On the P_{2}^{\prime} and P_{2}-properties in the semidefinite linear complementarity problem

A. Chandrashekaran ${ }^{\text {a,* }}$, T. Parthasarathy ${ }^{\mathrm{b}}$, V. Vetrivel $^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India
b Indian Statistical Institute, Chennai 600 029, India

A R T I C L E I N F O

Article history:

Received 28 January 2009
Accepted 27 July 2009
Available online 25 August 2009
Submitted by R.A. Brualdi

AMS classification:

90C33
93D05

Keywords:
Semidefinite linear complementarity
problem (SDLCP)
P_{2}-property
P_{2}^{\prime}-property

A B S T R A C T

Motivated by the so-called P_{2}-property in the semidefinite linear complementarity problems, in this article, we introduce the concept of P_{2}^{\prime}-property for a linear transformation on the space of real $n \times n$ symmetric matrices. While these two properties turn out to be different, we show that they are equivalent for the Lyapunov transformation L_{A}, double-sided multiplicative transformation M_{A} and a particular class of Stein transformations. We also show that P_{2}^{\prime} implies the SSM and Q-properties.
© 2009 Published by Elsevier Inc.

1. Introduction

Given a linear transformation $L: S^{n} \rightarrow S^{n}$ and a matrix $Q \in S^{n}$, the semidefinite linear complementarity problem, $\operatorname{SDLCP}(L, Q)$, is the problem of finding a matrix $X \in S^{n}$ such that

$$
X \in S_{+}^{n}, \quad Y:=L(X)+Q \in S_{+}^{n}, \quad \text { and } \quad\langle X, Y\rangle=0,
$$

where S^{n} denotes the space of all real $n \times n$ symmetric matrices, S_{+}^{n} denotes the set of all positive semidefinite matrices in S^{n} and $\langle X, Y\rangle$ denotes the trace of the (matrix) product $X Y$. If such an X exists, then we call X to be the solution of $\operatorname{SDLCP}(L, Q)$. In the last decade significant work done in the area of semidefinite linear complementarity problem starting from Kojima et al. [16] in 1997 and Gowda

[^0]with others, see the articles [$9,8,12,13,7]$. SDLCP is also a special case of semidefinite programming, see Shida et al. [19]. Then in 2000, Gowda and Song [9] regarded it as a natural generalization of linear complementarity problem (LCP)[5]. The problem SDLCP has been studied extensively for the following transformations. Given $A \in \mathbb{R}^{n \times n}$,
(i) The Lyapunov transformation $L_{A}: X \in S^{n} \longmapsto A X+X A^{T}$,
(ii) The Stein transformation $S_{A}: X \in S^{n} \longmapsto X-A X A^{T}$,
(iii) The Multiplicative transformation $R_{A}: X \in S^{n} \longmapsto A X A^{T}$.

In this article we introduce the P_{2}^{\prime}-property for a linear transformation. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. We say L has the P_{2}^{\prime}-property, if

$$
\left[0 \preceq X \in S^{n}, X L(X) X \preceq 0\right] \Rightarrow X=0
$$

P_{2}^{\prime}-property was motivated by the strict semimonotone property in the linear complementarity problems. In LCP if a matrix A has the strict semimonotone property, then it is equivalent to saying that $L C P(A, q)$ has unique solution whenever $q \geqslant 0$. We observe a similar result (Remark 2.3) for the $P_{2}^{\prime}-$ property in the SDLCP setting. Also we establish the equivalence of the P_{2} and P_{2}^{\prime}-property for the Lyapunov transformation L_{A}, the multiplicative transformation M_{A} and for a particular class of Stein transformations S_{A}. Further, we study the relationship of P_{2}^{\prime}-property, Q-property and P-property.

1.1. Preliminaries

We use $S_{+}^{n}\left(S_{-}^{n}\right)$ to denote the set of all positive (negative) semidefinite matrices in S^{n}. The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries and it is denoted by $\operatorname{tr}(A)$. By $A \succeq 0(A \preceq 0)$, we mean A is positive (negative) semidefinite. By the symbol $\|A\|$ we denote the Frobenius norm of A on $\mathbb{R}^{n \times n}$. The following results are well known, see [6,14].
(i) $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$;
(ii) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$;
(iii) If $A \succeq 0$, then $U A U^{T} \succeq 0$ for any orthogonal matrix U;
(iv) If A and B are two commuting symmetric matrices, then there exists an orthogonal matrix U such that $A=U D U^{T}$ and $B=U E U^{T}$;
(v) If $0 \preceq X$ and $0 \preceq Y$ with $\operatorname{tr}(X Y)=0$, then $X Y=0$.

