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show that if a linear transformation L onV has the Lipschitzian prop-

erty and the linear complementarity problem LCP(L, q) over K has

a solution for every invertible q ∈ V , then 〈L(c), c〉 > 0 for all

primitive idempotents c in V . We show that the converse holds for

Lyapunov-like transformations, Stein transformations and quadratic

representations. We also show that the Lipschitzian Q-property of

the relaxation transformation RA on V implies that A is a P-matrix.
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1. Introduction

Let (V, ◦, 〈·, ·〉) be a Euclidean Jordan algebra, and K = {x ◦ x : x ∈ V} be the set of squares in
V . Then K is a symmetric cone [7]. Given a linear transformation L : V → V and q ∈ V , the linear

complementarity problem, LCP(L, q), is to find a vector x ∈ V such that

x ∈ K, L(x) + q ∈ K, and 〈x, L(x) + q〉 = 0.

This problem is a particular case of a variational inequality problem [6], and it includes the standard
linear complementarity problem [5] and the semidefinite linear complementarity problem [9]. For
applications of theseproblems inoptimization, game theory, economics, etc., see [5,6]. A basic problem
in LCP(L, q) is to findnecessary and sufficient conditions on L so that for all q ∈ V , LCP(L, q) has a unique
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solution (that is, L has the GUS-property). A related problem is to study the Lipschitzian behavior of
the solution map q → SOL(L, q), where SOL(L, q) is the solution set of LCP(L, q).

When V = R
n with the usual inner product and Jordan product x◦y := x ∗ y (the componentwise

product of x and y), LCP(L, q) reduces to the standard linear complementarity problem LCP(M, q) [5]. In
this setting, awell known characterization is thatM has the GUS-property if and only ifM is a P-matrix
(whichmeans that all principal minors ofM are positive) [5]. Mangasarian and Shiau [15] showed that
if M has the GUS-property, then M is a Lipschitzian matrix. In [8], Gowda gave an alternate proof and
at the same time extended their result. Pang (see [8]) conjectured that ifM is a Lipschitzianmatrix and
LCP(M, q) has a solution for all q ∈ R

n (that is,M is a Q-matrix), thenM is a P-matrix. This conjecture
was proved affirmatively by Murthy et al. [16].

If V = Sn (the set of all real symmetric n × n matrices) with the trace inner product and Jordan
productX◦Y := 1

2
(XY+YX), then LCP(L, q) reduces to the semidefinite linear complementarity problem

SDLCP(L,Q ) [9]. Gowda and Song [9] extendedmany concepts in LCP(M, q) such as P-matrix,Q-matrix
and theGUS-property to SDLCP(L,Q ).Motivatedby the significanceof Lipschitzianmatrix in LCP(M, q),
Balaji et al. [3] studied the Lipschitzian property in SDLCP(L,Q ). They showed that, unlike in the stan-
dard LCP, the GUS-property need not imply the Lipschitzian property. They also proved that if L on Sn

has the Lipschitzian property, then L has the GUS-property under the assumption that L is monotone.
For a real n × n matrix A, consider the Lyapunov transformation LA, the Stein transformation SA,

and the multiplication transformationMA defined on Sn respectively by

LA(X) = AX + XAT , SA(X) = X − AXAT , and MA(X) = AXAT .

These transformations have been extensively studied, and are related to dynamical systems, see [9,10].
The following results have been proved in [3].

(i) LA has the Lipschitzian Q-property if and only if LA is strongly monotone which implies the
GUS-property.

(ii) If SA has the Lipschitzian Q-property, then I − A is positive definite.
(iii) When A is symmetric,MA has the Lipschitzian property if and only ifMA is strongly monotone.

