point. The economic objective
value achieved for this case was Jmv = 635, whereas a value of Jopt = 746 was obtained by using the proposed

procedure. This difference can be quantified by the measure γ =
Jopt − Jmv

Jopt
× 100 ≈ 15% which shows about 15

percent lost economic potential when using the minimum variance controller compared to the optimal case.
Fig. 8 presents the operating region of each of the process variables for both the minimum variance and optimal

control cases. It is noted that although y1 and y2 have reduced variation in the minimum variance case, they are much
further from the more profitable region that is located near the upper bounds of these variables. This suboptimal
behavior can be explained as follows: when decreasing σy,1 and σy,2 relative to their values in the optimized case,
the resulting trade-off is that the values of σu,1 and σu,2 are inflated, pushing the whole operating point far from the
optimal region. It is noted that in Fig. 8, both u1 and u2 are against their upper bounds for the minimum variance case.

Fig. 9 presents the closed-loop disturbance impulse response of each of the process variables in the case of mini-
mum variance control. Comparing against the responses in the optimal case (Fig. 7), it is noted that although deadbeat
control is achieved, the variation has indeed been transferred from the process variables, y1 and y2, to the controller
outputs, u1 and u2. These observations are consistent with those in earlier works, which concluded that minimum vari-
ance control is often undesirable because of a variety of ill effects caused to transferring variability to the controller
outputs [8].

5.2. 3-input 3-output Control Problem
The second example that is now considered is a modification of the version of the Shell control problem examined

by Maciejowski[22]. The continuous-time plant and disturbance transfer functions, H(s) and N(s), for this system are
given by

H(s) =


4.05e−27s

50s+1
1.77e−28s

60s+1
5.88e−27s

50s+1
5.39e−18s

50s+1
5.72e−14s

60s+1
6.9e−15s

40s+1
4.38e−20s

33s+1
4.42e−22s

44s+1
7.2e−s

19s+1

 (27)

and

N(s) =


1.2

45s+1
1.44

40s+1
1.52

25s+1
1.83

20s+1
1.14

27s+1
1.26

32s+1

 (28)

Two measured disturbances were considered: the first, d1 is a step-type disturbance with a mean time between
value changes of 100 minutes, while the second, d2 was a load disturbance whose value changed only every several
days and furthermore only took on values from the set {−0.25, 0, 0.25}. Disturbance 1 is treated as a stochastic
disturbance in the framework of Eqn. 2 and so feedforward control is implemented to reject its effects on the outputs.
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Changes in the second disturbance are both large in magnitude and infrequent, so it is proposed to deal with this
disturbance by changing the overall system operating point in an optimal way, whenever the disturbance level changes.

Several operational restrictions for this system are now described. The first two outputs are required to keep a
mean value equal to their set-points y∗1 = y∗2 = 0, while the third output is free to vary within its bounds. All three
system inputs are free to vary within their bounds. The inputs and outputs are bounded as follows:

−0.5 ≤ ut,i ≤ 0.5, i = 1 . . . 3 (29)
−0.5 ≤ yt,i ≤ 0.5, i = 1 . . . 3 (30)

However, the constraints on ut correspond to limits of valve movement and are treated as hard constraints, whereas
the bounds on each output yt,i can be violated up to 5% of the time.

Other than these specifications, no variable within this system has been assigned a cost or revenue, except for
u3 which is directly related to the amount of steam that is used in the reboiler. Since this is the only variable with
economic value, the relative cost of ū3 can be assigned to be 1, and the objective function for this system can be
written

max J = −ū3. (31)

As indicated, the optimization of Eqn. 11 was carried out three times, once for each potential value of d2. To handle
the different magnitudes of d2, the last constraint in Eqn. 11 was modified to become (ȳ − yo) = K(ū − uo) + Kdd2,
where steady state gain Kd was determined according to N(z−1). Two cases were considered: Case 1 used the tuning
determined by the algorithm in Fig. 5, while in Case 2, the controller was heuristically tuned, using the weights
wy,1 = wy,2 = wy,3 = wu,1 = wu,2 = 1, and wu,3 = 10, where a large weight was associated with input u3 because of this
variable’s relation to the economic objective.

To proceed with the procedure of Sec. 4.1, the transfer functions of Eqns. 27 & 28 were first discretized using
an impulse-response invariant approximation with controller time step Tc = 1 min, then further transformed to finite
impulse response form. The plant impulse response model contained 200 matrix coefficients, while the control horizon
was selected as 150 time steps. This meant that the closed-loop disturbance impulse response was computed for 350
time steps.

The weights in Eqn. 16 were varied in the range 10−2 to 102 to create a data set of approximately 16, 000 points in
σ space. Using the gpca algorithm, it was determined that the use of 9 linear subspaces provided a good approximation
of the original data. Each subspace obtained via gpca was an unbounded hyperplane in 5 dimensions, and so the k-
DOPs method was used to bound each hyperplane in 242 directions. Then, the optimization problem of Eqn. 11 with
objective function Eqn. 31 was solved on each of the bounded subspaces, the solutions for each subspace compared,
and the overall optimal operating point and process variable standard deviations selected.

