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1. Introduction

Given a linear transformation L : Sn → Sn and a matrix Q ∈ Sn, the semidefinite linear comple-
mentarity problem, SDLCP(L,Q), is the problem of finding a matrix X ∈ Sn such that

X ∈ Sn+, Y := L(X) + Q ∈ Sn+, and 〈X , Y〉 = 0,

where Sn denotes the space of all real n × n symmetric matrices, Sn+ denotes the set of all positive
semidefinite matrices in Sn and 〈X , Y〉 denotes the trace of the (matrix) product XY . If such an X exists,
then we call X to be the solution of SDLCP(L,Q). In the last decade significant work done in the area
of semidefinite linear complementarity problem starting from Kojima et al. [16] in 1997 and Gowda
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with others, see the articles [9,8,12,13,7]. SDLCP is also a special case of semidefinite programming,
see Shida et al. [19]. Then in 2000, Gowda and Song [9] regarded it as a natural generalization of linear
complementarity problem (LCP) [5]. The problem SDLCP has been studied extensively for the following
transformations. Given A ∈ R

n×n,

(i) The Lyapunov transformation LA : X ∈ Sn �−→ AX + XAT ,
(ii) The Stein transformation SA : X ∈ Sn �−→ X − AXAT ,
(iii) The Multiplicative transformation RA : X ∈ Sn �−→ AXAT .

In this article we introduce the P′
2-property for a linear transformation. Let L : Sn → Sn be a linear

transformation. We say L has the P′
2-property, if

[

0 	 X ∈ Sn, XL(X)X 	 0
]

⇒ X = 0.

P′
2-property was motivated by the strict semimonotone property in the linear complementarity prob-

lems. In LCP if a matrix A has the strict semimonotone property, then it is equivalent to saying that
LCP(A, q) has unique solution whenever q� 0. We observe a similar result (Remark 2.3) for the P′

2-
property in the SDLCP setting. Also we establish the equivalence of the P2 and P′

2-property for the
Lyapunov transformation LA, the multiplicative transformation MA and for a particular class of Stein
transformations SA. Further, we study the relationship of P′

2-property, Q-property and P-property.

1.1. Preliminaries

We use Sn+(Sn−) to denote the set of all positive (negative) semidefinite matrices in Sn. The trace of

a matrix A ∈ R
n×n is the sum of its diagonal entries and it is denoted by tr(A). By A � 0 (A 	 0), we

mean A is positive (negative) semidefinite. By the symbol ‖A‖ we denote the Frobenius norm of A on
R

n×n. The following results are well known, see [6,14].

(i) tr(A) = tr(AT );
(ii) tr(AB) = tr(BA);
(iii) If A � 0, then UAUT � 0 for any orthogonal matrix U;
(iv) If A and B are two commuting symmetric matrices, then there exists an orthogonal matrix U

such that A = UDUT and B = UEUT ;
(v) If 0 	 X and 0 	 Y with tr(XY) = 0, then XY = 0.

In the following, we recall some definitions in the setting of SDLCP.

Definition 1.1. For a linear transformation L : Sn → Sn, we say that L has the

(i) Q-property if SDLCP(L,Q) has a solution for all Q ∈ Sn;
(ii) P-property if

[X and L(X) commute, and XL(X) 	 0] ⇒ X = 0;

(iii) Globally Uniquely Solvable (GUS) property, if for all Q ∈ Sn, SDLCP(L,Q) has a unique solution;
(iv) Strong-monotonicity property if tr(XL(X)) > 0 for any nonzero X ∈ Sn;
(v) R0-property if SDLCP(L, 0) has a unique solution;
(vi) P2-property (also called ultra P-property in [13]) if

[X � 0, Y � 0, (X − Y)L(X − Y)(X + Y) 	 0] ⇒ X = Y .

1.1.1. Lipschitzian property

The set of all solutions to the problem SDLCP(L,Q) is denoted by SOL(L,Q). The multivalued map
φL : Sn → Sn+ defined by φL(Q) := SOL(L,Q) is called the solution map.

