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Helicity in axisymmetric vortex breakdown
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Vortex breakdown phenomena in the axial vortices is an important feature which occurs fre-
quently in geophysical flows (tornadoes and hurricanes) and in engineering flows (flow past delta
wings, Von-Kerman vortex dynamo). We analyze helicity for axisymmetric vortex breakdown and
propose a simplified formulation. For such cases, negative helicity is shown to conform to the vortex
breakdown. A model problem has been analyzed to verify the results. The topology of the vortex
breakdown is governed entirely by helicity density in the vertical plane. Our proposed methodol-
ogy may be regarded as the prototype for identifying and characterize the breakdowns/eye in more
complicated large-scale flows such as tornadoes/hurricanes.

PACS numbers: 47.32.cd, 47.32.Ef

Axial vortices are ubiquitous in engineering and na-
ture. Some examples are flow in a rotating pipe, flow
past delta wings, swirl type combustion chambers, bio-
reactors, day-to-day small scale flows like bathroom sink,
stirring of coffee in a cup, and large scale geophysical
flows such as tornadoes. Axial vortices are prone to a
phenomena called ‘vortex breakdown’, first observed by
Peckham & Atkinson [1] in flow past delta wings. It
is characterized by appearance of one or more stagna-
tion points on or near the axis of the vortex followed
by either a recirculatory bubble or a spiral [2–5]. Ob-
servations as early as in 1787 by Michaud [6] has doc-
umented schematics showing breakdowns in tornadoes
and waterspouts. These breakdowns occur at different
stages of a tornado [7]. In hurricanes the vortex break-
down is referred as ‘eye’, which occurs in their mature
stage. While formation of eye is fundamental to hurri-
canes, little is known about the formation process of the
eye. Above examples emphasize the underlying impor-
tance of identifying and understanding the phenomena
of vortex breakdown.
To study the vortex breakdown phenomena we have

used a model problem that generates the bubble-type
vortex breakdown. The model is the flow inside a circu-
lar cylinder with top rotating lid. The vortex breakdown
is generated inside a circular cylinder with top rotating
lid. This flow exhibits a bubble type vortex breakdown,
which is characterized by the appearance of stagnation
points followed by a recirculatory region along the axis.
Two non-dimensional parameters that govern the flow
are: (i) aspect ratio, Γ = H/R, where, H and R are the
height and radius of the cylinder and (ii) Reynolds num-
ber, Re = ΩR2/ν, where, Ω is the rate at which the lid
is rotated and ν is the kinematic viscosity. By varying
both the parameters it is possible to obtain one, two, and
even three breakdown bubbles. Escudier [3] has provided
a map of the number of breakdown bubbles in Γ − Re
plane. There have been many attempts to understand
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the underlying phenomena and the onset conditions be-
hind the vortex breakdown bubble. Benjamin [8, 9] has
explained vortex breakdown as a hydraulic jump from a
supercritical state to a subcritical state. Escudier [10]
have considered vortex breakdown as a two stage transi-
tion. Wang & Rusak [11] and Shtern & Hussain [12] have
explained vortex breakdown as a fold catastrophe that
occurs in rotating pipe flow. Brown & Lopez[13] have
discussed the conditions under which the vortex break-
down occurs and proposed that generation of negative
azimuthal vorticity is an essential feature of the vortex
breakdown. This paper does not find any exception to
this condition, however, the generation of the negative
azimuthal vorticity is found not to be exclusive to the
vortex breakdown as it is generated in the flow even when
the breakdown does not occur.

In this study we are using helicity density to investigate
the vortex breakdown. Helicity is regarded as one of the
three important variables in three-dimensional flows, the
other two being energy and the enstrophy. It is also has
been used extensively to analyze the stability and the en-
ergy propagation in atmospheric flows [14]. Lilly [15] has
shown that supercell thunderstorms can be categorized
with high helicity.