In the following, we recall some definitions in the setting of SDLCP.
Definition 1.1. For a linear transformation $L: S^{n} \rightarrow S^{n}$, we say that L has the
(i) Q-property if $\operatorname{SDLCP}(L, Q)$ has a solution for all $Q \in S^{n}$;
(ii) P-property if
[X and $L(X)$ commute, and $X L(X) \preceq 0] \Rightarrow X=0$;
(iii) Globally Uniquely Solvable (GUS) property, if for all $Q \in S^{n}, \operatorname{SDLCP}(L, Q)$ has a unique solution;
(iv) Strong-monotonicity property if $\operatorname{tr}(X L(X))>0$ for any nonzero $X \in S^{n}$;
(v) R_{0}-property if $\operatorname{SDLCP}(L, 0)$ has a unique solution;
(vi) P_{2}-property (also called ultra P-property in [13]) if

$$
[X \succeq 0, Y \succeq 0,(X-Y) L(X-Y)(X+Y) \preceq 0] \Rightarrow X=Y
$$

1.1.1. Lipschitzian property

The set of all solutions to the problem $\operatorname{SDLCP}(L, Q)$ is denoted by $\operatorname{SOL}(L, Q)$. The multivalued map $\phi_{L}: S^{n} \rightarrow S_{+}^{n}$ defined by $\phi_{L}(Q):=S O L(L, Q)$ is called the solution map.

Definition 1.2. Let $L: S^{n} \rightarrow S^{n}$. We say that ϕ_{L} is Lipschitzian, if there exists $C>0$ such that

$$
\begin{equation*}
\phi_{L}(Q) \subseteq \phi_{L}\left(Q^{\prime}\right)+C\left\|Q-Q^{\prime}\right\| B \tag{1}
\end{equation*}
$$

for all $Q, Q^{\prime} \in S^{n}$ satisfying $\phi_{L}(Q) \neq \emptyset$ and $\phi_{L}\left(Q^{\prime}\right) \neq \emptyset$. Here B is the closed unit ball in S^{n}. We say, L is a Lipschitzian map if ϕ_{L} has the Lipschitzian property.

1.1.2. The linear transformation R_{A}

Apart from the linear transformations mentioned in the beginning, we have one more linear transformation R_{A}, for which one can find a detailed discussion in the article by Gowda and Song [11]. For a given $X \in S^{n}$, let $\operatorname{diag}(X)$ denote the n dimensional(column) vector formed by the diagonal entries of X. Also, for a vector $q \in \mathbb{R}^{n}$, we call by \hat{q} or $\operatorname{Diag}(q)$ the diagonal matrix whose diagonal vector is q. And for a given $X \in S^{n}$, with $X=\left(x_{i j}\right)$, we say $X_{0}:=\left(x_{i j}\left(1-\delta_{i j}\right)\right)$, where $\delta_{i j}$ is one if $i=j$ and zero otherwise. The problem $\operatorname{SDLCP}\left(R_{A}, \hat{q}\right)$ is called the semidefinite relaxation of the problem $\operatorname{LCP}(A, q)$. Now, the linear transformation $R_{A}: S^{n} \rightarrow S^{n}$ is defined by

$$
R_{A}(X):=\operatorname{Diag}(\operatorname{Adiag}(X))+X_{0} .
$$

Now we will recall some results, that are required for this paper.
Theorem 1.1 [15]. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. If the problem $\operatorname{SDLCP}(L, 0)$ and $\operatorname{SDLCP}(L, I)$ have unique solutions, then L has the Q-property. Here, I denotes the identity matrix of order n.

Lemma 1.2 [2]. Let $A \in \mathbb{R}^{n \times n}$. Then A is positive definite if and only if every diagonal entry of $U A U^{T}$ is positive, for any orthogonal matrix U.

2. The P_{2}^{\prime}-property

2.1. Strict semimonotone property and the P-property in LCP

A matrix $A \in \mathbb{R}^{n \times n}$ is called a Z-matrix if its off-diagonal entries are non-positive. We say A has the strict semimonotone property (SSM-property) if $x \geqslant 0$ and $x_{i}(A x)_{i} \leqslant 0$ for all $i \Rightarrow x=0$. In other words, restricted to \mathbb{R}_{+}^{n}, A does not reverse the sign of (nonnegative) vector. If A has SSM-property then $A \in Q$. In fact A is completely Q, that is, A and all its principal submatrices are in Q, for details see [5].

