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ON SPECTRAL PROPERTIES OF PERTURBED OPERATORS
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(Communicated by Palle E. T. Jorgensen)

Abstract. Farid (1991) has given an estimate for the norm of a perturbation
V required to obtain an eigenvector for the perturbed operator T + V within
a given ball centered at a given eigenvector of the unperturbed (closed linear)
operator T. A similar result is derived from a more general result of the author
( 1989) which also guarantees that the corresponding eigenvalue is simple and
also that the eigenpair is the limit of a sequence obtained in an iterative manner.

1. Introduction

In a recent paper [3] Farid has considered a method based on contraction
mapping theorem instead of the fixed-point theorem approach of Rosenbloom
[7] to address the following problem in perturbation theory:

If (Ao, (po) is an eigenpair of a densely defined closed linear operator in a
Banach space X, and r and p are given positive reals, then obtain an estimate
for the radius of the disc {V £ BL(X): ||K|| < 3} such that the perturbed
operator T + V has an eigenpair (X, <j>) with

\\<t> - 4>o\\ < r   and   \X-Xo\<p

for every V in {V £ BL(X): \\V\\ < 8}, where BL(X) denotes the space of
all bounded linear operators on X.

In this note a result similar to that of Farid [3] is derived from a more
general result in Nair [5]. While the results of Farid [3] and Rosenbloom [7]
are essentially existential results, ours is an iterative procedure where sequences
(Xk) and ((¡)iç) are obtained in an iterative manner with the property that Xk —► X
and (pk -y <p as k —y oo. Moreover, the eigenvalue X is shown to be a simple
eigenvalue of T+V, and a disc centered at Ao is obtained where X is the only
spectral value of T + V lies. The uniqueness of the pair (X, <p) established by
Farid [3] is a consequence of the simplicity of X.

2. The main result

Let T be a closed linear operator in a Banach space X with a dense domain
D. Let Ao be an eigenvalue of T with a corresponding eigenvector <f>o with
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Il0o|| = 1. The basic assumption in Farid [3] is the following:
(i)  Aq , the complex conjugate of Ao, is an eigenvalue of the adjoint op-

erator  T*, and tp^ £ X*  is a corresponding eigenvector such that
(ct>o,<f>*o) = l.

(ii)  A0 does not belong to the spectrum of the operator T := T\Y , where
Y = {x£D:(x,(f>*0) = 0}.

Here and in what follows X* denotes the adjoint space of X, that is, the
space of all conjugate linear functionals on X, and (x, f) denotes the complex
conjugate of f(x) for x £ X and x* £ X*. The adjoint operator T* is
defined by (x, T*f) = (Tx,f) for all x £ D and / £ D(T*) := {f £ X* :
there exists g £ X* with (Tx, f) = (x, g) for all x £ D} . First we observe
that assumption (i) implies the subspaces

Xx :={x£X: (x, <#J)</>0 = x}
and

X2:={x£X:(x,<l>*o} = 0}
are invariant under T, i.e., Tx £ X, nD for every x £ X¡nD, ¿=1,2, with

X = XX®X2,
and assumption (ii) implies, as a consequence of Theorem 4.2 in Nair [5], that A
is in fact a simple eigenvalue of T. Also, we note that the operator Pq: X -+ X
defined by

Pox = (x,<p*o)<j>o,        X£X,
is the projection operator onto Xx along X2, and \\Pq\\ = \\4>l\\. Let

S0:=(f-Xo)-l:X2^X2.

With the above notation the main result of Farid [3] is the following.

Theorem (Farid [3, Theorem 2.1]). For every real number r satisfying

Ifljll »•«oil   J
and every bounded linear operator V on X satisfying

\\V\\ < 6(r) := rl(\\Po\\ \\So\\r2 + (||i>0|| Poll + \\SoV ~ Po)\\)r + \\S0(I - P0)\\),
the operator T + V has a unique eigenpair (X, <f>) such that

<>,r¿5) = l,        \\<j>-<t>o\\<r,
and

|A-Ao|<||ni(l + ll^-0oll)l|7Jo||.
The main result of this note is the following.

Theorem *. For every real number r > 0 and for every bounded linear operator
V on X satisfying

ßv:=max{\\PoV\\,\\(I-Po)V\\}< \\So\\(l+r)2'
the operator T + V has a simple eigenvalue X and a corresponding (unique)
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eigenvector <f> such that

(cp,(p*0) = l,        \\tf> -cpo || <r,
|A-Ao|<||F||(||0-0ol| + l)||7>o||,

and X is the only spectral value of T + V lying in the disc

Ao:= {z:\z - qo\ <^(1 + y/l - 4p)},

where

,      (l-2j8K||So||) .    , n/,      ... /    r    \2
= -\\S I '    Qo =        ^°    o) '    ß = UTr2 J  '

Moreover,
A = lim Xk ,       </> = lim <j>k,

k—*oo k—*oo

where Xk and <j)k are defined iteratively as

(f+V-Xo-(V<po,<p*o))Vx=-(I-Po)V<po,
(px=(po + W\,
Xx =Xo + (Vy/x,<p*)

and, for k = 1,2, ... ,

(f+V-Xo- (V4>o,<t>o))xk = (Vyk , cf>*o)Wk,
¥k+\ =¥\+xk,
<t>k+i =<t>o + Vk+i >
Xk+X =X0 + (Vy/k+x, <pq).