Because of the high dimensionality and sparse distribution of sample points in σ space, to benchmark if the
controller weights identified using the piece-wise linear approximation of the σ surface was adequate, it was decided
to use a neural network to map the space of σ to the space of controller weights. A single hidden layer network
with 20 nodes was trained on the sampled σ data and was used to find the weights (wy,wu) based on the optimal
(σy, σu). With the weights determined in this manner, an objective function within 1% of the original optimum was
achieved, giving evidence that the piecewise linearization procedure of Fig. 5 provides an acceptable approximation
to the σ-space.

Fig. 10 presents the controller weights used in each the optimal and heuristic tuning cases, as well as the resulting
standard deviations of the process variables. While in the heuristic tuning case, low variation is achieved for variable
u3, it is seen from the optimal tuning that the most important variables (in terms of reducing their variation) are y3 and
u1. In fact, for these variables the heuristically tuned controller does relatively poorly.

Next a simulation of the system described by Eqns. 27 & 28 was carried out in Matlab Simulink. The simulation
was run for 104 min for both the optimally tuned and heuristically tuned cases; in each case, the operating points
determined during the optimization were implemented according to the level of d2, where this disturbance changed
level approximately once every 2.2 days. Fig. 11 shows the results of the simulation trials. It can be seen that
disturbance d1 has relatively frequent fluctuation compared to d2, supporting the decision to treat this variable within
the stochastic framework.

The motivation for the relatively high weights given to wy,3 and wu,1 in the case of the optimal tuning can be
observed from Fig. 11. In both the optimally and heuristically tuned cases, it appears that the constraints on these
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variables are preventing further decrease in the level of u3. In Case 1, the optimal tuning assigns low variance to
u1 allowing it to be closer to the constraint boundary, which permits u3 to take on relatively low values. However,
in the case of heuristic tuning, variable u1 is making frequent large magnitude and sudden changes that require this
variable’s mean value to be held far away from its constraint boundary. This in turn limits the flexibility provided to
variable u3, thus reducing the achievable performance in this heuristically tuned case. The mean value of the objective
in Eqn. 31 achieved for the case of optimized tuning was Jopt = 0.29, while for the heuristically tuned case, it was
only Jmv = 0.19. Computing the lost economic potential as defined in the previous example, it is seen that the heuristic

tuning case performs γ =
Jopt − Jmv

Jopt
× 100 ≈ 34% worse than the case where the optimal trade-offs are made.

In some cases, the amount of variability exhibited by the outputs of the optimal case may not be acceptable for a
certain variable. Whereas in traditional controller design, this would have to be handled via trial and error adjustment
of weights within the controller’s objective function, in contrast, the optimization formulation of this work allows
that the standard deviation of any process variable can be hard-capped simply by the addition of a constraint to the
optimization problem in Eqn. 11. The ability to more directly state process requirements and economic objectives
within the framework proposed in this paper (and similar methods) is an advantage compared to traditional hierarchial
operating point selection and controller tuning methods.

Remark 5.1. Though the potential of the proposed approach is demonstrated on square systems, it is a generalized
method applicable to non-square systems as well. If the multivariate finite response models of the process and dis-
turbance behaviour are available, then an optimization problem described in equation 11 could be formulated and
solved using the proposed approach for multivariate systems under additive disturbances.

6. Conclusion

A novel approach for economical optimization of constrained multivariate control systems has been introduced.
The proposed method requires plant, disturbance, and constraint information, but returns an estimate of both the
optimal achievable economic performance, as well as the minimum backed-off operating point and controller weights
that can provide this performance level. The two case studies presented in this work showed that the new method can
be used to derive higher economic benefit compared to other methods for controller design.

Currently, the proposed approach assumes the existence of a multivariate predictive controller and obtains the
controller weights by solving the minimum backed-off operating point selection problem. This method could be
extended for identification of a MIMO controller wherein the controller structure and parameters are functions of
the decision variables in the optimization problem solved in this work. Though this could leading to a complex
problem compared to the one considered, with a proper framework, synthesis of MIMO controller could be achieved.
Another important requirment/assumption of the proposed method is the availability of finite impulse response plant
and disturbance model. Future work is directed towards development of algorithms to obtain a reasonable model of
the plant and disturbances from routine operating data with minimal excitations that could be used in obtaining the
FIR model of the process.
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Figure 1: Variance and operating point interaction in SISO systems
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Figure 7: Wood & Berry column: Disturbance impulse responses under the optimized controller
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Figure 9: Wood & Berry column: Disturbance impulse responses under minimum variance control
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Figure 10: Shell control problem: (a) controller weights (logarithmically scaled bars) and (b) resulting process variable standard deviations (linear
scaled bars)
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Figure 11: Shell control problem: Case 1 - optimal operating point and controller tuning; Case 2 - heuristical controller tuning
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