Definition 1.2. Let L : Sn → Sn. We say that φL is Lipschitzian, if there exists C > 0 such that

φL(Q) ⊆ φL(Q
′) + C‖Q − Q ′‖B (1)
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for all Q ,Q ′ ∈ Sn satisfying φL(Q) /= ∅ and φL(Q
′) /= ∅. Here B is the closed unit ball in Sn. We say,

L is a Lipschitzian map if φL has the Lipschitzian property.

1.1.2. The linear transformation RA
Apart from the linear transformations mentioned in the beginning, we have onemore linear trans-

formation RA, for which one can find a detailed discussion in the article by Gowda and Song [11]. For
a given X ∈ Sn, let diag(X) denote the n dimensional(column) vector formed by the diagonal entries
of X . Also, for a vector q ∈ R

n, we call by q̂ or Diag(q) the diagonal matrix whose diagonal vector is
q. And for a given X ∈ Sn, with X = (xij), we say X0 := (xij(1 − δij)), where δij is one if i = j and zero
otherwise. The problem SDLCP(RA, q̂) is called the semidefinite relaxation of the problem LCP(A, q).
Now, the linear transformation RA : Sn → Sn is defined by

RA(X) := Diag(Adiag(X)) + X0.

Now we will recall some results, that are required for this paper.

Theorem 1.1 [15]. Let L : Sn → Sn be a linear transformation. If the problem SDLCP(L, 0) and SDLCP(L, I)
have unique solutions, then L has the Q-property. Here, I denotes the identity matrix of order n.

Lemma 1.2 [2]. Let A ∈ R
n×n. Then A is positive definite if and only if every diagonal entry of UAUT is

positive, for any orthogonal matrix U.

2. The P
′

2-property

2.1. Strict semimonotone property and the P-property in LCP

A matrix A ∈ R
n×n is called a Z-matrix if its off-diagonal entries are non-positive. We say A has

the strict semimonotone property (SSM-property) if x � 0 and xi(Ax)i � 0 for all i ⇒ x = 0. In other
words, restricted to R

n
+, A does not reverse the sign of (nonnegative) vector. If A has SSM-property

then A ∈ Q . In fact A is completely Q , that is, A and all its principal submatrices are in Q , for details see
[5].

We say A has the P-property, if for x ∈ R
n and xi(Ax)i � 0 for all i ⇒ x = 0. In case of a Z-matrix,

SSM-property and P-property are equivalent.

Theorem 2.1. Let A be a Z-matrix. Then the following are equivalent.

(i) A has the P-property.
(ii) A has the SSM-property.
(iii) x � 0 and xi(Ax)ixi � 0 for all i ⇒ x = 0.

Proof. The equivalence of (ii) and (iii) are obvious. (i) ⇒ (ii) is well known, see the monograph by
Cottle et al. [5]. For (ii) ⇒ (i), we know SSM-property implies the Q-property and Q-property along
with Z-property implies the P-property, refer to Berman and Plemons [3]. �

2.2. Strict semimonotone property and the P-property in SDLCP

In case of the SDLCP the strict semimonotone property was first introduced by Gowda and Song in
[9]. Given a linear transformation L : Sn → Sn, we say that L has the strict semimonotone property
(SSM-property), if

[X � 0, X and L(X) commute, XL(X) 	 0] ⇒ 0.

At this point, we define the P′
2-property as follows.
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Definition 2.1. Let L : Sn → Sn be a linear transformation. Then we say that L has the P′
2-property, if

[

0 	 X ∈ Sn, XL(X)X 	 0
]

⇒ X = 0.

Now we prove the following theorem.

Theorem 2.2. Let L : Sn → Sn be a linear transformation. Consider the following statements.

