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We present scaling laws for the jet velocity resulting from bubble collapse at a liquid
surface which bring out the effects of gravity and viscosity. The present experiments
conducted in the range of Bond numbers 0.004< Bo <2.5 and Ohnesorge numbers
0.001< Oh <0.1 were motivated by the discrepancy between previous experimental re-
sults and numerical simulations. We show here that the actual dependence of We on
Bo is determined by the gravity dependency of the bubble immersion (cavity) depth
which has no power law variation. The power law variation of the jet Weber number,
We ∼ 1/

√
Bo suggested by Ghabache et al. (2014) is only a good approximation in a

limited range of Bo values (0.1< Bo <1). Viscosity enters the jet velocity scaling in
two ways: (a) through damping of precursor capillary waves which merge at the bubble
base and weaken the pressure impulse, and (b) through direct viscous damping of the
jet formation and dynamics. These damping processes are expressed by a dependence
of the jet velocity on Ohnesorge number from which critical values of Oh are obtained
for capillary wave damping, the onset of jet weakening, the absence of jetting and the
absence of jet breakup into droplets.

Key words:

1. Introduction

Collapse of small bubbles at liquid surfaces is an ubiquitous phenomenon in nature.
It is a fascinating fundamental problem because of the interconnection between capil-
lary, gravity and viscous forces. The bubble breakup process at a free surface and the
subsequent jetting was visualized first by Woodcock et al. (1953) using high speed pho-
tographic techniques who identified the following three stages: (i) the retraction and
fragmentation of the top thin film, (ii) the collapse of the unstable cavity formed due to
the absence of the thin film and (iii) formation and breakup of the jet. Kientzler et al.

(1954) conducted experiments with a range of bubble sizes and found that the bubble
collapse time decreases with decreasing bubble size. For small bubbles of radii less than
3 mm, it all happens in a time of the order of 102 to 103 µs with jet velocities of the
order of 1 ms−1 to more than 10 ms−1, when viscous damping can be neglected. This
phenomenon is of importance in ocean- atmosphere exchange due to aerosol generation
by fragmentation of thin film, which yields micro sized aerosol drops, and then by the jet
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breakup, which produces larger sized droplets compared to those from film breakup, but
still one order less than the bubble radius (Blanchard (1963); MacIntyre (1972); Spiel
(1995); Lhuissier & Villermaux (2012)). In carbonated beverages like sparkling wine,
small bubbles are desired because this enhances the aroma as was shown by Liger-Belair
et al. (2012) for champagne. The aerosol generation by bubble bursting is found to be
the mechanism behind the distinctive aroma (petrichor) after the first rain ( Joung &
Buie (2015)). Bubble bursting at a compound interface, like the interface formed after
oil spill at the ocean surface, can lead to reverse mass transport of free surface materials
into the bulk of the liquid (Feng et al. (2014)). In bio-reactors, bursting of free surface
bubbles can cause mass scale bacterial cell destruction around aeration sites ( Boulton-
Stone & Blake (1993)). Recent studies by Shakhova et al. (2014) found that thawing of
sub sea Arctic permafrost in East Siberia releases methane, a green house gas, and the
transfer of this gas to the atmosphere is mediated by bubbles and its subsequent bursting
at the ocean surface. The study reveals that bubbles, during stormy times, enhance the
methane flux transfer from ocean to atmosphere. For all these reasons, this problem has
received considerable attention so far.

A first attempt to understand the physics behind jetting from free surface bubble
collapse was made by MacIntyre (1972) who conducted experiments with dyed bubbles,
who proposed a boundary layer flow along the bubble cavity, which causes a stagnation
pressure at the bottom of the cavity, causing jet formation. The bubble collapse at an
air-water interface were first numerically simulated by Boulton-Stone & Blake (1993)
(herein after BSB) for a range of bubble radii 0.5 mm < R < 3 mm who then estimated
the resulting jet velocities. Spiel (1995) measured the velocities of the first drops from air
bubbles bursting at a water surface and proposed an empirical exponential dependence
of jet velocity on R. A more comprehensive analysis of the scaling of jet velocities (Uj)
was done by Duchemin et al. (2002), who performed direct numerical simulations for
a wide range of sizes of air bubbles in water, 1.4µm < R < 20 mm; they showed that
Uj/Uµ ∼ (R/Rµ)

−1/2, where Uµ = σ/µ and Rµ = µ2/ρσ are the viscous- capillary
velocity and length scales with ρ being the liquid density, σ the liquid-gas surface tension
and µ the dynamic viscosity. However, this dependence of Uj on R is not supported by
the experimental results of Spiel (1995) nor the numerical simulations of BSB which are
closer to Uj ∼ 1/R (Sangeeth et al. (2012)).

In order to answer this question of the dependence of jet velocity on bubble radius,
and of the effects of viscosity and gravity on jet formation, experiments in other more
viscous fluids and/or fluids of lower surface tension were needed. Such results, with
different fluids, have recently been reported by Sangeeth et al. (2012) and Ghabache
et al. (2014). Sangeeth et al. (2012) showed that, indeed, the viscous-capillary scaling
(Uj ∼ 1/

√
R) suggested by Duchemin et al. (2002) cannot collapse the experimental data,

which displayed a 1/R variation for an intermediate range of R. Ghabache et al. (2014)
showed that the gravity- capillary scaling, We ∝ Bo−1/2, (Uj ∼ 1/R), collapse the data
reasonably well for 0.007< Bo <1, where the jet Weber number We = ρU2

j R/σ and the

Bond number Bo = ρgR2/σ, with g being the acceleration due to gravity. However, as we
show in this paper, such a scaling is unlikely to hold for Bo <0.1 and Bo >1. Our data (see
Sangeeth et al. (2012)) can also be approximated by a Bo−1/2 dependence ofWe, but only
for 0.1 < Bo < 1, beyond which there are deviations from such a power law, as indicated
also by the results of Spiel (1995) and BSB. In Ghabache et al. (2014), viscous effects
were expressed as a dependence of We