When A is normal, SA has the Lipschitzian Q-property if and only if SA is strongly monotone, see [10].
Gowda et al. [13] extended several concepts from standard and semidefinite LCPs to the setting of

symmetric cone LCPs. They showed that if L has the Lipschitzian GUS-property, then L has the positive
principal minor property. As a generalization of this result, Balaji [2] proved that if L on V has the
Lipschitzian Q-property, then L has the positive principal minor property. This also extends a result
in LCP(M, q) which was proved by Murthy et al. [16, Theorem 4]. However, it is not known if the
Lipschitzian Q-property in V implies the GUS-property.

In this paper, we are concernedwith the Lipschitzian property of linear transformations on V . Balaji
[1] has shown that if L on Sn has the Lipschitzian Q-property, then (i, i)-entry of L(Ei) is positive for
all i = 1, 2, . . . , n where Ei is the diagonal matrix with one in the (i, i)-entry and zero elsewhere.
In Section 3, we generalize the above result for a linear transformation on Euclidean Jordan algebras.
We show that if L on V has the Lipschitzian property and LCP(L, q) has a solution for every invertible
element q in V , then 〈L(c), c〉 > 0 for all primitive idempotents c in V . We show by an example that
the converse need not be true. However, we obtain the equivalence for Lyapunov-like transformations,
Stein transformations and quadratic representations which generalizes some of the results in [3].
Further, we prove that if the relaxation transformation RA has the Lipschitzian Q-property in V , then
A is a P-matrix. In particular, we study the Lipschitzian Q-property of RA in the space of Sn and Ln.

2. Preliminaries

2.1. Euclidean Jordan algebras

In this section, we recall some basic concepts and results from Euclidean Jordan algebras. For more
details, we refer to [7,13].
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A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉), where (V, 〈·, ·〉) is a finite dimensional inner
product space over R and (x, y) �→ x ◦ y : V × V → V is a bilinear mapping satisfying the following
conditions:

(a) x ◦ y = y ◦ x for all x, y ∈ V ,
(b) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V , where x2 := x ◦ x, and
(c) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V .

In V , the set of squares K = {x ◦ x : x ∈ V} is a symmetric cone [7]. We write y � 0 if y ∈ K, and
y � 0 when −y � 0.

Theorem 2.1 [13]. For x, y ∈ V, the following conditions are equivalent:

(i) x � 0, y � 0, and 〈x, y〉 = 0.
(ii) x � 0, y � 0, and x ◦ y = 0.

The algebra Ln: Consider R
n (n > 1) with the usual inner product. Let x =

⎛

⎝

x0

x

⎞

⎠ ∈ R
n, where

x0 ∈ R and x ∈ R
n−1. Define the Jordan product x ◦ y in R

n by

x ◦ y =

⎛

⎝

x0

x

⎞

⎠ ◦

⎛

⎝

y0

y

⎞

⎠ :=

⎛

⎝

〈x, y〉

x0y + y0x

⎞

⎠ .

We denote this Euclidean Jordan algebra (Rn, ◦, 〈., .〉) by Ln, and its cone of squares by Ln
+. Ln

+ is
called the Lorentz cone (or the second order cone) and is given by Ln

+ = {x : x0 � ‖x‖}.

For x ∈ V , we define m(x) := min {k > 0 : {e, x, . . . , xk} is linearly dependent} and rank of V by
r = max{m(x) : x ∈ V}. An element c ∈ V is an idempotent if c2 = c; it is primitive idempotent if it is
nonzero and cannot be written as a sum of two nonzero idempotents. A finite set {e1, e2, . . . , em} of

primitive idempotents in V is a Jordan frame if ei ◦ ej = 0 for i 	= j, and
∑m

i=1
ei = e, where e is the

identity element in V satisfies y ◦ e = y for all y ∈ V .

Theorem 2.2 (The spectral decomposition theorem [7]). Let V be a Euclidean Jordan algebra with rank

r. Then for every x ∈ V, there exists a Jordan frame {e1, e2, . . . , er} and real numbers λ1, λ2, . . . , λr such

that x = λ1e1 + λ2e2 + · · · + λrer . The numbers λi (with their multiplicities) are uniquely determined

by x and are called the eigenvalues of x.