We have obtained a formulation of helicity simplified
for axisymmetric flows and have applied to vortex break-
down generated by a model problem. Helicity density
is directly related to the local topology of the flow [16]
and represents the orientation of the velocity vector V

and the vorticity vector ω. Possible relation of helicity
with the vortex breakdown was first mentioned briefly by
Moffatt & Tsinober [16]. They argued that vortex break-
down is a result of change in the topology of the flow and
hence, helicity density may be an appropriate parameter
to characterize the breakdown. The fact that the helicity
density changes sign across a separation or reattachment
line, makes it a suitable parameter to predict the loca-
tion of the vortex breakdown by locating the stagnation
points on the axis.

Three-dimensional incompressible Navier-Stokes equa-
tions are solved numerically in cylindrical coordinate sys-
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FIG. 1: Contours of uz in z−plane at z = 0.1 and
iso-surface of uz = 0 for (a) Re = 2200, (b) Re = 2494,

and (c) Re = 2700 at an instant for Γ = 2.5

tem (θ, r, z).

∂V

∂t
+ (V · ∇)V = −∇p+

1

Re
∇2

V (1)

Here, V = 〈uθ, ur, uz〉 is velocity and p is pressure. The
non-dimensionalization is done using R as the length
scale and ΩR as the velocity scale. A finite-difference
method employing fractional-step algorithm [17] is used
to solve the above equations. The boundary conditions
at lower wall and side wall are uθ = ur = uz = 0,
and at upper wall are uθ = r/R, ur = uz = 0. Fully
staggered arrangement of variables has been used to
achieve coupling between the pressure and the veloc-
ity. A grid independent study has been carried out to
find the most suitable grid for the cases that are consid-
ered in this study. The solution for Re = 3400 is sim-
ulated for three different grids which is the highest Re
reported in this paper. The results are checked for con-
sistency with both constant CFL number and constant
time-step (∆t) calculations. Based on these results, a
grid of size (Nθ ×Nr ×Nz : 257× 129× 257) is used for
Γ = 2.5 in this study. The time step for the integration
is ∆t = 10−3.
The flow has been simulated for various aspect ra-

tios but mainly the results for Γ = 2.5 have been dis-
cussed and described in detail. This aspect ratio has
been examined well experimentally ([3, 18]) as well as
computationally ([19–21]). Results for other aspect ra-
tios are presented and discussed as and when required.
All the results presented in this study are in the axisym-
metric regime of the flow. For aspect ratio Γ = 2.5, at
Re = 2200, two steady axisymmetric breakdown bubbles
are obtained [3], see Fig. 1a. There are 4 distinct stagna-
tion points at the axis. The iso-surface of uz = 0 is used
to represent the structure and shape of the breakdown
bubble as was used by Serre & Bontoux [22]. As the
Reynolds number is increased to 2494 both the bubbles
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FIG. 2: Contours of azimuthal vorticity in rz plane for
Γ = 2.5, (a) Re = 1600 and (b) Re = 2200.
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FIG. 3: Variation of helicity density, h, along the axis
(r = 0) for Figs. 2a and 2b.

merge leaving only two stagnation points on the axis as
shown in the Fig. 1b. At Re = 2700 the flow becomes
unsteady but remains axisymmetric and the breakdown
bubble starts moving along the axis periodically this ob-
servation was also reported by [19]. Fig. 1 shows these
transitions in the flow for Γ = 2.5 as Re is increased.
Brown and Lopez [13] have shown that for axisymmetric
vortex breakdowns, the flow away from the breakdown
bubble and the side wall can be assumed inviscid. Un-
der this assumption they have shown that in order to
have the stagnation points on the axis and hence the
breakdown bubble, generation of the negative azimuthal
vorticity is required in the vicinity of the axis. The Fig.
2 shows the contours of azimuthal vorticity for Γ = 2.5.
For Re = 1600 the flow does not have any breakdown
bubble and Fig. 2a shows negative azimuthal vorticity
in the vicinity of the axis. For Re = 2200, which has
two distinct vortex breakdown bubbles , Fig. 2b also
shows negative azimuthal vorticity in the vicinity of the
axis. This indicates that even though negative azimuthal
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vorticity generation is essential to vortex breakdown, its
mere presence does not guarantee the vortex breakdown.
We analyze helicity density of the flow with axisym-