√
Bo on Morton number, Mo = Bo Oh4, where

Ohnesorge number Oh = µ/
√
ρRσ. However, the extremely small values of Mo in their

scaling (10−9 < Mo <10−6) indicates the inadequacy of such a viscous scaling. These
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Water △ GW48 N GW48 ⊲ GW55 � GW68 ∗ GW72 ♦ 2-propanol + Ethanol ⊳

(20oC) (30oC) (20oC) (20oC) (30oC) (30oC) (20oC) (20oC)

µ mPa s 1.01 3.9 5.5 8 12.4 16.6 2.07 1.14
ρ kg m−3 1000 1115 1120 1140 1170 1181 781 789
σ kg s−2 0.072 0.068 0.068 0.067 0.066 0.064 0.018 0.022
R mm 0.18 - 4.08 0.42 -3.4 0.81-1.96 0.71 - 2.3 0.48 -2.3 0.6 - 3.6 1.46 - 2.41 0.19 - 1.16
Bo 0.004 - 2.27 0.029 -1.9 0.1 - 0.62 0.083 - 0.88 0.041 -0.89 0.063 - 2.36 0.9 - 2.4 0.013 - 0.47
Oh× 10−3 1.9 - 9 7.6 - 21.6 14 - 22 19.2 - 34.7 29.7 - 64.1 32 - 79.1 11.2 - 14.4 8 - 20
Re 2204 - 4276 774 -1506 627 - 723 284 - 393 19 -207 14 - 135 — —

Table 1: Properties of the fluids, the range of radii of the bubbles and the range of
dimensionless numbers used in the experiments. Bo = ρgR2/σ, Oh = µ/

√
σρR, Re =

ρUjR/µ.

issues called for further experiments and a search for the appropriate Bo dependence
of the jet We and the possible limits of the We ∼ 1/

√
Bo “power law”; the scaling of

viscous effects also needed reexamination.
In this paper we show that the Bo dependence of the jet We is closely related with

the square of the dimensionless cavity depth, which implies that there is no simple power
law scaling as proposed by Ghabache et al. (2014). We further show that the viscous
damping effects are well captured by Ohnesorge number, for which critical values for
capillary wave damping, dominant viscous damping, the absence of jet break up and the
absence of jetting are given.

2. Experimental conditions

The experiments were conducted in a transparent acrylic tank of 3.5 × 5 cm2 cross
sectional area and in a glass tank of 5× 5 cm2 cross sectional area. The tanks were fixed on
a leveling board and were filled up to the brim to avoid meniscus effects. We use distilled
water and glycerol-water mixtures of 48%, 55%, 68 % and 72% glycerine concentration
(herein after referred to as GW48, GW55, GW68 and GW72). In addition to these fluids,
we have used 2-propanol and ethanol for the measurement of static parameters of the
bubble, the properties of all these fluids are given in table 1. Gas bubbles in the range
of equivalent spherical radii 0.17 mm < R < 4.1 mm were produced by pumping air
into glass capillary tubes of different sizes using a syringe pump operated at a constant
discharge rate. The flow rate in the capillaries were selected so that the bubble detachment
was within the periodic dripping regime described by Clanet & Lasheras (1999) and the
periodic bubbling regime of Oguz & Prosperetti (1993). Care was taken to avoid crowding
and merging of bubbles at the free surface. Capillaries were carefully fixed in the same
alignment through out the experiments to avoid variations in bubble sizes (Doshi et al.
(2003)). The liquids were changed after each run to minimize surface contamination.

The rising bubbles, which are almost elliptical in shape were photographed to determine
the bubble volumes, from which the equivalent spherical radii R were calculated. The
bubble stays at the free surface for a short time after its initial oscillations had died
down and then bursts, giving rise to a vertical or nearly vertical jet. This time of stay
for the smallest bubble of our experimentation (water, Bo = 4.2 × 10−3, Oh = 9 ×
10−3) was 91 ms. The time of stay increased to more than 1 s with increasing Bo,
i.e, beyond Bo=0.1, in water and GWs. Since the bubbles do not break during their
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Figure 1: The bursting sequence of a bubble of radius R=2.15 mm, Bo=0.634, Oh =
0.00255 in water. Each image, from a to p, is separated by 0.25 ms. Images p to q and q
to r are separated by 0.5 and 1.3 ms. The whole process up to jet emergence at the free
surface took 4.5 ms. The lines in images a and r are 1 mm in length.

initial oscillations, possibly since the upper film is replenished; the bursting happens
from a static configuration. This bursting process and the jet emergence from the free
surface were captured by a high speed camera (La Vision ProHS for fps 619000 fps and
Photron SA4 for fps 6100000) using high intensity LED back lighting. The jet velocity
was measured by tracking the tip of the jet in successive images, before the jet breaks up
into drops. The image acquisition rates met the condition that ti < 1/ |dUj/dz|, where
ti =1/fps. The spatial resolution was such that ∆Zi < Uj te, where ∆Zi is the size of
each pixel and te is the exposure time. The lowest and highest resolution for the imaging
were 27µm/pix and 3.4µm/pix. The corresponding jet diameters are 1.3mm and 0.03mm
respectively; the jets were hence well resolved in our images. For glycerol- water mixtures,
the viscosity values are less sensitive to changes in temperature at 300C than at 200C;
i.e, (∂µ/∂T )200C > (∂µ/∂T )300C . Hence, in regimes where viscosity of the jet is strongly
dependent on viscosity (or Oh), especially when sharp changes in velocity is expected
with change in Oh, like at Oh = 0.037 where the viscous cut off occurs, we conducted
experiments at 300C so that small changes from the set temperatures do not change the
viscosity much. The experiments were conducted in a temperature controlled laboratory
after the temperature stabilised to the set values of 200C or 300C.