The expression λ1e1 +λ2e2 +· · ·+λrer is the spectral decomposition of x. The set of all eigenvalues
of x is called the spectrum of x and is denoted by σ(x). We say that x is invertible if every eigenvalue of
x is nonzero.

For x ∈ V , we define the corresponding Lyapunov transformation Lx : V → V by Lx(z) = x ◦ z. We
say that elements x and y operator commute if LxLy = LyLx. It is known that x and y operator commute
if and only if x and y have their spectral decompositions with respect to a common Jordan frame [7].

Peirce decomposition: Let {e1, e2, . . . , er} be a fixed Jordan frame in V . For i, j ∈ {1, 2, . . . , r}, consider
the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = Rei

and when i 	= j,

Vij := {x ∈ V : x ◦ ei =
1

2
x = x ◦ ej}.
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Theorem 2.3 [7]. The space V is the orthogonal direct sum of the spaces Vij(i � j). Furthermore, (i)

Vij ◦ Vij ⊂ Vii + Vjj, (ii) Vij ◦ Vjk ⊂ Vik if i 	= k, and (iii) Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given any Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =
r

∑

i=1

xiei +
∑

i<j

xij,

where xi ∈ R and xij ∈ Vij.

Quadratic representation: Given any element a in V , the quadratic representation of a is the linear map
Pa : V → V defined by Pa(x) = 2a ◦ (a ◦ x) − a2 ◦ x.

Principal subtransformations:Given a Jordan frame {e1, e2, . . . , er} in V, we define V (l) := V(e1 + e2 +

· · · + el, l) := {x ∈ V : x ◦ (e1 + e2 + · · · + el) = x} for 1 � l � r. Then V (l) (called the eigenspace

of e1 + e2 + · · · + el) is a subalgebra of V with rank l [7]. Let P(l) denote the orthogonal projection

from V onto V (l). For a linear transformation L : V → V , let L{e1,e2,...,el} := P(l)L : V (l) → V (l). We
call L{e1,e2,...,el} a principal subtransformation of L. The determinant of this transformation is called a
principal minor of L. If all the principal minors of L are positive, then we say that L has the positive

principal minor property.

2.2. Linear complementarity concepts

Given a linear transformation L : V → V , we say that L is/has

(a) strongly monotone if 〈L(x), x〉 > 0 for all 0 	= x ∈ V ;
(b) strictly copositive on K if 〈L(x), x〉 > 0 for all 0 	= x ∈ K;
(c) the GUS (globally uniquely solvable)-property if LCP(L, q) has a unique solution for all q ∈ V ;
(d) the GUS-property on K if LCP(L, q) has a unique solution for all q ∈ K;
(e) the P-property if

[x and L(x) operator commute and x ◦ L(x) � 0] ⇒ x = 0;

(f) the Q-property if LCP(L, q) has a solution for all q ∈ V ;
(g) the Lipschitzian property if there exists a constant C > 0 such that

SOL(L, q) ⊆ SOL(L, q′) + C‖q − q′‖B

for all q, q′ ∈ V satisfying SOL(L, q) 	= ∅ and SOL(L, q′) 	= ∅. Here B is the closed unit ball in V ,
and SOL(L, q) is the set of all solutions of LCP(L, q).

(h) the Lipschitzian Q-property if L has the Lipschitzian and Q-property;
(i) a Z-transformation if x, y ∈ K , and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 � 0;
(j) a Lyapunov-like transformation if

x, y ∈ K, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0.

Various interconnections between the above properties have been studied in [2,11–14,17–19]. In
particular, for the implications (a) ⇒ (c) ⇒ (e) ⇒ (f) and (b) ⇒ (d) ⇒ (f), see [13,18].