We say A has the P-property, if for $x \in \mathbb{R}^{n}$ and $x_{i}(A x)_{i} \leqslant 0$ for all $i \Rightarrow x=0$. In case of a Z-matrix, SSM-property and P-property are equivalent.

Theorem 2.1. Let A be a Z-matrix. Then the following are equivalent.
(i) A has the P-property.
(ii) A has the SSM-property.
(iii) $x \geqslant 0$ and $x_{i}(A x)_{i} x_{i} \leqslant 0$ for all $i \Rightarrow x=0$.

Proof. The equivalence of (ii) and (iii) are obvious. (i) \Rightarrow (ii) is well known, see the monograph by Cottle et al. [5]. For (ii) \Rightarrow (i), we know SSM-property implies the Q-property and Q-property along with Z-property implies the P-property, refer to Berman and Plemons [3].

2.2. Strict semimonotone property and the P-property in SDLCP

In case of the SDLCP the strict semimonotone property was first introduced by Gowda and Song in [9]. Given a linear transformation $L: S^{n} \rightarrow S^{n}$, we say that L has the strict semimonotone property (SSM-property), if

$$
[X \succeq 0, X \text { and } L(X) \text { commute, } X L(X) \preceq 0] \Rightarrow 0 .
$$

At this point, we define the P_{2}^{\prime}-property as follows.

Definition 2.1. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. Then we say that L has the P_{2}^{\prime}-property, if

$$
\left[0 \preceq X \in S^{n}, X L(X) X \preceq 0\right] \Rightarrow X=0
$$

Now we prove the following theorem.
Theorem 2.2. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. Consider the following statements.
(i) L has the P_{2}-property.
(ii) L has the P_{2}^{\prime}-property.
(iii) L has the SSM-property.
(iv) L has the Q-property.

$$
\text { Then (i) } \Rightarrow \text { (ii) } \Rightarrow \text { (iii) } \Rightarrow \text { (iv). }
$$

Proof. (i) \Rightarrow (ii) is evident from the definition of P_{2}^{\prime}-property. Now we prove (ii) \Rightarrow (iii). Assume L has the P_{2}^{\prime}-property. Let $X \succeq 0$ with $X L(X)=L(X) X \preceq 0$. We claim that $X=0$. Since X and $L(X)$ are symmetric commuting matrices, we have $X L(X) X \preceq 0$. Thus by the P_{2}^{\prime}-property we have $X=0$. Now let us see the proof of (iii) \Rightarrow (iv). Assume L has the SSM-property. Suppose there exists a nonzero $X \succeq 0$ and $L(X) \succeq 0$, such that $X L(X)=0$. Then, by the SSM-property, such X must be 0 . This asserts that $\operatorname{SOL}(L, 0)=\{0\}$. Let $Q=I$ and suppose there exists a nonzero $X \succeq 0$ and $L(X)+I \succeq 0$, such that $X(L(X)+I)=(L(X)+I) X=0$. Then $X L(X)=L(X) X=-X \preceq 0$. Now, by the SSM-property, we have $X=0$, that is $\operatorname{SOL}(L, I)=\{0\}$. Thus, L has the Q-property by Theorem 1.1. Hence the proof.

The following are some remarks which one can observe as a consequence of the above theorem.
Remark 2.1. P_{2}^{\prime}-property does not imply the P_{2}-property. The following is a linear transformation that has the P_{2}^{\prime}-property, but not the P_{2}-property.

$$
\begin{aligned}
& \text { Let } A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \text { and } X=\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) . \text { Consider the transformation } R_{A} . \text { Then } \\
& \begin{aligned}
R_{A}(X) & =\left(\begin{array}{cc}
x+2 z & y \\
y & 2 x+z
\end{array}\right), \\
X R_{A}(X) X & =\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right)\left(\begin{array}{cc}
x+2 z & y \\
y & 2 x+z
\end{array}\right)\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) \\
& =\left(\begin{array}{cc}
x\left(x^{2}+2 x z+y^{2}\right)+y^{2}(3 x+z) & y^{2}(x+3 z)+z\left(z^{2}+2 x z+y^{2}\right)
\end{array}\right) .
\end{aligned}
\end{aligned} \begin{aligned}
* &
\end{aligned}
$$

Now, suppose $X \succeq 0, X R_{A}(X) X \preceq 0$. This clearly implies that $X=0$. In otherwords R_{A} has the $P_{2}^{\prime}-$ property. But here A is not a P-matrix. We know from Gowda and Song [11, Proposition 5], that saying A is a P-matrix is equivalent to saying R_{A} has the P-property. This says that R_{A} does not have the P-property. Hence R_{A} does not possess P_{2}-property as well.

