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Abstract

We present a general methodology to obtain the basis of qudits which are admis-
sible to Quantum Fourier Transform (QFT). We first study this method for qubits to
characterize the ensemble that works for the Hadamard transformation (QFT for two
dimension). In this regard we identify certain incompleteness in the result of Maitra
and Parashar (IJQI, 2006). Next we characterize the ensemble of qutrits for which
QFT is possible. Further, some theoretical results related to higher dimensions are
also discussed.

Keywords: Hadamard Gate, Qubits, Qutrits, Qudits, Quantum Fourier Transform, Uni-
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1 Introduction

One important quantum gate is the Hadamard gate that has received wide attention in
computer and communication science. There are a number of seminal papers in quantum
computation and information theory where the Hadamard transform has been used. The
Deutsch-Jozsa algorithm [3] to distinguish the constant or balanced Boolean functions uses
an n-dimensional Hadamard gate. Furthermore, the Toffoli and Hadamard gates comprise
the simplest universal set of quantum gates [6, Chapter 4]. Thus one can easily claim that
Hadamard gate is one of the most frequently used building blocks in quantum computational
model.

An extension of Hadamard transform over higher dimension is the Quantum Fourier
Transform (QFT). QFT has frequent applications in Quantum computation and information
and one may refer to [6, Chapter 5] for detailed discussion in this area. The QFT can be
seen as linear transformation on quantum bits. This is the quantum analogue of the Discrete
Fourier Transform (DFT). Shor’s famous algorithm [9] for polynomial time factoring and
discrete logarithm are based on Fourier transform which is a generalization of the Hadamard
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transform in higher dimension. It has applications in other important areas such as quantum
phase estimation and hidden subgroup problem. It is also important to note that the QFT
can be performed efficiently on quantum computational framework.

Thus, it is important to identify the quantum states that are admissible to QFT as those
states can be used in a similar manner as the standard basis and thus states can be used
in the same quantum gates that are already available. We describe the exact problem in
Section 1.2 little later. Thus, in this paper we study the universality of QFT.

Pati [7] has proved that one can not design a universal Hadamard gate for an arbitrary
unknown qubit. This is due to the simple reason that linearity does not allow linear su-
perposition of an unknown state |ψ〉 with its orthogonal complement |ψ⊥〉. Motivated by
Pati’s work, in [4], it has been shown how one can construct a general class of qubit states,
for which the Hadamard gate works as it is. The result of [4] provides certain ensemble
qubit states, for which it is possible to design a universal Hadamard gate, are given by
(α+ iβ)|0〉+ α|1〉. In [4], the orthogonal state of the form b∗|0〉 − a∗|1〉 has been considered
for the state a|0〉+ b|1〉. In fact, all the phase shifts of the state b∗|0〉 − a∗|1〉 are orthogonal
to a|0〉+ b|1〉.

In this paper, we show that the result of [4] is not a complete characterization of the
qubits such that after application of U2 |ψ0〉, |ψ1〉 goes to 1√

2
(|ψ0〉+ |ψ1〉) and 1√

2
(|ψ0〉− |ψ1〉)

respectively. We complete the characterization here that is presented in Section 2.

1.1 Brief Background

The quantum bits, well known as qubits, can be represented as the superposition of |0〉 and
|1〉 in the form |ψ〉 = α|0〉+ β|1〉, where α, β are complex numbers such that |α|2+ |β|2 = 1.
The qubits of higher dimensions are called qudits. An n-dimensional qudit can be represented
as |ψt〉 = αt,0|0〉+αt,1|1〉+αt,2|2〉+ . . .+αt,n−1|n− 1〉, where αt,0, αt,1, αt,2, . . . , αt,n−1 are all
complex numbers and

∑n−1
j=0 |αt,j|2 = 1. We here index the qudits by t as we will be using

more than one qudits at the same time.
The discrete Fourier transform is usually described as transforming a set x0, . . . , xn−1 of

n complex numbers into a set of complex numbers y0, . . . , yn−1 defined by

yj = Un(xj) =
1√
n

n−1
∑

k=0

e
2πijk

n xk.

The quantum Fourier Transform (QFT) is the counterpart of this transformation and is
defined as follows.