3. The Lipschitzian Q -property

Balaji et al. [3, Theorem 3.1] showed that if a linear transformation L on Sn has the Lipschitzian
property and SOL(L, I) = {0}, then (i, i)-entry of L(Ei) is positive (equivalently, 〈L(Ei), Ei〉 > 0) for all
i = 1, 2, . . . , n.Here I is the identity matrix, and Ei is the symmetric matrix of order nwith one in the
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(i, i)-entry and zero elsewhere, which is a primitive idempotent in Sn. This result also holds if L has
the Lipschitzian Q-property [1, Theorem 3.2.1]. We extend these results to Euclidean Jordan algebras.

Theorem 3.1. Suppose L : V → V has the Lipschitzian property and SOL(L, q) is nonempty for every

invertible element q in V. Then 〈L(c), c〉 > 0 for all primitive idempotents c in V.

Proof. Let c be a primitive idempotent in V . When the r (= rank of V) is one, V = Rc and any
solution x of LCP(L, −c) is a positive multiple of c, say, x = λc with λ > 0. From complementarity,
L(x) = c, and so c = λL(c). This implies 〈L(c), c〉 > 0. Now suppose that r > 1. Then by the spectral
decomposition of e − c, there exists a Jordan frame {e1 = c, e2, . . . , er} in V . For each k ∈ N, let
pk = −e1+ke2+· · ·+ker and qk = ke2+ke3+· · ·+ker . Then pk is invertible in V . Since qk � 0, we
have 0 ∈ SOL(L, qk). By our assumption, there exists xk ∈ SOL(L, pk) such that 0 ∈ xk + C‖qk − pk‖B
for all k ∈ N, where C > 0 and B is the closed unit ball in V . Since ‖qk − pk‖ = ‖e1‖, we have
‖xk‖ � C‖e1‖. This means that the sequence {xk} is bounded. Without loss of generality, assume that
xk → x.

Let

xk =
r

∑

i=1

α
(k)
i ei +

∑

i<j

x
(k)
ij ,

L(xk) =
r

∑

i=1

β
(k)
i ei +

∑

i<j

y
(k)
ij and

x =
r

∑

i=1

αiei +
∑

i<j

xij

be the Peirce decomposition of xk, L(xk) and xwith respect to the Jordan frame {e1, e2, . . . , er} respec-
tively.We claim that αi = 0 for i = 2, . . . , r. Since xk ∈ SOL(L, pk), we have 〈xk, L(xk)+pk〉 = 0. This

implies that
〈

α
(k)
1 e1,

(

β
(k)
1 − 1

)

e1

〉

+
∑r

i=2

〈

α
(k)
i ei,

(

β
(k)
i + k

)

ei

〉

+
∑

i<j

〈

x
(k)
ij , y

(k)
ij

〉

= 0, and hence

∑r

i=2

〈

α
(k)
i ei, ei

〉

= −
1

k

[

〈

α
(k)
1 e1,

(

β
(k)
1 − 1

)

e1

〉

+
∑r

i=2

〈

α
(k)
i ei, β

(k)
i ei

〉

+
∑

i<j

〈

x
(k)
ij , y

(k)
ij

〉

]

. Since

xk → x, α
(k)
i → αi and x

(k)
ij → xij. Because {L(xk)} converges,

{

β
(k)
i ei

}

and
{

y
(k)
ij

}

converge. Letting

k → ∞ in the above expression, we have
∑r

i=2
〈αiei, ei〉 = 0. Now xk � 0 implies that α

(k)
i � 0

for all k and hence αi � 0. Therefore αi = 0 for i = 2, . . . , r. From Proposition 3.2 in [11], we have
x = α1e1 ∈ V11 ∩ K. Since K is self-dual and xk ∈ SOL(L, pk), 〈L(xk) + pk, e1〉 � 0. This implies
that 〈L(xk), e1〉 � ||e1||

2. Taking limits and observing x = α1e1, we get α1〈L(e1), e1〉 � ||e1||
2 > 0.

Thus, 〈L(c), c〉 > 0. �

Corollary 3.1. Let L : V → V be a linear transformation. Under each of the following conditions, the

Lipschitzian property of L implies 〈L(c), c〉 > 0 for all primitive idempotents c in V.