(i) L has the P2-property.
(ii) L has the P′

2-property.
(iii) L has the SSM-property.
(iv) L has the Q-property.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof. (i) ⇒ (ii) is evident from the definition of P′
2-property. Now we prove (ii) ⇒ (iii). Assume L

has the P′
2-property. Let X � 0 with XL(X) = L(X)X 	 0. We claim that X = 0. Since X and L(X) are

symmetric commuting matrices, we have XL(X)X 	 0. Thus by the P′
2-property we have X = 0. Now

let us see the proof of (iii) ⇒ (iv). Assume L has the SSM-property. Suppose there exists a nonzero
X � 0 and L(X) � 0, such that XL(X) = 0. Then, by the SSM-property, such X must be 0. This asserts
that SOL(L, 0) = {0}. Let Q = I and suppose there exists a nonzero X � 0 and L(X) + I � 0, such that
X(L(X) + I) = (L(X) + I)X = 0. ThenXL(X) = L(X)X = −X 	 0.Now, by the SSM-property,wehave
X = 0, that is SOL(L, I) = {0}. Thus, L has the Q-property by Theorem 1.1. Hence the proof. �

The following are some remarks which one can observe as a consequence of the above theorem.

Remark 2.1. P′
2-property does not imply the P2-property. The following is a linear transformation that

has the P′
2-property, but not the P2-property.

Let A =
(

1 2
2 1

)

and X =
(

x y
y z

)

. Consider the transformation RA. Then

RA(X) =

(

x + 2z y

y 2x + z

)

,

XRA(X)X =

(

x y

y z

) (

x + 2z y

y 2x + z

) (

x y

y z

)

=

(

x(x2 + 2xz + y2) + y2(3x + z) ∗

∗ y2(x + 3z) + z(z2 + 2xz + y2)

)

.

Now, suppose X � 0, XRA(X)X 	 0. This clearly implies that X = 0. In otherwords RA has the P′
2-

property. But here A is not a P-matrix. We know from Gowda and Song [11, Proposition 5], that saying
A is a P-matrix is equivalent to saying RA has the P-property. This says that RA does not have the
P-property. Hence RA does not possess P2-property as well.

Remark 2.2. The above example also illustrates that in general P′
2-property neednot imply P-property.

Remark 2.3. P′
2-property implies that for allQ ∈ Sn+, SOL(L,Q) = {0}; in particular it has R0-property.

P′
2-property does not require the operator commutativity of X and L(X). If we include this commu-

tativity, then P′
2-property reduces to SSM-property.
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Theorem 2.3. Let L : Sn → Sn bea linear transformation.Then the following twostatementsareequivalent.

(i) [X � 0, XL(X) = L(X)X , and XL(X)X 	 0] ⇒ X = 0.
(ii) L has the SSM-property.

Proof. From Theorem 2.2, it follows that (i) ⇒ (ii). We now prove that (ii) ⇒ (i). Suppose X �
0, XL(X) = L(X)X , andXL(X)X 	 0. Since X and L(X) are symmetric commuting matrices, there exists
an orthogonal matrix U such that UEUT = X and UFUT = L(X). From hypothesis we have E � 0 and
EFE 	 0. This implies that EF 	 0 (since E is a nonnegative diagonal matrix and F is a diagonal matrix)
and hence E = 0 or X = 0 by the SSM-property of L. This completes the proof of (ii) ⇒ (i). �

Remark 2.4. In the standard LCP situation SSM-property is equivalent to (the matrix version of) P′
2-

property, see Theorem 2.1.

In general P′
2 and its commutative version are not equivalent. We now give an example to show

that P′
2 is not equivalent to its commutative version.

Example 2.1. Let A =
(

0 −1
1 3

)

.

Note that A is positive stable. Hence LA has the SSM-property, see [9]. Hence from the above result
it follows that LA has the commutative version of P′

2-property. Since A is not positive definite, it follows
from Theorems 3.1 and 3.3, LA does not possess the P′

2-property.

Remark 2.5. The P-property need not imply P′
2-property. The following (from Gowda and Song [9]) is

an example of a linear transformation having P-property but not P′
2-property.