Un(|j〉) =
1√
n

n−1
∑

k=0

e
2πijk

n |k〉. (1)

Quantum Fourier Transform has extremely important role in Quantum computation as evi-
dent from [3, 9]. One can write the DFT/QFT matrix Un as follows for n dimension, when
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ωn = e
2πi
n .

Un =
1√
n











ω0·0
n ω0·1

n . . . ω
0·(n−1)
n

ω1·0
n ω1·1

n . . . ω
1·(n−1)
n

. . . . . . . . . . . .

ω
(n−1)·0
n ω

(n−1)·1
n . . . ω

(n−1)·(n−1)
n











.

Thus DFT/QFT is a unitary transformation given by the unitary matrix Un. One can view
the DFT as a coordinate transformation that specifies the components of a vector in a new
coordinate system. Thus, given a set of qudits ψ0, ψ1, . . . , ψn−1, after application of QFT, one
can get another set of qudits ψ′

0, ψ
′
1, . . . , ψ

′
n−1. From the Plancherel theorem [10] it is known

that the dot product of two vectors is preserved under a unitary DFT/QFT transformation.
Thus if ψu and ψv are orthogonal then ψ′

u and ψ′
v will be orthogonal too.

Let us briefly introduce what happens in case of qubits in terms of Hadamard oper-
ations. The Hadamard transform is an example of Fourier transform for n = 2 and the
transformation (H gate) is as follows:

U2 =
1√
2

[

1 1
1 −1

]

.

This takes the orthogonal vectors |0〉 and |1〉 to two other orthogonal vectors 1√
2
(|0〉 + |1〉)

and 1√
2
(|0〉 − |1〉) respectively. One important question is [7] what is the set of orthogonal

vectors |ψ0〉, |ψ1〉 such that after application of Hadamard gate H one gets two orthogonal
vectors 1√

2
(|ψ0〉 + |ψ1〉) and 1√

2
(|ψ0〉 − |ψ1〉) respectively. This cannot be true for all the

qubits. However, using linearity, it has been shown [4] that |ψ0〉 needs to be of the form
(α + iβ)|0〉+ α|1〉.

1.2 The problem

Thus we have the following problem in hand related to QFT. Consider that an n-dimensional
qudit can be represented as |ψt〉 = αt,0|0〉 + αt,1|1〉 + αt,2|2〉 + . . . + αt,n−1|n − 1〉, where
αt,0, αt,1, αt,2, . . . , αt,n−1 are all complex numbers and

∑n−1
j=0 |αt,j|2 = 1. We like to character-

ize the qudits |ψ0〉, |ψ1〉, . . . , |ψn−1〉 such that

Un(|ψj〉) =
1√
n

n−1
∑

k=0

e
2πijk

n |ψk〉. (2)

It is clear that this is true when |ψ0〉 = |0〉, |ψ1〉 = |1〉, . . ., |ψn−1〉 = |n− 1〉. However, it is
not true in general and it is an important theoretical question to characterize such ensembles.

Looking at Un as a matrix as we have described above, Un(|ψj〉) can be seen as Un×|ψj〉

interpreting |ψj〉 as a column vector









αj,0

αj,1

. . .

αj,n−1









. Thus, Un × (|ψ0〉, |ψ1〉, . . . , |ψn−1〉) can be
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seen as Un × An, where,

An =









α0,0 α1,0 . . . αn−1,0

α0,1 α1,1 . . . αn−1,1

. . . . . . . . . . . .

α0,n−1 α1,n−1 . . . αn−1,n−1









.

Now, linearity gives that U(ψj) = αj,0U(|0〉) + αj,1U(|1〉) + . . .+ αj,n−1U(|n− 1〉). From
this it is clear to note that for linearity, we need

UnAn = AnUn.

This provides n2 many constraints on the elements of the matrix An and based on those
constraints one can characterize |ψ0〉, |ψ1〉, . . . , |ψn−1〉 that satisfy Equation 2.

1.3 Outline of the paper

In this paper we point out certain incompleteness in the result of [4] and complete the char-
acterization in Section 2. In Section 3, the characterization related to the qutrits that satisfy
the QFT are presented. Some brief results related to QFT for quantum states of higher
dimensions are presented in Section 4 and we explain that the nature of the solutions (sym-
metric or asymmetric) depends on the eigenvalues of the QFT matrix. Section 5 concludes
the paper.