(i) L has the Q-property.

(ii) SOL(L, q) = {0} for some q ∈ int(K).

(iii) L is a cone invariant transformation; i.e., L(K) ⊆ K.

Proof. Assume that L has the Lipschitzian property.
If (i) holds, then the result follows from the above theorem.
Suppose that condition (ii) holds. Then by Lemma 5 in [2], L has the GUS property on K . This implies

that L has the Q-property and hence condition (i) holds. Thus, we have 〈L(c), c〉 > 0 for all primitive
idempotents c ∈ V .
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Now, suppose that condition (iii) holds. We claim that SOL(L, e) = {0}, where e ∈ int(K) is the
identity element of V . Clearly, 0 ∈ SOL(L, e). Let x ∈ SOL(L, e). Then x � 0 and 〈x, L(x)+ e〉 = 0. Since
L(K) ⊆ K , 〈x, L(x)〉 � 0. This implies that 〈x, e〉 = 0. By Theorem 2.1, we have x ◦ e = x = 0. Hence
condition (ii) holds. This completes the proof. �

Remark 3.1. If L has the Lipschitzian Q-property, then L has the positive principal minor property
[2, Theorem 5] which implies that 〈L(c), c〉 > 0 for all primitive idempotents c in V [17, Lemma 3.1].
One can ask whether the conditions of Theorem 3.1 imply the Lipschitzian Q-property or the positive
principal minor property. We do not have an answer for this question.

As an illustration of Theorem 3.1, we provide the following examples. The proof of these results are
modifications of the proof of Example 3.3 in [18] and Corollary 4.1 in [19].

Example 3.1. Let A = [aij] ∈ R
n×n. Consider the Lyapunov transformation LA and the Stein transfor-

mation SA. Then

(i) 〈LA(c), c〉 > 0 for all primitive idempotents c in Sn if and only if A is positive definite.
(ii) 〈SA(c), c〉 > 0 for all primitive idempotents c in Sn if and only if I ± A are positive definite,

where I is the identity matrix.

Example 3.2. WhenV = L
n, 〈L(c), c〉 > 0 for all primitive idempotents c inV if and only if 〈L(z), z〉 >

0 for all nonzero z in the boundary of Ln
+.

The followingexamples showthatboth theconditions in thehypothesisofTheorem3.1areessential.

Example 3.3. Consider the Euclidean Jordan algebra R
2 with the usual inner product and Jordan

product x ◦ y = x ∗ y. Let M =

⎡

⎣

−1 −2

−1 −1

⎤

⎦. Then LCP(M, q) has no solution for all −q ∈ int(R2
+),

which are invertible elements in R
2. We see that every principal minor of M is negative. Since all the

entries ofM are negative,M has the Lipschitzian property [8, Theorem 14]. But, 〈Me1, e1〉 = −1 � 0,

where e1 =

⎛

⎝

1

0

⎞

⎠ is a primitive idempotent in R
2.

Example 3.4. Let A =

⎡

⎣

−1 2

−2 2

⎤

⎦. Consider the Lyapunov transformation LA on S2. Since A is positive

stable, LA has the Q-property [9, Theorem 5]. As A is not positive definite, LA does not have the Lip-
schitzian property [3, Theorem 3.3]. Also by Example 3.1, we have 〈L(c), c〉 � 0 for some primitive
idempotent c in S2.

The following example shows that the converse of the Theorem 3.1 is not true even for self-adjoint
cone invariant transformation.