3. Jet velocity scaling

A typical bubble collapse sequence is shown in figure 1 for a bubble of R = 2.15 mm
in water. Time evolution of the jets for the same and other conditions are shown in
Figures B.15 and B.16 in Appendix B. Note that there are precursor capillary waves
ahead of the kink caused by the change of the curvature of the bubble boundary from
convex to concave, as seen in images f to k in figure 1. The group velocity of these
waves is equal to the kink velocity as is observed ahead of the crest of steep water waves
(Perlin et al. (1993)). These dispersive capillary waves, cause perturbations and hence
weaken the jet velocity either through a weakening of the pressure impulse at the base or
by bubble pinch-off. In the coalescence of larger bubbles, bubble pinch-off is a frequent
phenomenon ( Zhang & Thoroddsen (2008), Zhang et al. (2015)). However, here bubble
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Figure 2: Weber number of the emerging jet velocities as a function of the Bond number.
△, Water; N, GW48 (30oC); ⊲, GW48 (20oC); �, GW55; ∗ , GW68; ♦, GW72; ×,
Ghabache et al. (2014)’s jet velocities for water; - -, We = 55Bo−1/2; ..., Ghabache et al.
(2014)’s jet velocities for GW of viscosities 4.4 to 6.2 mPas.

pinch-off is very rare. With decreasing bubble size or with increasing viscosity these
capillary waves are progressively damped, giving rise to an increase in jet velocity. The
question of capillary wave damping and its effect on jet velocity will be examined in §3.2;
we focus first on the question of the origin of gravity effects on jet velocity.

3.1. Gravity effects

Figure 2 shows the square of the dimensionless jet velocity (Uj/Uc)
2 = We, versus

the square of the dimensionless radius (R/Rc)
2 = Bo, where the capillary velocity,

Uc =
√

σ/ρR and the capillary radius, Rc =
√
σ/ρg. The water data of Ghabache

et al. (2014) are included in figure 2 for comparison and their results with GW of 4.4
to 6.2 times the water viscosity are indicated by the dotted line. The jet velocities of
Ghabache et al. (2014) in GW is larger with respect to that in water by about a factor of
2; we do not observe such a large velocity increase in GW48. When capillary waves are
damped the bubble boundary is smoother and this may lead to a higher impulse at the
bubble base and hence a higher jet velocity. Furthermore, it is clear from figure 2 that
Ghabache et al. (2014) data show a good correlation of We with Bo−1/2 (1/R variation)
as shown by the dashed line, which shows

We = 55 Bo−1/2 (3.1)

over the whole range of Bo considered. At a first view, our experimental results also
seem to support a 1/R variation of the jet velocity except when viscous effects become
important, on the bubble scale, as is in the case of GW68 and GW72. However, there
is a deviation in our data from the 1/R behaviour when Bo >1, and furthermore, there
is a deviation of We from the Bo−1/2 dependence when Bo <0.1, with the trend of We
becoming independent of Bo. Even in the range 0.1 < Bo < 1 we, in fact, show later
that the Bo−1/2 scaling is only a good approximation and a continually varying power
of Bo fits the present data, as well as those of Spiel (1995) and BSB, better. We also
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Figure 3: hc/hr = hc/η as a function of Bo. △, Water; ⊲, GW48 (20oC); N, GW48
(30oC); ∗, GW68; ♦, GW72; ⊳, ethanol; +, 2-propanol; —, hc/hr = 2.

note from figure 2 that We at the same Bo first increase with increase in viscosity (see
water and GW48) and then decrease monotonically with a further increase in viscosity;
we discuss this viscosity effect in § 3.2.

The question is, what is the reason for the gravity (Bo) dependence of jet Weber num-
ber and why should there be a Bo−1/2 dependence? It is well known that the jet velocity
resulting from cavity collapse related with stationary surface gravity waves depends on
the cavity depth or last wave amplitude (Zeff et al. (2000); Das & Hopfinger (2008)).
We expect a similar association between jet velocity and bubble cavity depth in the case
of bubble collapse. In bubble collapse, the cavity depth is determined by the balance
between gravity and surface tension forces, as will be shown below.

3.1.1. Dimensionless cavity depth

The cavity depth Zc is defined as the depth of the base of the bubble from the free,
undisturbed, liquid surface. A theoretical expression of Zc can easily be obtained when
neglecting bubble deformation. To leading order,

Zc = 2R− hc, (3.2)

where hc is the height of the top of the bubble from the free surface (see inset of figure 4).
Assuming symmetry at the point of inflection of the bubble surface at the rim gives,

hc = 2η, (3.3)

where η = hc−hr is the height of the bubble cap above the rim, with hr being the height
of the rim from the free surface. Figure 3 shows hc/hr = hc/η, plotted against Bo in the
range 10−1 < Bo < 3. The measured values are close to hc/hr = hc/η = 2, hence the
validity of the assumptions leading to (3.3) is supported by experiments. The relatively
large experimental error is due to the very small values of hr and hc.
For a spherical bubble, from geometry,

η = R−
√
R2 −R2

r , (3.4)
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Figure 4: Square of the dimensionless cavity depth of the bubble as a function of the
Bond number. △, Water; ⊲, GW48 (200C); N, GW48 (300C); ∗, GW68; ♦, GW72; ⊳,
ethanol; +, 2-propanol; - -, 1.32Bo−1/2; -.-, (Zc/R)2 = 4(1 − 2/3Bo); —,(Zcd/R)2 =
4(
√

1− 2/3Bo− 0.17Bo0.8)2.

where Rr is the radius of the rim (figure 4). From the force balance, FB = Fσ, where the
buoyancy force, FB = ρg(4/3)πR3(1 − η2(3 − η/R)/4R2) and the surface tension force,
Fσ = (2σ/R)πR2

r , we get

Rr

R
=

√
2

3
Bo(1− η2

4R2
(3− η

R
)). (3.5)

When Bo 6 1, η/R 6 0.4, so the term η2(3− η/R)/4R2 6 0.1, which can be neglected
to first order, resulting in,