2 The case for qubits

To study the simplest case, we may revisit the work of [4] in this model, which only considers
the case n = 2. In this case,

|ψ0〉 = α0,0|0〉+ α0,1|1〉, (3)

|ψ1〉 = α1,0|0〉+ α1,1|1〉. (4)

Thus, we have

U2 =
1√
2

[

1 1
1 −1

]

, and A2 =

[

α0,0 α1,0

α0,1 α1,1

]

.

To elaborate, one needs to satisfy

U2(|ψ0〉) =
1√
2
(|ψ0〉+ |ψ1〉),

U2(|ψ1〉) =
1√
2
(|ψ0〉 − |ψ1〉). (5)

Now from U2A2 = A2U2, we get 2
2 = 4 equations and then simple manipulations provide

α1,0 = α0,1 =
α0,0 − α1,1

2
.
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Thus, the general ensemble can be written as

|ψ0〉 = (2α0,1 + α1,1)|0〉+ α0,1|1〉,
|ψ1〉 = α0,1|0〉+ α1,1|1〉. (6)

Hence we get the following result.

Theorem 1 Let |ψ0〉, |ψ1〉 be the qubits as described in (3). Then they will satisfy (5) if and
only if they are of the form mentioned in (6).

When |ψ0〉 and |ψ1〉 are orthogonal, it has been considered in [4] that

α1,0 = α∗
1,0, i. e., α1,0 is real,

α1,1 = −(2α1,0 + α1,1)
∗ = −2α1,0 − α∗

1,1 as α1,0 is real, which gives

α1,1 + α∗
1,1 = −2α1,0, and thus, Real(α1,1) = −α1,0.

Taking α1,0 = a, a real number and α1,1 = a + ib, where b is real too, one can see that |ψ0〉
is of the form (a+ ib)|0〉+ a|1〉 as given in [4]. If one takes

α1,0 = −α∗
1,0, and

α1,1 = (2α1,0 + α1,1)
∗,

then α1,0 becomes imaginary and imaginary part of α1,1 becomes equal to −α1,0. Thus, |ψ0〉
is of the form (a + ib)|0〉 + ib|1〉. However, these are not the complete characterization of
the ensembles and thus we refute the following claim of [4]: “We obtain the most general
ensemble of qubits, for which it is possible to design a universal Hadamard gate.” We present
the proper characterization in the following analysis.

2.1 The complete solution for U2 taking |ψ0〉, |ψ1〉 orthogonal

Take |ψ0〉, |ψ1〉 as in the form mentioned in (6). As they satisfy (5), if |ψ0〉, |ψ1〉 are orthog-
onal, following Plancherel theorem [10], U2(|ψ0〉), U2(|ψ1〉) will be orthogonal too.

Let us take α1,1 = α + iβ and α0,1 = γ + iδ. Putting these in (6), we have

|ψ0〉 = ((α + 2γ) + i(β + 2δ)) |0〉+ (γ + iδ)|1〉
|ψ1〉 = (γ + iδ)|0〉+ (α + iβ)|1〉.

Thus, exploiting normality of |ψ0〉, |ψ1〉 and the orthogonality between |ψ0〉, |ψ1〉, we get the
following kinds of conditions.

1. Both γ and δ are zero: α0,1 = 0 gives a trivial solution where γ = δ = 0, and

α = ±
√

1− β2. That is |ψ0〉 has only |0〉 component and |ψ1〉 has only |1〉 component.
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2. One of γ or δ is zero:

If we take γ = 0 then from orthogonality, we get β = −δ, and thus α = ±
√
1− 2δ2.

Hence, |ψ0〉 is of the form (α + iδ) |0〉+ iδ|1〉.
Taking δ = 0, from orthogonality, we get α = −γ, and thus β = ±

√

1− 2γ2. Hence,
|ψ0〉 is of the form (γ + iβ) |0〉+ γ|1〉.
This covers the cases considered in [4].

3. Both γ and δ are non-zero:

α = δ
γ(δ2+γ2)

(

δ(δ2 + γ2)± γ
√

δ2 + γ2 − 2(δ2 + γ2)2
)

− δ2+γ2

γ
,

β = − 1
δ2+γ2

(

δ(δ2 + γ2)± γ
√

δ2 + γ2 − 2(δ2 + γ2)2
)

.