Let A =
(

−1 2
−2 2

)

. Now, for Q =
(

2 2
2 4

)

� 0, apart from X = 0, X =
(

1 0
0 0

)

, is also a solution to

SDLCP(LA,Q). Thus, by Remark 2.3, LA fails to have P′
2-property, but it has P-property.

Definition 2.2. LetL : Sn → Sn bea linear transformation. ForXk ∈ Sk , defineLk : Sk → Sk byLk(Xk) =

(L(X))k , where X =
(

Xk 0
0 0

)

and (L(X))k is the k × k leading principal submatrix of L(X). That is
(

Lk(Xk) B
C D

)

k
= Lk(Xk). We call Lk , a principal subtransformation of L.

Definition 2.3. Let L : Sn → Sn be a linear transformation. Then L has the completely Q-property
(completelyR0-property) if everyprincipal subtransformation Lk ofLhave theQ-property (R0-property).

Theorem 2.4. Let L : Sn → Sn be a linear transformation. If L has the P′
2-property then it is inherited by

all its principal subtransformations.

Proof. Let Xk ∈ Sk . Suppose Xk � 0 with XkLk(Xk)Xk 	 0 then we need to show that Xk = 0. Let X =
(

Xk 0
0 0

)

. Then Lk(Xk) = (L(X))k =
(

Lk(Xk) B
C D

)

k
, where B, C and D are matrices of appropriate order.

XL(X)X =

(

Xk 0
0 0

) (

Lk(Xk) B

C D

) (

Xk 0
0 0

)

=

(

XkLk(Xk) XkB

0 0

) (

Xk 0
0 0

)

=

(

XkLk(Xk)Xk 0
0 0

)

	 0

⇒ X = 0 or Xk = 0 for L has the P′
2�property.

Thus, if L has the P′
2-property then every principal subtransformation, also has the P′

2-property. �
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Corollary 2.1. If L = LA or SA, has the P
′
2-property, then L has the P-property.

Proof. LA has the P-property from a result due to Gowda and Song [9, Theorem 5]. Similarly SA has the
P-property by a result from Gowda and Parthasarathy [8, Theorem 11]. �

Weknow from [9], that P2-property in SDLCP’s is equivalent to the P-property in LCP’s. Now one can
ask when the P2-property is equivalent to P′

2-property. The answer is yes in the case of the Lyapunov
transformations, themultiplicative transformations and a particular class of Stein transformations.We
will see those equivalence results in the following sections.

3. The Lyapunov transformation LA

In [17], Parthasarathy et al. have shown the following result.

Theorem 3.1 [17]. Let A ∈ R
n×n. Then the following are equivalent for the Lyapunov transformation LA.

(i) A is positive definite.
(ii) LA has the strong-monotonicity property.
(iii) LA has the P2-property.

Now, we will establish the equivalence of P2-property and P′
2-property for the Lyapunov transfor-

mation.

Lemma 3.2. Let A ∈ R
n×n. If LA has the P

′
2-property then LUAUT also has the P′

2-property for anyorthogonal

matrix U.

Proof. Let us assume that LA has the P′
2-property. We now claim that LUAUT also has the P′

2-property.
Let 0 	 X ∈ Sn, with

XLUAUT (X)X = X(UAUTX + XUATUT )X 	 0.

Then

XUUT (UAUTX + XUATUT )UUTX 	 0

⇒ XU(AUTXU + UTXUAT )UTX 	 0

⇒ UTXU(AUTXU + UTXUAT )UTXU 	 0.

Taking Y = UTXU, the above equation becomes,

Y(AY + YAT )Y 	 0

with 0 	 Y ∈ Sn. Now, by the P′
2-property of LA we must have Y = 0, which implies that X = 0. �

Remark 3.1. The inheritance of the P′
2-property for SA and MA to SUAUT and MUAUT for any orthogonal

matrix U can be proved similarly.

Theorem 3.3. Let A ∈ R
n×n. Then the following are equivalent.

(i) LA has the P2-property.
(ii) LA has the P′

2-property.