Rr

R
≃

√
2

3
Bo, (3.6)

which when substituted in (3.4) gives,

η = R(1−
√

1− 2

3
Bo). (3.7)

Using (3.7) in (3.3), we get from (3.2),

Zc

R
= 2

√
1− 2

3
Bo. (3.8)

Figure 4 shows the square of the experimental (Zce/R)2 and the theoretical dimension-
less cavity depths (Zc/R)2 as a function of Bo. Note that we plot (Zc/R)2 rather than
Zc/R because the Weber number also has the square of velocity. It is seen that in the
range 0.1 < Bo < 1, the experimental (Zce/R) can be fitted by (Zce/R)2 ∼ Bo−1/2

which is the same approximate dependence of We on Bo seen in figure 2. In figure 2,
when Bo is large, Bo > 1, the jet velocity starts to decrease and at Bo = 2.25, R = 4.08
mm in water, We deviates considerably from the Bo−1/2 correlation. The experimental
(Zce/R)2 in figure 4 shows a similar deviation from the approximate power law Bo−1/2.
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Figure 5: Variation of jet Weber number with Bond number in water. △, present ex-
periments; ⋆, BSB; ♦, Spiel (1995), drop velocities; �, Kientzler et al. (1954); —
, We = 62.5 (Zcd/R)2; - -, We = 55Bo−1/2; ×, Ghabache et al. (2014)’s jet velocities for
water.

The theoretical (Zc/R)2 has a steeper fall off with Bo than the experimental (Zce/R)2

because when Bo > 1, the limit of validity of (3.8) is approached. When Bo → 0 the
cavity depth tends to the asymptotic limit of 2R and is practically independent of Bo
when Bo < 0.1 because for Bo = 0.1, Zc/R = 1.93 and for Bo = 0.01, Zc/R = 1.99,
which is only a 3 % variation. We can therefore assume that when Bo < 0.1, Zc/R is
nearly invariant. On the other hand, between Bo = 0.1 (Zc/R = 1.93) and Bo = 1
(Zc/R = 1.15) gravity has a large effect on the cavity depth.

The bubble deformation is negligible up to Bo ≈ 0.1 and remains small up to Bo ≈ 3/2,
with the deformation varying from about 4 to 15 % of R as Bo increases from 0.1 to 1.
Although these deformations are relatively small this seems to affect the cavity depth
sufficiently when Bo < 1 to make the theoretical depths (3.8) deviate noticeably from
the experiments as can be seen in figure 4 when Bo < 1. Zc/R given by (3.8) can be
corrected for these small deformations by assuming an ellipsoidal shape of the bubble. The
expression for such a corrected cavity depth is Zcd/R ≈ 2(R/Rm − 1 +

√
1− (2/3)Bo),

where Rm is the measured horizontal radius at the equator, approximated by R/Rm ≈
1− 0.17Bo0.8, to get,

Zcd

R
= 2(

√
1− 2

3
Bo− 0.17Bo0.8). (3.9)

As shown by the continuous line in figure 4, we obtain a better match of (Zcd/R)2 vs Bo
obtained from (3.9), with the experimental variation of (Zce/R)2 vs Bo.

Gravity effects can be best demonstrated with data from one fluid alone rather than
data from different viscosity fluids as in figure 2. Figure 5 shows the experimental jet
velocities for water plotted in terms of We vs Bo, along with the data from BSB, the
drop velocities measured by Spiel (1995), the jet velocity measured from the images of
Kientzler et al. (1954) and the jet velocity data of Ghabache et al. (2014). The continuous
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Figure 6: Variation of jetWe with dimensionless time for bubbles of different Bo in water.
⋄,Bo = 0.2; �, Bo = 0.3; ◦, Bo = 0.49; △, Bo = 0.63. Unfragmented jet velocities are
shown by hollow symbols while the velocities of the first drop after jet fragmentation are
shown by filled symbols. The lines which are cubic polynomial fit show the progression
of velocities with time or height of each jet.

line is

We = 62.5

(
Zcd

R

)2

(3.10)

while the dashed line is (3.1). The following three regimes could be identified in figure 5.
(a) Bo < 0.1 : At these low Bo numbers the theoretical cavity depth varies only by 3%

from Bo = 0 to 0.1 ( see figure 4) and according to the model We should also asymptote
to a constant value, as shown by the solid line in figure 5. Our data and those of BSB
tend to asymptote toward such a constant value of We rather than to increasing We with
decreasing Bo, following a Bo−1/2 law, given by Ghabache et al. The deviation of our
data from the cavity depth model, seen as a slight increase in We with decreasing Bo, for
Bo < 0.1 is due to capillary wave damping. As we discuss in § 3.2, if the Weber number
is corrected for this damping, the corrected We is practically a constant for Bo < 0.1.
(b) Bo > 1 : In this range, there is, no doubt, a clear deviation of our We data from

the Bo−1/2 trend. This is because the cavity depth decreases more rapidly with Bo than
Bo−1/2 and there is also larger bubble deformation for Bo > 1. Here also, Ghabache et
al does not have data at Bo > 1 to see the deviation from the Bo−1/2 trend.

(c) Intermediate range 0.1 < Bo < 1 : In this range, there is a fairly large dispersion of
the data. Ghabache et al’s data are well fitted by Bo−1/2 whereas the present results and
those of BSB deviate noticeably from this power law. The results of BSB closely follow
the cavity depth model. For 0.06 < Bo < 0.15 Spiel’s results follow We ∼ Bo−1/2 but
deviate from this power law when Bo increases. Spiel measured the first drop velocities
and not the jet tip velocities when the jet emerges from the free surface; the values of
the drop velocities could be different from the unbroken jet tip velocities. Figure 6 shows
the measured jet velocities at increasing heights as time increases, culminating in the
first drop velocity due to jet fragmentation at some height. We see that at moderate Bo
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Figure 7: Variation of the dimensionless jet velocity with the dimensionless bubble radius
for low Bo. The velocities and radii are normalised by the viscous capillary scales: △,
Water; N, GW48 (30oC); ⊲, GW48 (20oC); �, GW55; ∗, GW68; ♦, GW72; ©, Duchemin
et al. (2002) jet velocities for water; ×, Ghabache et al. (2014) jet velocities for water; —,
16(R/Rµ)

−1/2; -.-, the viscous cut off at R/Rµ = Oh−2 ≃ 730; - -, the vertical dashed
lines demarcate the Bo < 0.1 data on the left with the Bo > 0.1 data on the right for
water (W), GW48 and GW55. Viscous- capillary scaling is seen for Bo < 0.1 part of each
data set.