One may note that |α0,1|2 = δ2 + γ2.

Item 3 is not covered in [4]. If we put δ = γ = 1
2
in item 3, we get α = β = −1

2
. Hence we

have,

|ψ0〉 =
1 + i

2
(|0〉+ |1〉), |ψ1〉 =

1 + i

2
(|0〉 − |1〉).

Clearly the |ψ0〉 above is not of the form given in [4].

3 Characterization for Qutrits

We will now consider the case for qutrits. Several quantum systems work on the qutrits and
for example one may refer to [2] for a BB84 like cryptographic protocol. For a qutrit, the
QFT can be seen as follows putting n = 3 in (1).

|j〉 → 1√
3

2
∑

k=0

e
2πijk

3 |k〉.

Denoting the transform as U3, one can write it as:

U3(|0〉) =
1√
3
(|0〉+ |1〉+ |2〉),

U3(|1〉) =
1√
3
(|0〉+ ω3|1〉+ ω2

3|2〉),

U3(|2〉) =
1√
3
(|0〉+ ω2

3|1〉+ ω3|2〉). (7)

That is, given ω3 =
3
√
1, U3 =

1√
3





1 1 1
1 ω3 ω2

3

1 ω2
3 ω3



.
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Now we need

U3(|ψ0〉) =
1√
3
(|ψ0〉+ |ψ1〉+ |ψ2〉),

U3(|ψ1〉) =
1√
3
(|ψ0〉+ ω3|ψ1〉+ ω2

3|ψ2〉),

U3(|ψ2〉) =
1√
3
(|ψ0〉+ ω2

3|ψ1〉+ ω3|ψ2〉). (8)

The states |ψ0〉, |ψ1〉, |ψ2〉 are as follows.

|ψ0〉 = α0,0|0〉+ α0,1|1〉+ α0,2|2〉
|ψ1〉 = α1,0|0〉+ α1,1|1〉+ α1,2|2〉
|ψ2〉 = α2,0|0〉+ α2,1|1〉+ α2,2|2〉. (9)

From U3A3 = A3U3, we get the following equations.

α0,0 + α0,1 + α0,2 = α0,0 + α1,0 + α2,0 (10)

α0,0 + ω3α0,1 + ω2
3α0,2 = α0,1 + α1,1 + α2,1 (11)

α0,0 + ω2
3α0,1 + ω3α0,2 = α0,2 + α1,2 + α2,2 (12)

α1,0 + α1,1 + α1,2 = α0,0 + ω3α1,0 + ω2
3α2,0 (13)

α1,0 + ω3α1,1 + ω2
3α1,2 = α0,1 + ω3α1,1 + ω2

3α2,1 (14)

α1,0 + ω2
3α1,1 + ω3α1,2 = α0,2 + ω3α1,2 + ω2

3α2,2 (15)

α2,0 + α2,1 + α2,2 = α0,0 + ω2
3α1,0 + ω3α2,0 (16)

α2,0 + ω3α2,1 + ω2
3α2,2 = α0,1 + ω2

3α1,1 + ω3α2,1 (17)

α2,0 + ω2
3α2,1 + ω3α2,2 = α0,2 + ω2

3α1,2 + ω3α2,2 (18)

From (10),
α0,1 = α1,0 + α2,0 − α0,2.

Adding (11) and (12) and putting the value of α0,1, we get

α0,0 = α1,0 + α2,0 +
1

2
(α1,1 + α2,1 + α1,2 + α2,2).

Then putting both the values of α0,0, α0,1 in (12), one can get

α0,2 =
1

2
(α1,0 + α2,0) +

1

4
ω2
3(α1,2 + α2,2)−

1

4
ω2
3(α1,1 + α2,1).

Further, replacing α0,0 in (13), it can be seen that

α1,0 =
1

2
ω2
3(α1,1 + α1,2)−

1

2
ω2
3(α2,1 + α2,2) + α2,0.
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Now (14) gives,
α1,0 + ω2

3α1,2 = α0,1 + ω2
3α2,1

and from this it follows that
α1,2 = α2,1.

Similarly from (15), we get

α1,0 + ω2
3α1,1 = α0,2 + ω2

3α2,2.

Replacing the values of α0,2, α1,0, we get

α1,1 = α2,2.