Remark 2.2. The above example also illustrates that in general P_{2}^{\prime}-property need not imply P-property.

Remark 2.3. P_{2}^{\prime}-property implies that for all $Q \in S_{+}^{n}, \operatorname{SOL}(L, Q)=\{0\}$; in particular it has R_{0}-property.
P_{2}^{\prime}-property does not require the operator commutativity of X and $L(X)$. If we include this commutativity, then P_{2}^{\prime}-property reduces to SSM-property.

Theorem 2.3. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. Then the following two statements are equivalent.
(i) $[X \succeq 0, X L(X)=L(X) X$, and $X L(X) X \preceq 0] \Rightarrow X=0$.
(ii) L has the SSM-property.

Proof. From Theorem 2.2, it follows that (i) \Rightarrow (ii). We now prove that (ii) \Rightarrow (i). Suppose $X \succeq$ $0, X L(X)=L(X) X$, and $X L(X) X \preceq 0$. Since X and $L(X)$ are symmetric commuting matrices, there exists an orthogonal matrix U such that $U E U^{T}=X$ and $U F U^{T}=L(X)$. From hypothesis we have $E \succeq 0$ and $E F E \preceq 0$. This implies that $E F \preceq 0$ (since E is a nonnegative diagonal matrix and F is a diagonal matrix) and hence $E=0$ or $X=0$ by the $S S M$-property of L. This completes the proof of (ii) \Rightarrow (i).

Remark 2.4. In the standard $L C P$ situation $S S M$-property is equivalent to (the matrix version of) P_{2}^{\prime} property, see Theorem 2.1.

In general P_{2}^{\prime} and its commutative version are not equivalent. We now give an example to show that P_{2}^{\prime} is not equivalent to its commutative version.

Example 2.1. Let $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right)$.
Note that A is positive stable. Hence L_{A} has the SSM-property, see [9]. Hence from the above result it follows that L_{A} has the commutative version of P_{2}^{\prime}-property. Since A is not positive definite, it follows from Theorems 3.1 and 3.3, L_{A} does not possess the P_{2}^{\prime}-property.
Remark 2.5. The P-property need not imply P_{2}^{\prime}-property. The following (from Gowda and Song [9]) is an example of a linear transformation having P-property but not P_{2}^{\prime}-property.

Let $A=\left(\begin{array}{ll}-1 & 2 \\ -2 & 2\end{array}\right)$. Now, for $Q=\left(\begin{array}{ll}2 & 2 \\ 2 & 4\end{array}\right) \succeq 0$, apart from $X=0, X=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, is also a solution to $\operatorname{SDLCP}\left(L_{A}, Q\right)$. Thus, by Remark 2.3, L_{A} fails to have P_{2}^{\prime}-property, but it has P-property.

Definition 2.2. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. For $X_{k} \in S^{k}$, define $L_{k}: S^{k} \rightarrow S^{k}$ by $L_{k}\left(X_{k}\right)=$ $(L(X))_{k}$, where $X=\left(\begin{array}{cc}X_{k} & 0 \\ 0 & 0\end{array}\right)$ and $(L(X))_{k}$ is the $k \times k$ leading principal submatrix of $L(X)$. That is $\left(\begin{array}{cc}L_{k}\left(X_{k}\right) & B \\ C\end{array}\right)_{k}=L_{k}\left(X_{k}\right)$. We call L_{k}, a principal subtransformation of L.

Definition 2.3. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. Then L has the completely Q-property (completely R_{0}-property) if every principal subtransformation L_{k} of L have the Q-property (R_{0}-property).

Theorem 2.4. Let $L: S^{n} \rightarrow S^{n}$ be a linear transformation. If L has the P_{2}^{\prime}-property then it is inherited by all its principal subtransformations.