(0.2 6 Bo 6 0.63) there is a 30% to 60% reduction in drop velocity compared to the jet
velocity at the free surface. This reduction in drop velocities increases with increasing
Bo since jets from larger Bo bubbles fragment farther away from the free surface. This
decrease in drop velocities at moderate Bo is the reason why Spiel’s data is lower than
the solid curve from the cavity model in figure 5.

Based on the above considerations, we hence conclude that the present experimental
data for water and BSB data, when considered over the whole range of Bo, show better
agreement with (3.10) than with (3.1). This leads us to the important understanding that
the gravity effects on the jet velocity, leaving aside the viscosity effects, have the same
functional dependence as the gravity effects on the cavity depth of the bubble, which,
given by (3.9), does not follow a Bo−1/2 power law. It could be argued that the dynamic
cavity depth when the singular collapse commences (figure 1 m) is of importance and
not the static depth just after the surface film disintegration (figure 1 c). An estimate of
the change in cavity depth during the time of bubble collapse tbc ≈ 0.3 tc (Sangeeth &
Puthenveettil (2015)), where the capillary time tc = R

√
ρR/σ is obtained by evaluating

the upward bubble displacement ∆z = gt2bc/2 to get,

∆z/R ≈ 4.5× 10−2Bo, (3.11)

which is negligible when Bo < 1. Any decrease in cavity depth would hence have to be
due to capillary forces caused by the curvature of the bubble base, our experiments show
that this is small for small bubble sizes.
The proposed scaling law for gravitational effects on jet velocity, namelyWe ∼ (Zcd/R)2,

where Zcd/R is given by (3.9), implies that the jet We becomes practically independent
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of Bo at Bo < 0.1. Hence at these low Bond numbers the viscous-capillary scaling of
Duchemin et al. (2002) should be appropriate. As shown in figure 7, the data closely
follow the relation

Uj

Uµ
= 16

(
R

Rµ

)
−1/2

(3.12)

for Bo < 0.1. This power law variation of jet velocity gives Uj = 16 Uc or We =
(Uj/Uc)

2 ≃ 250 as seen in figure 5 for Bo < 0.1. The relation (3.12) implies that

Uj ∼ 1/
√
R (Duchemin et al. (2002)). Curiously their data deviate from the R−1/2

scaling when R/Rµ < 5 × 103, which is not observed in the present experiments. The
data of Ghabache et al. (2014) show a We ∼ Bo−1/2 scaling for their whole range of Bo,
0.007 < Bo < 1.

3.2. Viscosity effects

Ghabache et al. (2014) expressed the viscosity dependence of jet velocity by plotting
We

√
Bo in terms of Morton numberMo = Oh4Bo, a dimensionless number that contains

gravity. However, there is no physical reason as to why gravity should be important in
viscous damping of capillary driven flows. Gravity determines the cavity depth and shape,
but once formed, the collapse, after film rupture, is surface tension driven; as indicated
above, the change in cavity depth in the bubble collapse time due to gravity is negligibly
small when Bo is of order one or less. The importance of viscous effects on capillary
driven flows is therefore expressed by an Ohnesorge number which is the ratio of viscous
to capillary forces.
Viscosity enters the jet velocity scaling in two ways: (a) through damping of the cap-

illary waves which merge at the bubble base and weaken the pressure impulse and (b)
through direct viscous damping of the jet formation and dynamics. Figure 8 shows the
damping of capillary waves on the collapsing cavity surface with increase in Oh. Figure 8
(a)-(b) is a bubble collapse sequence of a moderate Bo water bubble (Bo = 0.63) with
Oh = 0.0026. Here, in the wave train preceding the kink two wavelengths λ1 ≈ 0.36R
and λ2 ≈ 0.17R can be clearly identified, with faster and shorter waves being practically
damped. The wave train, group velocity Cg = 3/2

√
σ k/ρ ≃ 3/2

√
2πσ/ρλ1 ≈ 6 Uc

which corresponds to the measured speed of the kink. Figure 8 (c) -(d) is a collapsing
sequence of a smaller water bubble (Bo = 3× 10−2) with a relatively larger Oh = 0.0055
which shows only wavelength λ1 clearly; the shortest wave (λ2) is nearly damped. Fig-
ure 8 (e)-(f) show the capillary waves in GW48 (300C) bubble with Oh = 0.0139 in
which the longer wave (λ1) alone moves ahead of the kink, with the amplitude notice-
ably decreased. As can be seen in figure 8 (g)-(h), a further increase in Oh from 0.0139
to 0.0225 results in complete damping of the capillary waves on the cavity surface.

The amplitude α of capillary waves falls off exponentially in the form α = α0e
−κt

with the damping rate κ = 8π2µ/ρλ2. In the collapse time tbc ≈ 0.3tc (Sangeeth &
Puthenveettil (2015)), the decrease in capillary wave amplitude is given by

ln
( α

α0

)
≈ −24

(R
λ

)2

Oh. (3.13)

Capillary waves can be considered completely absent when α/α0 = e−n with n ≈ 4.
Equation (3.13) with n = 4 then implies that capillary waves with wave length less than
λ/R ≈ 0.17 are absent at a value of Oh ≈ 0.0048 (see figure 8 (a) to (d)). Similarly,
capillary waves of wave length less than λ/R ≈ 0.36 will be absent at Oh ≈ 0.022 (see
figure 8 (e) to (h)). We can hence infer that capillary waves are progressively damped as
Oh increases and there is an increase in jet velocity up to about Oh ≈ 0.02 due to this.
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Figure 8: Progressive damping of capillary waves with increase in Oh, shown in image
pairs from (a) to (h). Collapsing sequence, (a)-(b): water, Oh = 0.0026 (Bo = 0.63);
(c)- (d): water, Oh = 0.0055 (Bo = 3 × 10−2); (e)-(f): GW48 (300C), Oh = 0.0139
(Bo = 0.17); (g)-(h): GW55, Oh = 0.0225 (Bo = 0.47). In each image pair, images are
separated by 741, 100, 148 and 375 micro seconds, respectively. The line in (a)-(b): 1mm,
(c)- (d): 0.2mm, (e)-(f): 0.5mm, (g)-(h):0.5mm.