Next from (16), one can get
α2,0 = α1,0.

Thus, we finally get
α0,1 = α1,0 = α2,0 = α0,2.

Manipulating (17), (18), one can check that

α2,1 = α1,2 and α2,2 = α1,1.

So |ψ0〉, |ψ1〉, |ψ2〉 are of the following form.

|ψ0〉 = (α1,1 + α1,2 + 2α0,1)|0〉+ α0,1|1〉+ α0,1|2〉),
|ψ1〉 = α0,1|0〉+ α1,1|1〉+ α1,2|2〉),
|ψ2〉 = α0,1|0〉+ α1,2|1〉+ α1,1|2〉). (19)

Thus we get the following important result.

Theorem 2 Let |ψ0〉, |ψ1〉, |ψ2〉 be the qutrits as described in (9). Then they will satisfy (8)
if and only if they are of the form mentioned in (19).

3.1 Solutions when |ψ0〉, |ψ1〉, |ψ2〉 are orthogonal

Let α0,1 = x0 + iy0, α1,1 = x1 + iy1, α1,2 = x2 + iy2. Now we will try to obtain relations
following (19). From orthogonality and normality, we get the following conditions:

f1 = x20 + y20 + x21 + y21 + x22 + y22 − 1 = 0,

f2 = (x1 + x2 + 2x0)
2 + (y1 + y2 + 2y0)

2 + 2(x20 + y20)− 1 = 0,

f3 = (x1 + x2 + 2x0)x0 + (y1 + y2 + 2y0)y0 + x0x1 + y0y1 + x0x2 + y0y2 = 0,

f4 = x20 + y20 + 2x1x2 + 2y1y2 = 0, (20)

over the variables x0, y0, x1, y1, x2, y2. That is we need to find common roots of f1, f2, f3, f4.
Let, I be the ideal generated by f1, f2, f3, f4 over the polynomial ring R[x0, x1, x2, y0, y1, y2].
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As dimension of I is 3 (checked using SAGE [8]), one can choose any three of x0, y0, x1, y1,
x2, y2 and then obtain the values of other three by putting the chosen in the equations above.

As an example, one can choose the values of y0, y1, y2 and then try to find x0, x1, x2 in
terms of y0, y1, y2. However, it is extremely tedious to write the complete expression. Let us
first provide an example with some numerical value.

Example 1 Take y0 = y1 = y2 = 1
10
. Thus we get the following that provide solutions

to (20):

x0 =
√

11
75

+
√
1909
300

,

x1 =
1

180
(90 + 2

√
3(44 +

√
1909)

3

2 − 135
√

3(44 +
√
1909)−

√

5727(44 +
√
1909)),

x2 =
1

180
(−47

√

3(44 +
√
1909) +

√

5727(44 +
√
1909)

−
√

2862 + 54
√
1909 + 12354(44 +

√
1909)− 282

√
1909(44 +

√
1909)).

Next we carefully study several interesting situations that provide compact expressions.

3.1.1 The solutions when x0 = y0 = 0

Given x0 = y0 = 0, we have the following solutions.

1. x1 = ±
(

y2
1
+y2

2
−1−

√
(y2

1
+y2

2
−1)2−4y2

1
y2
2

)

(

√

1−y2
1
−y2

2
−
√

(y2
1
+y2

2
−1)2−4y2

1
y2
2

)

2
√
2y1y2

x2 = ±
√

1−y2
1
−y2

2
−
√

(y2
1
+y2

2
−1)2−4y2

1
y2
2

2

2. x1 = ±
(

y2
1
+y2

2
−1+

√
(y2

1
+y2

2
−1)2−4y2

1
y2
2

)

(

√

1−y2
1
−y2

2
+
√

(y2
1
+y2

2
−1)2−4y2

1
y2
2

)

2
√
2y1y2

x2 = ±
√

1−y2
1
−y2

2
+
√

(y2
1
+y2

2
−1)2−4y2

1
y2
2

2

In this case, α0,1 = 0 and putting that in (19), |ψ0〉, |ψ1〉, |ψ2〉 are of the following form.

|ψ0〉 = (α1,1 + α1,2)|0〉,
|ψ1〉 = α1,1|1〉+ α1,2|2〉),
|ψ2〉 = α1,2|1〉+ α1,1|2〉). (21)

Two examples of such states are

|ψ0〉 = |0〉, |ψ1〉 =
1

2
(1− i)|1〉+ 1

2
(1 + i)|2〉, |ψ2〉 =

1

2
(1 + i)|1〉+ 1

2
(1− i)|2〉;

and

|ψ0〉 =
i− 1√

2
|0〉, |ψ1〉 =

1√
2
(−|1〉+ i|2〉), |ψ2〉 =

1√
2
(i|1〉 − |2〉).
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3.1.2 The solution when y0 = 0, but x0 6= 0

When y0 = 0 we have following solutions.