Proof. (i) ⇒ (ii) is obvious. Now, let us assume that LA has the P
′
2-property and claim that A is positive

definite which is equivalent to saying LA has the P2-property (Theorem 3.1). To prove A is positive
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definite, because of Lemmas 1.2 and 3.2 it is enough to show that every diagonal entry of A is positive.
Suppose a11 � 0.

Then take X =

⎛

⎝

1 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 0

⎞

⎠. Now,

XAX =

⎛

⎜

⎜

⎝

a11 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞

⎟

⎟

⎠

= XAXX = XXATX

⇒ XLA(X)X = X(AX + XAT )X =

⎛

⎜

⎜

⎝

2a11 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞

⎟

⎟

⎠

	 0.

Now, by P′
2-property X must be zero. Thus, a11 cannot be non-positive. So, A is positive definite. �

4. The multiplicative transformation MA

Now, we establish the equivalence of P′
2-property and the P2-property for the multiplicative trans-

formation MA. The following result in the form given below is available in the thesis of Sampangi
Raman [18]. But originally the equivalence of (i) and (ii) was proved by Gowda et al. [13, Corollary 6].
The equivalence of (i), (iii), (iv), and (v) is proved in Bhimasankaram et al. [4, Theorem 17].

Theorem4.1 [18]. Let A ∈ R
n×n. Then, for the double-sidedmultiplicative transformationMA the following

are equivalent:

(i) A is positive definite or negative definite.
(ii) MA has the P2-property.
(iii) MA has the GUS-property.
(iv) MA has the P-property.
(v) MA has the R0-property.

Theorem 4.2. Let A ∈ R
n×n. Then, for the double-sided multiplicative transformation MA the following

are equivalent:

(i) MA has the P2-property.
(ii) MA has the P′

2-property.

Proof. (i) ⇒ (ii) Let MA have the P2-property. By Theorem 4.1, A is positive definite(or −A is posi-
tive definite). Assume that X � 0 with XMA(X)X = XAXATX 	 0. But XAXATX � 0. This implies that
tr(XAXATX) = tr(AXATXX) � 0. That is, AXATXX = 0 ⇒ XATXX = 0. Now, premultiplying by X we get
XXATXX = 0. This yields XX = 0 and X = 0. Thus, MA has the P′

2-property.
(ii) ⇒ (i) LetMA have the P

′
2-property. Then byRemark 2.3,MA has theR0-property. Now, the result

follows from Theorem 4.1. �

Remark 4.1. In [1], Balaji and Parthasarathy prove that Q and P-properties are equivalent for the
multiplicative transformations MA, provided A ∈ R

n×n is normal. So, if A ∈ R
n×n is normal and MA

has the P′
2-property then MA has the P-property. Further, Sampangi Raman [18] proves that Q and P

properties are equivalent when A ∈ R
2×2, that is, whenever A ∈ R

2×2 with P′
2-property thenMA has

the P-property. Recently for MA with A ∈ R
n×n, Balaji (oral communication) has proved that P and

Q-properties are equivalent.
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Remark 4.2. We know from Gowda and Song [10], that P2 ⇒ GUS for any linear transformations.
Hence we can deduce that for LA and MA, P

′
2 ⇒ GUS. But in general P′

2 ⇒ GUS, need not hold, see
Remark 2.1.

In the following theorem we will prove that the Lipschitzian property implies the P′
2-property for

the transformationMA.

Theorem 4.3. Let A ∈ R
n×n and the corresponding MA be a Lipschitzian map. Then

(i) MA has the R0-property.
(ii) A is positive definite or negative definite.
(iii) MA has the P2-property.
(iv) MA has the P′

2-property.