An increase in Oh could occur due to decrease in bubble radius resulting in a corre-
sponding decrease in Bo. We saw in figure 5 that with decrease in Bo for Bo < 0.1, the
jet We increases, deviating from the cavity model (3.10). We can now understand that
such a deviation is an effect of viscosity since precursor capillary waves are more and
more damped by viscosity as the bubble radius gets smaller leading to an increase in jet
velocity due to a smoother cavity. We assume that there is a dependence of We on Oh
in the form Oh1/2, same as that of λ/R from (3.13), due to capillary wave damping with
increase in Oh. If the Weber number is now corrected for this damping by normalising
with Oh1/2, as shown in figure 9, We/Oh1/2 is practically a constant for Bo < 0.1.
Spiel’s We is also practically independent of Bo when Bo < 0.06. Even Ghabache’s data
could be considered to be following our cavity depth model in figure 9. Unfortunately,
Ghabache et al. have no measurements at smaller Bo, say at Bo about 0.003 for a clearer
verification.

In figure 10 we have plotted We/(Zcd/R)2 as a function of Ohnesorge number, Oh.
It is seen that when Oh > Ohc ≃ 0.037 there is a rapid decrease in jet velocity since
viscous effects become important in jetting. Corresponding to Ohc, we can estimate a
critical Bond number Boc = µ4g/(0.037)4σ3ρ, which is 1.5× 10−5 in water, beyond the
range of our experiments. For higher viscosity fluids like GW68 and GW72, Boc = 0.3
and Boc = 1.28 respectively, which could be seen in figure 2, where a rapid drop of We
occurs for Bo < Boc.
When Oh < Ohc, except in the range of 0.02 < Oh < Ohc, the data sets of water

and GW48 indicate an increase of We/(Zcd)
2 with Oh in figure 10. There is also a small

region of decreasingWe/(Zcd)
2 with Oh at small Oh, which is an artefact of the deviation

of the theoretical cavity depth from the experimental values at large Bo (see figure 4). In
addition, the GW48 data (filled triangles) have larger We values compared with that of
water. As mentioned above, this increase of We/(Zcd)

2 with Oh occur because capillary
waves are more and more damped as Oh increases, leading to a smoother cavity and
hence a stronger pressure impulse. Hence, in figure 10, we plot the compensated We,
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Figure 9: Variation of Weber compensated for capillary wave damping with Bo. Symbols
are the same as in Figure 1. - -,WeOh−1/2 = 830 Bo−1/2; —,WeOh−1/2 = 900(Zcd/R)2.

Figure 10: 103×We/(Zcd/R)2 and We/
(
(Zcd/R)2Oh1/2

)
as functions of Oh = µ/

√
σρR.

△, Water; N, GW48 (30oC); ⊲, GW48 (20oC); �, GW55; ∗, GW68; ♦, GW72; ×, water
data of Ghabache et al. (2014); - -, We/(Zcd/R)2 = 70; -.-, We/

(
(Zcd/R)2Oh1/2

)
= 900;

—,We/((Zcd/R)2Oh1/2) = 8.3×10−9Oh−7.3−0.17; ..., the vertical dotted line represents
Ohc=0.037.

We/((Zcd/R)2Oh1/2) as a function of Oh. This rescaling collapse the present water and
GW48 data reasonably well to a nearly constant value of compensated We. The increase
in compensated We with decrease in Oh at small Oh (large Bo) still persists, being an
outcome of (3.9) being valid only till Bo ≈ 1; a relation valid for Bo > 1 would remove
this trend.
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(a) (b) (c) (d)

Figure 11: Images of jets for different conditions giving an idea of the effect of Bond
number and viscosity. (a) Bubble of R= 2.15 mm in water, Bo= 0.629, Oh= 2.55 ×
10−3; (b) R= 2 mm in GW48 (30oC), Bo= 0.646, Oh= 10 × 10−3; (c) R=4.08 mm in
water, Bo= 2.25, Oh= 1.85 × 10−3; (d) R= 1.46 mm in GW72, Bo= 0.39, Oh= 4.9 ×
10−2. The lines in images 11a, 11b and 11d are 1 mm in length. The grid size in image
11c is 1 mm.

Figure 10 clearly indicates the existence of an intermediary regime in the range 0.02 <
Oh < Ohc where the compensated Weber number falls below the nearly constant value
observed when Oh < 0.02. This reduction in jet velocity is most likely due to a viscous
effect on the jet scale expressed here by the jet Reynolds number Re = ρUjR/µ that
decreases from about 103 in the case of GW48 to 102 for GW55 (see table 1). For the
latter experiment, when Re is defined with the jet radius instead the bubble radius, it is
well below 102.

When Oh > Ohc the Reynolds number on the bubble scale falls below 102 and the
jet velocity decreases rapidly with increasing Oh. Note that Ohc = 0.037 corresponds
to R/Rµ = Oh−2 ≃ 730 in figure 7, below which the jet velocity drops off rapidly in
agreement with the numerical simulations of Duchemin et al. (2002). In figure 10 we have
empirically fitted this viscous regime by We/((Zcd/R)2Oh1/2) = 8.3×10−9Oh−7.3−0.17.
This critical value above which the jet velocity decreases rapidly corresponds to the value
proposed by Walls et al. (2015) as a critical value beyond which the jet does not break
up into drops. Figure 9 shows images of jets for different Oh values. It is seen that for
conditions of figure 11d, Oh = 0.05 > Ohc, for instance, there is no breakup of the jet
into drops (figure B.16d), whereas breakup occurs for lower values of Oh (figure 11a to
11b). In figure 11c there is no breakup either, even though Oh < Ohc (see figure B.15a for
full sequence of jet evolution). This is because Bo is large, as discussed below in § 3.2.1.
Furthermore, we find that no jet emerges when Oh = Oh∗ ≃ 0.1, a value larger than the
value of Oh∗ = 0.052 proposed by San Lee et al. (2011). The difference could possibly
arise from the small liquid layer depth (of the order of R) in their experiments.