1. x0 = ±
√

1−(y1+y2)2

3

x1 = ∓
√

1−(y1+y2)2

2
√
3

−
√

1−(y1−y2)2

2

x2 = ∓
√

1−(y1+y2)2

2
√
3

+

√
1−(y1−y2)2

2

2. x0 = ±
√

1−(y1+y2)2

3

x1 = ∓
√

1−(y1+y2)2

2
√
3

+

√
1−(y1−y2)2

2

x2 = ∓
√

1−(y1+y2)2

2
√
3

−
√

1−(y1−y2)2

2

3.1.3 The real solutions

One interesting situation is when α0,1, α1,1, α1,2 are all real, i. e., y0 = y1 = y2 = 0. This
follows putting y1 = y2 = 0 in the results of previous section (Section 3.1.2). One may note
that there are exactly four solutions for this.

1. x0 = ± 1√
3
, x1 = ∓ 1

2
√
3
− 1

2
, x2 = ∓ 1

2
√
3
+ 1

2
,

2. x0 = ± 1√
3
, x1 = ∓ 1

2
√
3
+ 1

2
, x2 = ∓ 1

2
√
3
− 1

2
,

Following (20) and taking y0 = y1 = y2 = 0, one can consider this as obtaining points of
intersection of the following four planes in three dimension.

x20 + x21 + x22 − 1 = 0,

(x1 + x2 + 2x0)
2 + 2x20 − 1 = 0,

(x1 + x2 + 2x0)x0 + x0x1 + x0x2 = 0,

x20 + 2x1x2 = 0.

4 Brief study of the general case

From the previous two sections, it is clear that A2, A3 are symmetric. Thus it requires an
understanding what happens for the general case. In this direction, let us first present the
following result.

Theorem 3 If the Eigen values of Un are distinct, then An is symmetric.

Proof: Since the Eigen values of Un are distinct, Un is diagnosable. Let Tn be a matrix
so that TnUnT

−1
n is diagonal, with distinct diagonal entries u1, u2, . . . , un. Consider a matrix

Bn such that BnUn = UnBn.
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Now, (TnBnT
−1
n )(TnUnT

−1
n ) = (TnUnT

−1
n )(TnBnT

−1
n ). Let, Mn = TnBnT

−1
n . Now(i, j)-th

entry of Mn(TnUnT
−1
n ) is mijuj. Also (i, j)-th entry of the matrix (TnUnT

−1
n )Mn is uimij .

If i 6= j, given ui, uj are distinct, mijuj = uimij holds iff mij = 0. Thus, a matrix com-
muting with TnUnT

−1
n is diagonal. Using interpolation one can find a polynomial P so that

P (TnUnT
−1
n ) = TnBnT

−1
n is that other polynomial. Since P (TnUnT

−1
n ) = Tn ·P (Un) ·T−1

n , so
Bn = P (Un).

Since Un is symmetric and Bn is a polynomial in Un, Bn will be symmetric too. From
definition, we have AnUn = UnAn. Thus An is symmetric when the Eigen values of Un are
distinct.

The Eigen values of U2 are ±1 and the Eigen values of U3 are ±
√
3,−1+ 2ω3. Thus, the

Eigen values of U2 and U3 are distinct and thus A2, A3 are symmetric as we have already
observed in the previous sections. Now let us look at U4 and A4 which are of the following
form:

U4 =
1

2









1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 1 ω2

4

1 ω3
4 ω2

4 ω4









, A4 =









α0,0 α1,0 α2,0 α3,0

α0,1 α1,1 α2,1 α3,1

α0,2 α1,2 α2,2 α3,2

α0,3 α1,3 α2,3 α3,3









.