metric vortex breakdown. The helicity density is defined
as, h = V ·ω. Fig. 3 shows variation of h along the axis
of the cylinder for Re = 1600, 2200 for Γ = 2.5. In case
of Re = 1600, since there is no stagnation point on the
axis, the helicity density does not change sign along the
axis. While in the case of Re = 2200, there are four stag-
nation points on the axis and Fig. 3 shows that helicity
changes sign exactly at these four points. It can be seen
in the Fig. 3 that between the stagnation points, where
the breakdown bubbles are present, helicity is negative.
It has been observed that the helicity is negative inside
and in the near vicinity of the breakdown bubbles and is
enveloped by positive helicity. This behaviour of the he-
licity can be easily understood at least at the axis of the
cylinder. The breakdown bubble is a surface where the
circulation of the flow changes the direction as one moves
radially in to the bubble or out of the bubble. Moreover,
at the axis, ur = 0 for the axisymmetric case. The im-
plications of these facts are that there is only axial flow
present at the axis. Apart from this region, the negative
helicity occurs adjacent to the rotating lid. The bulk
clockwise circulation results in an upward flow outside
the breakdown bubble and a counterclockwise circulation
within the breakdown bubble results in a downward flow
within the breakdown bubble at the axis. The evolution
equation of helicity density, h, is,

∂h

∂t
+ uj

∂h

∂xj

=− ωi

∂p

∂xi

+ ωj

∂

∂xj

(
u2

i

2

)

(2)

+
1

Re

(

∂2h

∂x2

j

− 2
∂ui

∂xj

∂ωi

∂xj

)

We integrate the equation 2 in the whole domain. The
second term, after integration, which is simplified near
the bottom and the top plate is,

∫

S

n̂ · (−hV) dS ≈

∫

S

uzhdS (3)

The term that shows that the helicity that is generated
at the top rotating plate is injected in the bulk flow by
the axial component of the velocity. In other words, the
equation 3 shows that the helicity is transported by uz

in the flow from the top plate. This helicity gets concen-
trated in the vicinity of the axis where the breakdown
occurs.
The role of helicity in relation with the vortex break-

down can be understood with the help of the axisymmet-
ric flows. For axisymmetric flows the formulation of the
helicity can be simplified as follows. The flow can be as-
sumed as two-dimensional three component (2D3C) flow
where the θ component of the velocity can be thought
of as a passive component in a two-dimensional rz-plane
flow [23]. Full three-dimensional flow in such a case can
be represented as,

u = V
2D + φ (4)

(a) (b) (c)

FIG. 4: Comparison of helicity in rz plane with the
breakdown bubbles for (a) Re = 2200, Γ = 2.5, (b) and
(c) Re = 3000, Γ = 2.5 at two different instants. In each
figure, the left half (blue) shows the breakdown bubble
defined by the contours of uz = 0 and right half (red)
shows the negative contours of helicity in rz plane.