3.2.1. Large Bond number

At very large Bo numbers, the ascending velocity of the bubble due to the buoyancy
force approaches the bubble collapse velocity due to the capillary force. An estimate
of Bo for no jet formation can be obtained from (3.11) by using ∆z ≈ 0.5 R during
the collapse time to obtain Bo ≈12. Walls et al. (2015) indicate that there is still jet
formation at Bo ≈ 5 (bubble in water) but no breakup into drops. As seen in figure 11c,
our experiments also show no drop formation for a R = 4.08 mm bubble in water at
Bo = 2.25. Hence we expect that at Bo ≈ 10 no jet will be formed.
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4. Conclusions

The first main novel result from the present work is that the dependence of the dimen-
sionless jet velocity, expressed in terms of the Weber number (We), on the Bond number
(Bo) is determined by the dimensionless cavity depth. The variation of the square of the
dimensionless cavity depth (Zcd/R)2 of the bubble with the Bond number is of the same
form as that of the We with Bo (compare figures 4 and 5), which is not a power law. In
a limited range of Bond number values, 0.1 < Bo <1, this dependence can however be
approximated as Bo−1/2 as was proposed by Ghabache et al. (2014). When Bo <0.1 the
cavity depth approaches the asymptotic limit of Zc/R ≃ 2 and is practically indepen-
dent of Bo; the viscous-capillary scaling of Duchemin et al. (2002) is then appropriate
(figure 7). In the large Bond number limit (Bo >1) the cavity depth decreases rapidly
and so does the jet velocity or We. Bubble deformation also becomes important at these
large Bo numbers. No approximate power law for We in terms of Bo exists when Bo >1.

The second important conclusion is that viscosity effects are best expressed in terms
of Ohnersorge number (Oh=viscous/capillary forces), which is usual for capillary driven
flows. Jet formation is strongly affected by viscosity when Oh > Ohc ≃ 0.037 with the
jet formation being completely inhibited when Oh = Oh∗ ≃ 0.1. In the range Oh < 0.02
an increasing viscosity can increase the jet velocity through capillary wave damping;
the present experiments suggest that We is proportional to

√
Oh in this regime. In the

intermediate range 0.02 < Oh < Ohc jet velocities are lower because of low jet Reynolds
number. When Oh > Ohc the Reynolds number is also small on the bubble scale.
While the present results are in overall agreement with those of Ghabache et al. (2014),

we point out important differences which exist at small Bond numbers (Bo <0.1) and
large Bond numbers (Bo >1). These differences occur due to the variation of the cavity
depth with Bo, which deviates from the approximate Bo−1/2 power law at small and
large Bo. In addition, we bring out the complex effects of viscosity, which result in three
regimes, the first in which viscosity affects the jet dynamics at large Oh, the second in
which it affects only the jet formation and finally the third regime in which viscosity
affects the jet velocity through capillary wave damping.

We are grateful to Prof. Mahesh Panchagnula, Dept. of Applied Mechanics, IIT Madras,
for allowing us to use the high speed photographic facility in his lab.

Appendix A. Jet velocity and cavity depth

The relation of jet velocity with cavity depth can also be demonstrated by considering
that the jet velocity is given by

Ujc = Z̃cd/tj , (A 1)

where tj is the time measured from the beginning of vertical retraction of the conically
shaped cavity (figure 1m) to jet emergence at the free surface (just before figure 1q) and

Z̃cd is the cavity depth at the instant when the conically shaped cavity starts to retract
vertically (see figure A.12). In writing equation (A 1), it is assumed that the jet velocity
inside the cavity is constant and that the impulse at the conical cavity bottom occurs
in a time short compared with tj . As shown in figure A.13a, Z̃cd is found to be directly
proportional to Zcd with no additional dependence on Bo so that,

Z̃cd = C1Zcd, (A 2)

where, from measurements in water,C1 = 0.86. The measured values of tj scales with the

capillary time, tc =
√
ρR3/σ as,

tj = C2tc. (A 3)
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Figure A.12: (a) Static bubble of R = 2.15mm in water; (b) the conical cavity just before
jet formation; (c) the shape contours extracted from (a) and (b) are superposed together
to show bottom cavity movement.
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Figure A.13: (a) DimensionlessDn = Zcd−Z̃cd withBo for water.△, water; —,Dn/Zcd =
0.143. (b) Dimensionless time versus Bo of cavity retraction from the conical shape to
the jet emergence to the free surface. —, tjet/tc = 0.11.

Figure A.13b shows that in the intermediate range of Bo, where viscous damping of
capillary waves are not significant, C2 = 0.11, but at lower Bo values, corresponding to
larger values of Oh, C2 is likely to be less. We however were not able to measure at these
low Bo and therefore took the same value of C2, knowing that this would underestimate
Uj . Substituting (A 2) and (A 3) in (A 1) leads to

Wejc = 60.7 (Zcd/R)2, (A 4)

where Wejc is the Weber number based on Ujc. The expression for Wejc (A 4) has the
same functional dependence as (3.10) and is quite close to (3.10) shown in figure 5. Fig-

ure A.14 comparesWecj determined from measured Z̃cd and tj withWe determined from
jet velocity measurements close to the free surface; there is a close agreement between the
two. The slightly lower values of Wecj are due to the neglect of the initial acceleration of

the jet in estimating Ujc since Ujc is an average velocity measurement over Z̃cd. Hence,

since the time taken for the jet to travel a distance Z̃cd - proportional to the cavity depth
- scales as the capillary time tc, independent of gravity effects, the gravity effects in jet
velocity can only come from the gravity effects on the cavity depth.
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Figure A.14: Comparison of jet Weber number measured by two methods plotted against
Bo. △, We based on jet velocity at free surface; ©, Wecj based on jet velocity measured

as Ujc = Z̃cd/tj , where tj = 0.11tc from figure A.13b and Z̃cd = 0.857 Zcd; - -, We =