Example 3.5. Let L : L2 → L
2 be defined by L

⎛

⎝

⎛

⎝

x0

x1

⎞

⎠

⎞

⎠ =

⎛

⎝

2x0

−x1

⎞

⎠ .We see that L is induced on R
2

by the matrix

⎡

⎣

2 0

0 −1

⎤

⎦ and L is self-adjoint. It is easy to show that L(L2
+) ⊆ L

2
+. Let z 	= 0 belongs
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to the boundary of L2
+. Then by the spectral decomposition, there exists a Jordan frame {e1, e2} such

that z = λe1, where λ > 0 and e1 = 1
2

⎛

⎝

1

u

⎞

⎠ with u ∈ R and |u| = 1 [17, Lemma 4.1]. Since

〈L(e1), e1〉 = 1
4
, we have 〈L(z), z〉 > 0. By Example 3.2, 〈L(c), c〉 > 0 for all idempotents c in L2.

From Proposition 3.1 in [12], L has theQ-property. Since the determinant of L is not positive, L does not
have the positive principal minor property [13, Example 2.2]. Hence L does not have the Lipschitzian
property [2, Theorem 5].

In spite of the above example, we showbelow that the converse of Theorem 3.1 holds for Lyapunov-
like and Stein transformations on V .

Theorem 3.2. Let L : V → V be a Lyapunov-like transformation. Then the following are equivalent:

(i) L is strongly monotone.

(ii) L has the Lipschitzian Q-property.

(iii) 〈L(c), c〉 > 0 for all primitive idempotents c in V.

Proof. The equivalence of (i) and (ii) follows from Theorem 6 in [2].
(ii) ⇒ (iii): This follows from Corollary 3.1.

(iii) ⇒ (i): Let 0 	= x ∈ V . By the spectral decomposition, x =
∑r

i=1
αiei, where {e1, e2, . . . , er}

is a Jordan frame. Since L is a Lyapunov-like transformation, 〈L(ei), ej〉 = 0 if i 	= j. Therefore,

〈L(x), x〉 =
∑r

i=1
α2
i 〈L(ei), ei〉. Since 〈L(ei), ei〉 > 0 for all i, we have 〈L(x), x〉 > 0. Thus, L is strongly

monotone. �

It was shown in [3, Theorem 3.3] that the Lyapunov transformation LA on Sn is strongly monotone
if and only if LA has the Lipschitzian Q-property (which is equivalent to A is positive definite). Since LA
is a Lyapunov-like transformation on Sn [14], the above result generalizes the Theorem 3.3 in [3].

It has been proved in [3, Theorem 3.2] that the Stein transformation SA on Sn has the Lipschitzian
Q-property implies I−A is positive definite. Further, if A ∈ Sn, then SA has the LipschitzianQ-property
if and only if I ± A are positive definite [4, Theorem 5.1.3]. If A ∈ Sn, we have SA(X) = X − AXA =
(I − PA)(X). We now extend this result to general Euclidean Jordan algebras.

Theorem 3.3. Let a ∈ V. Consider the Stein transformation Sa defined on V by Sa = I − Pa. Then the

following statements are equivalent:

(i) Sa is strongly monotone.

(ii) Sa has the Lipschitzian Q-property.

(iii) 〈Sa(c), c〉 > 0 for all primitive idempotents c in V.

(iv) σ(±a) ⊆ (−1, 1).

Proof. Let a =
∑r

i=1
λiei, where {e1, e2, . . . , er} is a Jordan frame.

The implication (i) ⇒ (ii) follows from Proposition 2.3.11 in [6].
(ii) ⇒ (iii): This follows from Corollary 3.1.
(iii) ⇒ (iv): Suppose that 〈Sa(c), c〉 > 0 for all primitive idempotents c in V . Now, 〈Sa(ei), ei〉 =
‖ei‖

2 −〈Pa(ei), ei〉. Since 〈Sa(ei), ei〉 > 0 and Pa(ei) = λ2
i ei, we have 1−λ2

i > 0 for all i. This implies
that λi ∈ (−1, 1) for all i. Thus, σ(±a) ⊆ (−1, 1).