Proof. Let $X_{k} \in S^{k}$. Suppose $X_{k} \succeq 0$ with $X_{k} L_{k}\left(X_{k}\right) X_{k} \preceq 0$ then we need to show that $X_{k}=0$. Let $X=$ $\left(\begin{array}{cc}X_{k} & 0 \\ 0 & 0\end{array}\right)$. Then $L_{k}\left(X_{k}\right)=(L(X))_{k}=\left(\begin{array}{cc}L_{k}\left(X_{k}\right) & B \\ C & D\end{array}\right)_{k}$, where B, C and D are matrices of appropriate order.

$$
\begin{aligned}
X L(X) X & =\left(\begin{array}{cc}
X_{k} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
L_{k}\left(X_{k}\right) & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
X_{k} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
X_{k} L_{k}\left(X_{k}\right) & X_{k} B \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
X_{k} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
X_{k} L_{k}\left(X_{k}\right) X_{k} & 0 \\
0 & 0
\end{array}\right) \preceq 0 \\
& \Rightarrow X=0 \text { or } X_{k}=0 \text { for } L \text { has the } P_{2}^{\prime} \text {-property. }
\end{aligned}
$$

Thus, if L has the P_{2}^{\prime}-property then every principal subtransformation, also has the P_{2}^{\prime}-property.

Corollary 2.1. If $L=L_{A}$ or S_{A}, has the P_{2}^{\prime}-property, then L has the P-property.
Proof. L_{A} has the P-property from a result due to Gowda and Song [9, Theorem 5]. Similarly S_{A} has the P-property by a result from Gowda and Parthasarathy [8, Theorem 11].

We know from [9], that P_{2}-property in SDLCP's is equivalent to the P-property in $L C P$'s. Now one can ask when the P_{2}-property is equivalent to P_{2}^{\prime}-property. The answer is yes in the case of the Lyapunov transformations, the multiplicative transformations and a particular class of Stein transformations. We will see those equivalence results in the following sections.

3. The Lyapunov transformation L_{A}

In [17], Parthasarathy et al. have shown the following result.
Theorem 3.1 [17]. Let $A \in \mathbb{R}^{n \times n}$. Then the following are equivalent for the Lyapunov transformation L_{A}.
(i) A is positive definite.
(ii) L_{A} has the strong-monotonicity property.
(iii) L_{A} has the P_{2}-property.

Now, we will establish the equivalence of P_{2}-property and P_{2}^{\prime}-property for the Lyapunov transformation.

Lemma 3.2. Let $A \in \mathbb{R}^{n \times n}$.If L_{A} has the P_{2}^{\prime}-property then $L_{U A U^{T}}$ also has the P_{2}^{\prime}-property for any orthogonal matrix U.

Proof. Let us assume that L_{A} has the P_{2}^{\prime}-property. We now claim that $L_{U A U^{T}}$ also has the P_{2}^{\prime}-property. Let $0 \preceq X \in S^{n}$, with

$$
X L_{U A U^{T}}(X) X=X\left(U A U^{T} X+X U A^{T} U^{T}\right) X \preceq 0 .
$$

Then

$$
\begin{aligned}
& X U U^{T}\left(U A U^{T} X+X U A^{T} U^{T}\right) U U^{T} X \preceq 0 \\
& \Rightarrow X U\left(A U^{T} X U+U^{T} X U A^{T}\right) U^{T} X \preceq 0 \\
& \Rightarrow U^{T} X U\left(A U^{T} X U+U^{T} X U A^{T}\right) U^{T} X U \preceq 0 .
\end{aligned}
$$

Taking $Y=U^{T} X U$, the above equation becomes,

$$
Y\left(A Y+Y A^{T}\right) Y \preceq 0
$$

with $0 \preceq Y \in S^{n}$. Now, by the P_{2}^{\prime}-property of L_{A} we must have $Y=0$, which implies that $X=0$.
Remark 3.1. The inheritance of the P_{2}^{\prime}-property for S_{A} and M_{A} to $S_{U A U^{T}}$ and $M_{U A U^{T}}$ for any orthogonal matrix U can be proved similarly.

Theorem 3.3. Let $A \in \mathbb{R}^{n \times n}$. Then the following are equivalent.
(i) L_{A} has the P_{2}-property.
(ii) L_{A} has the P_{2}^{\prime}-property.

Proof. (i) \Rightarrow (ii) is obvious. Now, let us assume that L_{A} has the P_{2}^{\prime}-property and claim that A is positive definite which is equivalent to saying L_{A} has the P_{2}-property (Theorem 3.1). To prove A is positive
definite, because of Lemmas 1.2 and 3.2 it is enough to show that every diagonal entry of A is positive. Suppose $a_{11} \leqslant 0$.

$$
\begin{aligned}
\text { Then take } X & =\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \text {. Now, } \\
X A X & =\left(\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)=X A X X=X X A^{T} X \\
& \Rightarrow X L_{A}(X) X=X\left(A X+X A^{T}\right) X=\left(\begin{array}{cccc}
2 a_{11} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \preceq 0 .
\end{aligned}
$$

Now, by P_{2}^{\prime}-property X must be zero. Thus, a_{11} cannot be non-positive. So, A is positive definite.