55 Bo−1/2; —, We = 62.5(Zcd/R)2.

Appendix B. Time evolution of jets

In Figure B.15 (a) to (d) show the time sequence of the evolution of jets and their
breakup into drops with decreasing Bo and increasing Oh, while Oh < 0.02. Among
these figures, figure B.15b shows a more detailed sequence of jet evolution for R=2.15mm
in water as a continuation of figure 1. The other images, figures B.15a, B.15c and B.15d
show the jet evolution issuing from collapsing bubbles in water for different Bo and
Oh values. Qualitatively, it is seen that with decreasing Bo and increasing Oh the jet
velocity increases, as long as Oh < 0.02, in agreement with figure 10. The jet diameter
(dj) is measured near the free surface when the jet just emerges. At large Bo, here at
Bo=2.25 (figure B.15a), there is no jet breakup into drops, with the scaled jet diameter
being dj/R ≈ 0.32. When Bo=0.63, figure B.15b, dj/R ≈ 0.24 and one drop is formed
from the jet tip. In figure B.15c, Bo=0.069 the jet fragments into three droplets and
dj/R ≈ 0.25. A further reduction in Bo, i.e, Bo = 4.2 × 10−3, results in a thinner jet
(dj/R ≈ 0.17) and the entire jet gets pinched off from the surface in addition to the
initial droplets shedding from the jet tip as shown in figure B.15d.

The jet size is directly related with the bubble size as seen in figure B.15 (a) to (d).
However, the damping of capillary waves causes further reduction in jet size (Ghabache
et al. (2014)) as could be seen in figure B.15d. This effect of damping on the jet size
could be made clear by the jet behaviour in GWs shown in figure B.16, which shows the
jet sequence with increasing Oh. Figure B.16a shows a jet from a slightly larger bubble
(R=1.04mm, Bo=0.17, Oh=0.0139) compared with the jet in figure B.15c (R=0.71mm,
Bo=0.069, Oh=0.0045). The jet in figure B.16a has a smaller diameter (dj/R ≈ 0.09)
than the jet in figure B.15c (dj/R ≈ 0.25) due to much larger Oh. Both undergo drop
shedding from the jet tip (three drops) but in figure B.16a the entire jet gets pinched
off from the free surface like in figure B.15d (dj/R ≈ 0.17). In figures B.16b and B.16c
jet evolution sequences for bubbles of approximately the same Bo values (Bo ≈ 0.1) are
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a b c d e f

(a) R = 4.08mm (Bo = 2.25, Oh = 1.85× 10−3). Each image is separated by 4ms. The grid size
in the image is 1mm. dj/R ≈ 0.32.

(b) R = 2.15mm (Bo = 0.63, Oh = 2.55×10−3). From a to j, each image is separated by 0.25 ms.
j to k & m to n : 1.5 ms. k to l & l to m : 1.75 ms. The line in image is 1mm. dj/R ≈ 0.24.

(c) R = 0.71mm (Bo = 0.069, Oh = 4.5 × 10−3). Time intervals: a to c , d to f & i to j: each
image is separated by 0.1 ms; c to d: 0.3 ms; f to i: each image is separated by 0.2 ms. The line
in image is 0.2mm. dj/R ≈ 0.25.

(d) R = 0.175mm (Bo = 0.0042, Oh = 9×10−3). Time intervals: a to c: each image is separated
by 20µsec; c to d: 10µsec; d to e & g to h: 30µsec; e to f: 0.22ms; f to g & h to i: 60µsec; The
line in image is 0.1mm. dj/R ≈ 0.17.

Figure B.15: Time evolution of the structure of the jet in water. Figures (a) - (d) are
arranged in the order of decreasing Bo from the largest to smallest Bo of present exper-
iments (4.2× 10−3 6 Bo 6 2.25).
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(a) R = 1.04mm (Bo = 0.17, Oh =0.0139) in GW48 (30oC). Time intervals: a to b, f to g & g
to h: 0.15ms; b to c, e to f & l to m: 0.44 ms; c to d: 0.52msec; d to e: 0.3msec; h to i & k to l:
0.8msec; i to j: 0.74msec; j to k & m to n: 0.96msec. The line in image is 0.5 mm. dj/R ≈ 0.09.

(b) R = 0.81mm (Bo = 0.11, Oh = 2.21 × 10−2) in GW48 (20oC). Time intervals: a to d
(between each images): 0.17msec; d to e: 0.27msec; e to f, g to h & h to i : 0.33msec; f to g :
2.87msec; i to j : 0.43msec; j to k: 0.83msec. The line in image is 0.5mm. dj/R ≈ 0.04.

(c) R = 0.71mm (Bo = 0.084, Oh = 3.44 × 10−2) in GW55. Time intervals: a to d (between
each images): 0.1msec; d to f (between each images): 0.05msec; f to g: 0.3msec; g to h: 0.5msec;
h to i: 0.4msec. The line in image is 0.5mm. dj/R ≈ 0.14.

(d) R = 1.52mm (Bo = 0.42, Oh = 4.9× 10−2) in GW72. Time intervals: a to f (between each
images): 0.51msec; f to g: 1.54msec. Grid size is 1mm. dj/R ≈ 0.3

Figure B.16: Time evolution of the structure of the jet with increasing Oh in different
GWs. Figures (a) to (d) are arranged in the increasing order of Oh from Oh = 2.21×10−2

in figure B.16a of GW48 (300C) to Oh = 4.9× 10−2 in figure B.16d of GW72.

shown, however, the dimensionless jet radii are dj/R ≈ 0.04 in figure B.16b and 0.14
in figure B.16c. Only one drop is shed from the jet tip in figures B.16b and B.16c as
viscosity effect become important. The jet pinched off from its base in figure B.16b as in
figure B.15d and B.16a. With increase in Oh from Oh = 2.21 × 10−2 (figure B.16b) to
Oh = 4.9× 10−2 (figure B.16d), the drop pinch off is fully stopped, as discussed in §3.2
and the jet size is increased (dj/R ≈ 0.3).
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