One may note that ω4 = i. The Eigen values of U4 are 1, 1,−1, i, which are not distinct and
we find that the A4 is indeed not symmetric.

As before, We consider the qudits of the following form.

|ψ0〉 = α0,0|0〉+ α0,1|1〉+ α0,2|2〉+ α0,3|3〉,
|ψ1〉 = α1,0|0〉+ α1,1|1〉+ α1,2|2〉+ α1,3|3〉,
|ψ2〉 = α2,0|0〉+ α2,1|1〉+ α2,2|2〉+ α2,3|3〉,
|ψ3〉 = α3,0|0〉+ α3,1|1〉+ α3,2|2〉+ α3,3|3〉. (22)

To satisfy QFT, we need

U(|ψ0〉) =
1

2
(|ψ0〉+ |ψ1〉+ |ψ2〉+ |ψ3〉) ,

U(|ψ1〉) =
1

2

(

|ψ0〉+ ω4|ψ1〉+ ω2
4|ψ2〉+ ω3

4|ψ3〉
)

,

U(|ψ2〉) =
1

2

(

|ψ0〉+ ω2
4|ψ1〉+ |ψ2〉+ ω2

4|ψ3〉
)

,

U(|ψ3〉) =
1

2

(

|ψ0〉+ ω3
4|ψ1〉+ ω2

4|ψ2〉+ ω4|ψ3〉
)

, (23)

i. e.,
U4A4 = A4U4. (24)

It is clear that from Equation (24), we have 16 polynomials over the variables αk,l for 0 ≤
k, l ≤ 3. Since it is not easy to handle all these equations in hand, we use Mathematica
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7.0 [5] to find the following conditions.

α0,0 = α2,2 + 2α3,2 + 2α0,3,

α0,2 = α2,2 + 2α3,2 + α0,3 − α1,3 − α2,3 − α3,3,

α2,0 = α2,2 + α0,3 − α1,3 + α2,3 − α3,3,

α1,0 = α3,2 + α0,3 − α2,3,

α3,0 = α3,2 + α0,3 − α2,3,

α0,1 = α0,3,

α1,1 = α3,3,

α3,1 = α1,3,

α2,1 = α2,3,

α1,2 = α3,2.

Hence the general form of |ψ0〉, |ψ1〉, |ψ2〉, |ψ3〉 such that it satisfies (23) is as follows.

|ψ0〉 = (α2,2 + 2α3,2 + 2α0,3)|0〉+ α0,3|1〉
+(α2,2 + 2α3,2 + α0,3 − α1,3 − α2,3 − α3,3)|2〉+ α0,3|3〉

|ψ1〉 = (α3,2 + α0,3 − α2,3)|0〉+ α3,3|1〉+ α3,2|2〉+ α1,3|3〉
|ψ2〉 = (α2,2 + α0,3 − α1,3 + α2,3 − α3,3)|0〉+ α2,3|1〉+ α2,2|2〉+ α2,3|3〉
|ψ3〉 = (α3,2 + α0,3 − α2,3)|0〉+ α1,3|1〉+ α3,2|2〉+ α3,3|3〉 (25)

Thus we have the following result.

Theorem 4 Let |ψ0〉, |ψ1〉, |ψ2〉, |ψ3〉 be the qudits as described in (22). Then they will satisfy
(23) if and only if they are of the form mentioned in (25).

Similar to the previous sections, one may attempt to find out the conditions when |ψ0〉,
|ψ1〉, |ψ2〉, |ψ3〉 are orthogonal. These cases as well as the cases for higher dimensions are
not easy to handle by hand calculation and one may need to take the help of SAGE [8] or
Mathematica [5].

5 Conclusion and Open Directions

In this paper we have studied the general classes of quantum states that can work in a similar
manner as the standard bases with respect to the Quantum Fourier Transform. The QFT

takes the state |j〉 to 1√
n

∑n−1
k=0 e

2πijk

n |k〉. We have tried to characterize the states |ψj〉 that

goes to 1√
n

∑n−1
k=0 e

2πijk

n |ψk〉 under the action of QFT. We could provide a full characterization
of the set of Hadamard-admissible pairs for qubits and as well for QFT-admissible triplets
for qutrits. The generalized results for higher dimensions are also studied.
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