4. The multiplicative transformation $\boldsymbol{M}_{\boldsymbol{A}}$

Now, we establish the equivalence of P_{2}^{\prime}-property and the P_{2}-property for the multiplicative transformation M_{A}. The following result in the form given below is available in the thesis of Sampangi Raman [18]. But originally the equivalence of (i) and (ii) was proved by Gowda et al. [13, Corollary 6]. The equivalence of (i), (iii), (iv), and (v) is proved in Bhimasankaram et al. [4, Theorem 17].

Theorem 4.1 [18]. Let $A \in \mathbb{R}^{n \times n}$. Then, for the double-sided multiplicative transformation M_{A} the following are equivalent:
(i) A is positive definite or negative definite.
(ii) M_{A} has the P_{2}-property.
(iii) M_{A} has the GUS-property.
(iv) M_{A} has the P-property.
(v) M_{A} has the R_{0}-property.

Theorem 4.2. Let $A \in \mathbb{R}^{n \times n}$. Then, for the double-sided multiplicative transformation M_{A} the following are equivalent:
(i) M_{A} has the P_{2}-property.
(ii) M_{A} has the P_{2}^{\prime}-property.

Proof. (i) \Rightarrow (ii) Let M_{A} have the P_{2}-property. By Theorem 4.1, A is positive definite(or $-A$ is positive definite). Assume that $X \succeq 0$ with $X M_{A}(X) X=X A X A^{T} X \preceq 0$. But $X A X A^{T} X \succeq 0$. This implies that $\operatorname{tr}\left(X A X A^{T} X\right)=\operatorname{tr}\left(A X A^{T} X X\right) \leqslant 0$. That is, $A X A^{T} X X=0 \Rightarrow X A^{T} X X=0$. Now, premultiplying by X we get $X X A^{T} X X=0$. This yields $X X=0$ and $X=0$. Thus, M_{A} has the P_{2}^{\prime}-property.
(ii) \Rightarrow (i) Let M_{A} have the P_{2}^{\prime}-property. Then by Remark $2.3, M_{A}$ has the R_{0}-property. Now, the result follows from Theorem 4.1.

Remark 4.1. In [1], Balaji and Parthasarathy prove that Q and P-properties are equivalent for the multiplicative transformations M_{A}, provided $A \in \mathbb{R}^{n \times n}$ is normal. So, if $A \in \mathbb{R}^{n \times n}$ is normal and M_{A} has the P_{2}^{\prime}-property then M_{A} has the P-property. Further, Sampangi Raman [18] proves that Q and P properties are equivalent when $A \in \mathbb{R}^{2 \times 2}$, that is, whenever $A \in \mathbb{R}^{2 \times 2}$ with P_{2}^{\prime}-property then M_{A} has the P-property. Recently for M_{A} with $A \in \mathbb{R}^{n \times n}$, Balaji (oral communication) has proved that P and Q-properties are equivalent.

Remark 4.2. We know from Gowda and Song [10], that $P_{2} \Rightarrow$ GUS for any linear transformations. Hence we can deduce that for L_{A} and $M_{A}, P_{2}^{\prime} \Rightarrow G U S$. But in general $P_{2}^{\prime} \Rightarrow G U S$, need not hold, see Remark 2.1.

In the following theorem we will prove that the Lipschitzian property implies the P_{2}^{\prime}-property for the transformation M_{A}.

Theorem 4.3. Let $A \in \mathbb{R}^{n \times n}$ and the corresponding M_{A} be a Lipschitzian map. Then
(i) M_{A} has the R_{0}-property.
(ii) A is positive definite or negative definite.
(iii) M_{A} has the P_{2}-property.
(iv) M_{A} has the P_{2}^{\prime}-property.