Here, V2D is the two-dimensional part and φ is the pas-
sive part given by,

V
2D = 〈0, ur, uz〉 ;φ = 〈uθ, 0, 0〉 (5)

Evolution of these two velocity components is governed
by the following equations,

∂V2D

∂t
+
(
V

2D · ∇
)
V

2D = −∇p+ ν∇2
V

2D (6)

∂φ

∂t
+
(
V

2D · ∇
)
φ = ν∇2φ (7)

Vorticity fields associated with these velocities are ω and
ωφ, which are found as follows,

ω =

〈
∂ur

∂z
−

∂uz

∂r
, 0, 0

〉

;ωφ =

〈

0,−
∂uθ

∂z
,
uθ

r
+

∂uθ

∂r

〉

(8)
The helicity, hr,z in the rz plane, which is associated with
V

2D is then given by,

hr,z = V
2D · ωφ = −ur

∂uθ

∂z
︸ ︷︷ ︸

I

+
1

r
uzuθ + uz

∂uθ

∂r
︸ ︷︷ ︸

II

(9)

Similarly, out of the plane helicity, hθ, is given by,

hθ = uθe
θ · ω = uθ

(
∂ur

∂z
−

∂uz

∂r

)

(10)

For an axisymmetric case, it is the helicity in the rz plane
that determines the flow topology completely as it rep-
resents the alignment of V2D vector with respect to ωφ

vector in rz plane. Fig. 4a shows contours of hr,z for
Γ = 2.5, Re = 2200 respectively compared against the
breakdown bubbles which are represented by the surface
of uz = 0 in the rz plane. For each right half of the
Fig. 4, the values below 0 are shown in color and white
region shows the values above 0. It can be seen that the
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FIG. 5: Contours of negative values of (a) hr,z, (b) hr

(term I of equation 9), and (c) hz (term II of equation
9) in rz plane for Γ = 2.5 and Re = 2200.

contours of negative values of hr,z exactly match with
the breakdown bubbles. In fact, the region of negative
hr,z along the axis of the cylinder coincides with the re-
gions of both the breakdown bubbles. This implies that
the vortex breakdown is characterized by the negative
helicity in the vicinity of the axis. Hence, it can be con-
cluded that the topology of the vortex breakdown bubble
is determined by the orientation of the velocity vector in
the rz plane and the vorticity vector in the same plane,
which in turn is characterized by hr,z. This decomposi-
tion is valid as far as the flow remains axisymmetric even
in the unsteady regime. The Figs. 4b and 4c show the
comparison of the breakdown bubble against the nega-
tive contours of hr,z in rz plane at two different instants
for Γ = 2.5 and Re = 3000. It can be seen that at each
instant, the topology of the breakdown bubble is deter-

mined by hr,z. We look at the contributions from the
individual terms in the equation 9 which are plotted in
the Fig. 5. The figure shows that the main contribu-
tion to the breakdown bubble comes from term II of the
equation 9 as the term I is negligible compared to this
term. This term II is essentially the axial part, hz, of
hr,z. This implies that uz and ωz alone determine the
topology of the vortex breakdown bubble.
Conclusion— Helicity density for vortex breakdowns

has been analyzed numerically. Negative azimuthal vor-
ticity has been found to be generated even in the cases
when there is no vortex breakdown. We find that the he-
licity density is a good parameter to characterize the vor-
tex breakdown. Helicity is negative in the regime where
the vortex breakdown bubble occurs, indicating that the
breakdown bubble is a different topology than the sur-
rounding flow. This further implies that while a thun-
derstorm is characterized by high helicity, its eye should
be characterized by negative helicity. In the axisymmet-
ric limit, we have shown that the flow can be assumed
as essentially two-dimensional with the azimuthal com-
ponent of the velocity advected as a passive scalar in this
flow field. In such case, we find that the topology of the
breakdown bubble is entirely determined by the helic-
ity in the rz plane and hz contributes most towards the
topology of the breakdown bubble. This indicates that
the structure of the flow is dependent on the mutual ori-
entation of the two-dimensional velocity vector and the
in-plane vorticity vector, at least for the axisymmetric
flows. This study highlights the importance of the helic-
ity in the vortex breakdown in a way which has not been
discussed previously. Even though, such a decomposition
is possible when the flow becomes non-axisymmetric, the
azimuthal component of the flow no longer remains pas-
sive and the effect of the out of the plane component, hθ,
of the helicity needs to be investigated separately.
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