(iv) ⇒ (i): Suppose that σ(±a) ⊆ (−1, 1). Then 1 − λ2
i > 0 for all i. Let x =

∑r

i=1
βiei, where

βi > 0. Then Pa(x) =
∑r

i=1
λ2
i βiei and hence Sa(x) =

∑r

i=1
(1 − λ2

i )βiei. Thus, there exists a x ∈

int(K) such that Sa(x) ∈ int(K). Since Sa is a Z-transformation and self-adjoint, Sa is stronglymonotone
[14, Corollary 1]. �
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Balaji et al. [3] showed that if A is symmetric, then for themultiplication transformationMA, strong
monotonicity property is equivalent to Lipschitzian property. We see that if A ∈ Sn, then the quadratic
representation PA = MA. Thus, the next result generalizes the Theorem 3.5 in [3].

Theorem 3.4. Let a ∈ V. Then the following are equivalent:

(i) Pa is strongly monotone.

(ii) Pa has the Lipschitzian property.

(iii) 〈Pa(c), c〉 > 0 for all primitive idempotents c in V.

Proof. It is enough to show that (iii) ⇒ (i). Suppose (iii) holds. Since Pa(K) ⊆ K [12, Proposition 6.1],
the condition (iii) is equivalent to SOL(Pa, 0) = {0} [12, Proposition 3.1]. Therefore, by Theorem 6.5 in
[12], we have Pa is strongly monotone. �

The relaxation transformation RA [19]: Let {e1, e2, . . . , er} be a Jordan frame in V and A ∈ Rr×r . We
define RA : V → V as follows.

For any x ∈ V , write the Peirce decomposition x =
∑r

i=1
xiei+

∑

i<j
xij. Then RA(x) =

∑r

i=1
yiei+

∑

i<j
xij, where (y1, y2, . . . , yr)

T = A(x1, x2, . . . , xr)
T .

In [4], it has been shown that for the relaxation transformation RA on Sn with respect to the Jordan
frame {E1, E2, . . . , En}, the Lipschitzian Q-property implies A is a P-matrix. We now generalize this
result to Euclidean Jordan algebras. We need the following lemmas.

Lemma 3.1. Let V be a Euclidean Jordan algebra of rank r and A ∈ R
r×r . If RA has the Q-property in V,

then A is a Q-matrix.

Proof. Let q be a vector in R
r such that qT = (α1, α2, . . . , αr). Take u = α1e1 + · · · + αrer ∈ V .

Since RA has the Q-property, there exists v in SOL(RA, u). Let v =
∑r

i=1
βiei +

∑

i<j
vij be the Peirce

decomposition of v with respect to the Jordan frame {e1, e2, . . . , er}. Then RA(v) =
∑r

i=1
γiei +

∑

i<j
vij, where (γ1, γ2, . . . , γr)

T = A(β1, β2, . . . , βr)
T . Since v ∈ SOL(RA, u), we have βi � 0,

γi +αi � 0 and βi(γi +αi) = 0 for all i. This shows that x ∈ SOL(A, q), where xT = (β1, β2, . . . , βr).
Hence the result. �

Lemma 3.2. If RA has the Lipschitzian property in V, then A is a Lipschitzian matrix.

Proof. Letp, q ∈ R
r withSOL(A, p) 	= ∅andSOL(A, q) 	= ∅.Wenowshowthat ifpT = (α1, α2, . . . , αr)

and qT = (β1, β2, . . . , βr), then SOL(RA, u) 	= ∅ and SOL(RA, v) 	= ∅, where u = α1e1 + · · · + αrer
and v = β1e1 +· · ·+βrer . Let x ∈ SOL(A, p) such that xT = (x1, x2, . . . , xr) and (γ1, γ2, . . . , γr)

T =
A(x1, x2, . . . , xr)