Proof. We show (i), assuming that M_{A} has the Lipschitzian property. Note that $\operatorname{SDLCP}\left(M_{A}, Q\right)$ has a solution namely the zero solution for all $Q \in S_{+}^{n}$. If M_{A} does not have the R_{0}-property then there exists a nonzero $X_{0} \succeq 0$ such that $A X_{0} A^{T} \succeq 0$ and $X_{0} A X_{0} A^{T}=0$. In fact $\lambda X_{0} \in \operatorname{SOL}\left(M_{A}, 0\right)$ for all $\lambda \geqslant 0$. Now, if $X \succeq 0, M_{A}(X)+I \succeq 0$ and $X\left(M_{A}(X)+I\right)=\left(M_{A}(X)+I\right) X=0$, we have $X M_{A}(X)=$ $M_{A}(X) X=-X^{2} \preceq 0$. This yields that $X=0$. Thus $\operatorname{SOL}\left(M_{A}, I\right)=\{0\}$. Whereas $\operatorname{SOL}\left(M_{A}, 0\right)$ is an unbounded set. This will contradict the Lipschitzian property of M_{A}. Thus, M_{A} has the R_{0}-property. Now, (ii) and (iii) follows from Theorem 4.1.

Remark 4.3. The above result brings us to the following converse question. If A is positive definite or negative definite, does it follow that M_{A} has the Lipschitzian property? The answer to the above question is yes if $A \in S^{n}$. In this case M_{A} is strongly monotone and consequently M_{A} has the Lipschitzian property. Now, one can also ask whether there is an example where M_{A} has the Lipschitzian property, that does not have the strong-monotonicity property?

One can see the following sharper result for the transformation M_{A}.
Theorem 4.4. Let $A \in \mathbb{R}^{n \times n}$. Then the following conditions are equivalent.
(i) A is positive definite or negative definite.
(ii) $X \succeq 0, X M_{A}(X) \preceq 0 \Rightarrow X=0$.
(iii) $X \succeq 0, \operatorname{tr}\left(X M_{A}(X)\right) \leq 0 \Rightarrow X=0$.

Proof. The implication (i) \Rightarrow (ii) is known, for A positive definite implies that M_{A} has the P-property; see [4]. Let us see the proof of (ii) \Rightarrow (iii). Since X and $M_{A}(X)$ are both symmetric positive semidefinite matrices, $\operatorname{tr}\left(X M_{A}(X)\right)$ cannot be negative. That says $\operatorname{tr}\left(X M_{A}(X)\right)=0$ and hence $X M_{A}(X)=0$. This yields $X=0$ from (ii). Now, we will prove that (iii) \Rightarrow (i). Assume (iii). Suppose A is neither positive definite or negative definite, then there exists a nonzero x such that $x^{t} A x=0$ or $X_{0} A X_{0}=0$ or $X_{0} A X_{0} A^{T}=0$, where $X_{0}=x x^{t}$. This X_{0} is nonzero and positive semidefinite. But $\operatorname{tr}\left(X_{0} M_{A}\left(X_{0}\right)\right)=\operatorname{tr}\left(X_{0} A X_{0} A^{T}\right)=0$, which is a contradiction. Hence the result.

In general, statement(ii) need not imply (iii). The following example illustrates the above statement.

Example 4.1. Let $A=\left(\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right)$. Let $X_{t}=\left(\begin{array}{ll}1 & 0 \\ 0 & t\end{array}\right)$. Then $R_{A}\left(X_{t}\right)=\left(\begin{array}{cc}1-3 t & 0 \\ 0 & t\end{array}\right)$ and $\operatorname{tr}\left(X_{t} R_{A}\left(X_{t}\right)\right)=$ $1+t^{2}-3$ t. Then $\operatorname{tr}\left(X_{t} R_{A}\left(X_{t}\right)\right)<0$ at $t=\frac{1}{2}$. In other words R_{A} has P-property but statement (iii) of Theorem 4.4 does not hold good.

5. The Stein transformation S_{A}

Theorem 5.1. Let A be normal. Then for S_{A}, P_{2}^{\prime}-property is equivalent to P_{2}-property.
Proof. Note P_{2}^{\prime}-property implies Q-property for S_{A}, refer Theorem 2.3. Since A is normal, S_{A} has strong monotonicity property by a result of Gowda et al. [9]. This implies S_{A} has P_{2}-property, from a result due to Parthasarathy et al. [17].

Remark 5.1. If A is not normal, for S_{A} we do not know whether $P_{2}^{\prime} \Rightarrow P_{2}$. It is an open problem.