Proof. We show (i), assuming that MA has the Lipschitzian property. Note that SDLCP(MA,Q) has a
solution namely the zero solution for all Q ∈ Sn+. If MA does not have the R0-property then there

exists a nonzero X0 � 0 such that AX0A
T � 0 and X0AX0A

T = 0. In fact λX0 ∈ SOL(MA, 0) for all
λ � 0. Now, if X � 0,MA(X) + I � 0 and X(MA(X) + I) = (MA(X) + I)X = 0, we have XMA(X) =
MA(X)X = −X2 	 0. This yields that X = 0. Thus SOL(MA, I) = {0}. Whereas SOL(MA, 0) is an un-
bounded set. This will contradict the Lipschitzian property ofMA. Thus,MA has the R0-property. Now,
(ii) and (iii) follows from Theorem 4.1. �

Remark 4.3. The above result brings us to the following converse question. If A is positive definite
or negative definite, does it follow that MA has the Lipschitzian property? The answer to the above
question is yes ifA ∈ Sn. In this caseMA is stronglymonotone and consequentlyMA has the Lipschitzian
property. Now, one can also ask whether there is an example whereMA has the Lipschitzian property,
that does not have the strong-monotonicity property?

One can see the following sharper result for the transformation MA.

Theorem 4.4. Let A ∈ R
n×n. Then the following conditions are equivalent.

(i) A is positive definite or negative definite.
(ii) X � 0, XMA(X) 	 0 ⇒ X = 0.
(iii) X � 0, tr(XMA(X)) ≤ 0 ⇒ X = 0.

Proof. The implication (i) ⇒ (ii) is known, for A positive definite implies thatMA has the P-property;
see [4]. Let us see the proof of (ii) ⇒ (iii). Since X andMA(X) are both symmetric positive semidefinite
matrices, tr(XMA(X)) cannotbenegative. That says tr(XMA(X)) = 0andhenceXMA(X) = 0.Thisyields
X = 0 from (ii). Now, wewill prove that (iii) ⇒ (i). Assume (iii). Suppose A is neither positive definite
or negative definite, then there exists a nonzero x such that xtAx = 0 or X0AX0 = 0 or X0AX0A

T = 0,
where X0 = xxt . This X0 is nonzero and positive semidefinite. But tr(X0MA(X0)) = tr(X0AX0A

T ) = 0,
which is a contradiction. Hence the result. �

In general, statement (ii) neednot imply (iii). The following example illustrates the above statement.

Example 4.1. Let A =
(

1 −3
0 1

)

. Let Xt =
(

1 0
0 t

)

. Then RA(Xt) =
(

1 − 3t 0
0 t

)

and tr(XtRA(Xt)) =

1 + t2 − 3t. Then tr(XtRA(Xt)) < 0 at t = 1
2
. In other words RA has P-property but statement (iii)

of Theorem 4.4 does not hold good.
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5. The Stein transformation SA

Theorem 5.1. Let A be normal. Then for SA, P
′
2-property is equivalent to P2-property.

Proof. Note P′
2-property implies Q-property for SA, refer Theorem 2.3. Since A is normal, SA has strong

monotonicity property by a result of Gowda et al. [9]. This implies SA has P2-property, from a result
due to Parthasarathy et al. [17]. �

Remark 5.1. If A is not normal, for SA we do not know whether P′
2 ⇒ P2. It is an open problem.

6. Concluding remarks

We have shown in this paper the new property P′
2 is equivalent to P2-property for Lyapunov,

Multiplicative and in some special cases for Stein transformations.We have also given the relationship
between P′

2-property, Q-property and P-property. Examples are given to show the sharpness of the
results that are proved. We end the paper with the following conjecture:

Gowda et al. in [7], introduces Z-transformations in the SDLCP setting, based on the Z-matrices
in LCP. They extend many properties of the Z-matrices to Z-transformations. A linear transformation
L : Sn → Sn is said to have the Z-property (or called a Z-transformation) if

[

X ∈ Sn+, Y ∈ Sn+, and 〈X , Y〉 = 0
]

⇒ 〈L(X), Y〉 � 0.

The Lyapunov and Stein transformations are examples of Z-transformations.

If L is a linear Z-transformation from Sn → Sn with P′
2-property then L has the P2-property. If not, then L

must have at least P-property.
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