T . Then xi � 0, γi +αi � 0 and xi(γi +αi) = 0 for all i. Takew = x1e1 + · · ·+ xrer .
Then RA(w) = γ1e1 + · · · + γrer , and hence w ∈ SOL(RA, u). Thus, SOL(RA, u) 	= ∅ and SOL(RA, v)
	= ∅. Since RA has the Lipschitzian property, there exists a constant K > 0 such that SOL(RA, u) ⊆
SOL(RA, v) +K‖u − v‖B, where B is a closed unit ball in V . Further, there exists a z ∈ SOL(RA, v)

such that ‖w − z‖ � K‖u − v‖. Let z =
∑r

i=1
yiei +

∑

i<j
zij. Then as in the proof of Lemma

3.1, we have y ∈ SOL(A, q), where yT = (y1, y2, . . . , yr). Now
[

∑r

i=1
(xi − yi)

2
]

min1�j�r‖ej‖
2

�
∑r

i=1
(xi − yi)

2‖ei‖
2

� ‖w − z‖2 and hence ‖x − y‖2min1�j�r‖ej‖ � ‖w − z‖, where ‖.‖2 is the

Euclidean norm in R
r . Also ‖u− v‖2 =

∑r

i=1
(αi − βi)

2‖ei‖
2

�
[

∑r

i=1
(αi − βi)

2
]

max1�k�r‖ek‖
2

which implies that ‖u − v‖ � ‖p − q‖2max1�k�r‖ek‖. Since ‖w − z‖ � K‖u − v‖, we have

‖x − y‖2 � C‖p − q‖2, where C = K
max1�k�r‖ek‖
min1�k�r‖ek‖

. Thus, SOL(A, p) ⊆ SOL(A, q) + C‖p − q‖2B1,

where B1 is the closed unit ball in R
r . This completes the proof. �
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Theorem 3.5. Suppose that RA : V → V has the Lipschitzian Q-property, then A is a P-matrix.

Proof. Assume that RA has the LipschitzianQ-property. Then by Lemmas 3.1 and 3.2,A is a Lipschitzian
Q-matrix. This implies that A is a P-matrix [16, Theorem 4]. �

We below specialize our study of Lipschitzian Q-property of RA on Sn and Ln. Let E be a square
matrix with zero diagonal entries and ones elsewhere. Now we have the following result.

Corollary 3.2. The following statements hold:

(i) When V = L
2, RA has the Lipschitzian Q-property if and only if A is a P-matrix.

(ii) If V = L
n (n � 3) and RA has the Lipschitzian Q-property, then A is a P-matrix and A+ E is strictly

copositive on R2+.
(iii) If V = Sn and RA has the Lipschitzian Q-property, then A is a P-matrix and A+E is strictly copositive

on Rn+.

Proof.

(i) “Only if" part follows from Theorem 3.5.
“If" part: Suppose A is a P-matrix. Then RA has the P-property [19, Proposition 5.1]. Since L2

+ is
polyhedral, P-property implies Lipschitzian Q-property [13, Theorem 23].

(ii) Suppose that RA has the Lipschitzian Q-property on Ln, where n � 3. By Theorem 3.5, it is
enough to show that A + E is strictly copositive on R2+. From Corollary 3.1 and Example 3.2, we
have 〈RA(z), z〉 > 0 for all z 	= 0 on the boundary of Ln

+. This implies that A + E is strictly

copositive on R2+ [17, Proposition 5.2].
(iii) The proof is similar to that of Theorem 5.1 in [19]. �

The following example shows that if A is a Lipschitzian matrix, then RA need not have the Lip-
schitzian property. This also shows that the converse of Theorem 3.5 is not true.

Example 3.6. Let V = S2 or Ln (n � 3) and A =

⎡

⎣

1 −5

0 1

⎤

⎦ . Then A is a P-matrix. Hence A is a

Lipschitzian matrix [15], and RA has the P-property [19]. This implies that RA has the Q-property. But,

A + E =

⎡

⎣

1 −4

1 1

⎤

⎦ is not strictly copositive on R2+, as

〈

(A + E)

⎛

⎝

1

1

⎞

⎠ ,

⎛

⎝

1

1

⎞

⎠

〉

= −1 � 0. Therefore,

by above theorem, RA does not have the Lipschitzian property with respect to any Jordan frame in V .
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