6. Concluding remarks

We have shown in this paper the new property P_{2}^{\prime} is equivalent to P_{2}-property for Lyapunov, Multiplicative and in some special cases for Stein transformations. We have also given the relationship between P_{2}^{\prime}-property, Q-property and P-property. Examples are given to show the sharpness of the results that are proved. We end the paper with the following conjecture:

Gowda et al. in [7], introduces Z-transformations in the SDLCP setting, based on the Z-matrices in LCP. They extend many properties of the Z-matrices to Z-transformations. A linear transformation $L: S^{n} \rightarrow S^{n}$ is said to have the Z-property (or called a Z-transformation) if

$$
\left[X \in S_{+}^{n}, Y \in S_{+}^{n}, \text { and }\langle X, Y\rangle=0\right] \Rightarrow\langle L(X), Y\rangle \leqslant 0 .
$$

The Lyapunov and Stein transformations are examples of Z-transformations.
If L is a linear Z-transformation from $S^{n} \rightarrow S^{n}$ with P_{2}^{\prime}-property then L has the P_{2}-property. If not, then L must have at least P-property.

Acknowledgments

The first author thanks the Council of Scientific and Industrial Research, India for their financial support. The second author thanks the Indian National Science Academy for the financial support received from Senior Scientist Scheme. The authors are grateful to Prof M. Seetharama Gowda of University of Maryland, Baltimore County and Prof. Roman Sznajder, Bowie State University, Maryland for their comments and suggestions which improved the presentation and quality of the article. We also express our special thanks to Prof. G. Ravindran of Indian Statistical Institute, Chennai for useful discussions. The authors wish to thank the referees and an editor for their suggestions and comments on an earlier version of the manuscript.

References

[1] R. Balaji, T. Parthasarathy, The Q-property of a multiplicative transformation in semidefinite linear complementarity problems, Electron. J. Linear Algebra 16 (2007) 419-428.
[2] R. Balaji, T. Parthasarathy, D. Sampangi Raman, V. Vetrivel, On the Lipschitz continuity of the solution map in semidefinite linear complementarity problems, Math. Oper. Res. 30 (2) (2005) 462-471.
[3] A. Berman, R.J. Plemmons, Non-negative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[4] P. Bhimasankaram, A.L.N. Murthy, G.S.R. Murthy, T. Parthasarathy, Complementarity problems and positive definite matrices, Research Report, Indian Statistical Institute, Street No. 8, Habshiguda, Hyderabad 500 007, India, 2000 (revised 27.06.01).
[5] R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complimentarity Problem, Academic Press, Boston, 1992.
[6] R. Bellman, Introduction to Matrix Analysis, SIAM, Philadelphia, 1995.
[7] M.S. Gowda, J. Tao, Z-transformations on proper and symmetric cones, Math. Program. Ser. B 117 (1-2) (2009) 195-221.
[8] M.S. Gowda, T. Parthasarathy, Complementarity forms of Theorems of Lyapunov and Stein, and related results, Linear Algebra Appl. 320 (2000) 131-144.
[9] M.S. Gowda, Y. Song, On semidefinite linear complementarity problems, Math. Prog., Series A 88 (2000) 575-587.
[10] M.S. Gowda, Y. Song, Errata: On semidefinite linear complementarity problems, Math. Prog., Series A 91 (2001) 199-200.
[11] M.S Gowda, Y. Song, Semidefinite relaxations of linear complementarity problems, Research Report, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, 2002.
[12] M.S. Gowda, Y. Song, Some new results for the semidefinite linear complementarity problems, SIMAX 24 (2002) 25-39.
[13] M.S. Gowda, Y. Song, G. Ravindran, Some interconnections between strong monotonicity, GUS and P-properties in semidefinite linear complementarity problems, Linear Algebra Appl. 370 (2003) 355-368.
[14] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[15] S. Karamardian, An existence theorem for the complementarity problem, J. Optim. Theory Appl. 19 (1976) 227-232.
[16] M. Kojima, S. Shindoh, S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problems, SIAM J. Optim. 7 (1997) 86-125.
[17] T. Parthasarathy, D. Sampangiraman, B. Sriparna, Relationship between strong monotonicity property, P_{2}-property and the GUS-property in semidefinite linear complementarity problems, Math. Oper. Res. 27 (2) (2002) 326-331.
[18] D. Sampangi Raman, Some Contributions to Semidefinite Linear Complementarity Problem, Ph.D. Thesis, Indian Statistical Institute, Calcutta, 2003.
[19] M. Shida, S. Shindoh, M. Kojima, Existence and uniqueness of search directions in interior-point algorithms for the SDP and the monotone SDLCP, SIAM J. Optim. 8 (2) (1998) 387-396.

[^0]: * Corresponding author.

 E-mail addresses: chandru1782@gmail.com (A. Chandrashekaran), pacha14@yahoo.com (T. Parthasarathy), vetri@iitm.ac.in (V. Vetrivel).