Here f = T\Y and V = (7 - P0)V{I_Po)X .
Remark. We note that

ßv := max{||/»0K||, ||(7 - 7>0)K||} < c0\\V\\,

where Co = max{||Po||, ||7 - Poll) • Therefore, a sufficient condition for Theo-
rem * to hold is

||K||<w(r):= col|5o||(l+r)2-
Also,

liftII Polk2 + (UPoll Poll + l|So(/ - Po\\)r + \\S0(I - PQ)\\ < c0\\S0\\(l + r)2,
so that in general,

co(r)<S(r),
and thereby the assumption ' ||K|| < ô(r) ' of Farid [3] is weaker than ' ||F|| <
co(r) \ However, if ||P0|| = 1 = ||7 - P0||, then

ßv<\\V\\,       <o(r) = S(r)=m¿ + r)2,

so in this case the condition in Theorem * is weaker than that of Farid [3], and
therefore Theorem * improves the result of Rosenbloom [7] also. Examples
with ßy < \\V\\  can be easily constructed.   It is to be noted that if X is a
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Hubert space and T is a normal operator on X, then we have <j>q = 4>o > so
that the projection P0 is orthogonal and therefore ||P0|| = 1 = ||/ - Poll •

We recall the following from [5] or [4]. If X = Yx © Y2 is a decomposition of
X into closed subspaces Yx and Y2, B is a bounded linear operator on Yx,
and C is a closed linear operator in Y2 with domain Dc , then the operator
F: BL(YX, Y2 n Dc) -» £L(li, T2) defined by

F(K) = CK-KB,        K£BL(Yx,Y2nDc)
has a bounded inverse on BL(YX, Y2) if and only if a(B) n a(C) = 0. The
separation between B and C is defined by

~,       f 1/II7"_1||   if 7" has bounded inverse,
sep(B, C :={    '"       "v        ;      I 0 otherwise.

If Ex £ BL(YX) and E2 £ BL(Y2), then
sep(B + Ex ,C + E2)> sep(B, C) - (\\EX\\ + \\E2\\).

Proof (Theorem * ). Let (Ty), (Vy), and (^,7), i,j= 1, 2, be the 2x2
matrix representations of T, V, and A = T +V respectively with respect to
the decomposition X = Xx © X2 (cf. [8, p. 286]). Then it is seen that

||^7ll<P«^ll<^:=max{||P0F||,||(7-Po)I/l|},        ¿,7 = 1,2,
with Pi = P0 and P2 = I - Pq . Therefore, we have

(l-2ßV\\S0\\)
sep(Axx, A22) > sep(Txx, T22) - (\\VXX\\ + \\V22\\) > \\So\

Now the condition ßy < a-/( 1 H-/-)211*5*0 II implies that 2¿V||5b|| < 2r/(l+r)2 < \ ,
so that sep(Axx, A22) > 0 and consequently the assumption o(Axx)C\o(A22) =
0 in Nair [5] is satisfied. Now the quantity e in [5] is seen to satisfy

e .= \\F-X(AX2)\\\\AX2\\ <     ll^iall^.ll
sep(Axx, A22)     - sep(Axx, A22)2

K( ßvwsow  \2<(_r_)2<i_
-\l-2ßv\\So\\)   -\l+r2)   -4'

Writing p = (r/(l + r2))2 and g(p) = (1 - y/l-4p)/2p, it follows from ([5,
Theorem 4.3 and relation (4.4)]) that A := T + V has a simple eigenvalue A
and a corresponding eigenvector 0 such that

\\<f>-<Po\\<<*g(ß),

|A-^ol < ^(1 - VT^4^I)
and A is the only spectral value of A lying in the disc

{z:z-Xo\<Ôj-(l + v^7^)} 2 A0.

Here

A   ■     «on(A A    w  (l-2pV||So||)       Hdo := sep(Axx, ^22) >-rr^rr,-= «0,Poll
n <   ll(7-Po)m   <     ßv\\So\\ _J_ _   m
a - sep(Axx, A22) - l-2yM|S0||- 1 + r2     Vfi'
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and g(t), 0 < t < \ , satisfies

1 <*(/)< 2,
g(h)<g(h)   for tx<t2,

lim g(t) = 1,    and     lim g(t) - 2.
(-.0 f—»1/4

It is easily seen that
ag(p) < Jpg(p)<r,

so that 110 - 0oll < f ■ Since (0, 05) = 1 and 7*05 = AJ05 , we have
A = Ao + <I/(0-0o),0*) +(i/0o,05}.

Therefore
|A-Ao|<)8k(||0-0oII + 1)I|7,o||.

If 0 is another eigenvector of T + V corresponding to the simple eigenvalue
A such that (0, 05) = 1, then 0 = c0 for some constant c ^ 0, and therefore
1 = (0, 0q) = c(0, 0q) = c. Thus 0 = 0, proving the uniqueness of 0.

Lastly, the iterative procedure to obtain (Xk) and (<f>k), and their conver-
gence to A and 0 respectively, are the consequences of [5, relations (3.5),
(3.6)] and [5, Theorem 4.3], respectively.

Remark. We note that the generalized Rayleigh quotient q = ((T + V)<po, 05)
of T + V at (0o, 05) satisfies

|A-<7|</?H|0-0o||.
A similar reformulation of the results in Nair [5, 6] and Stewart [9] involving

spectral sets and spectral subspaces will show their applicability to more general
situations of diagonally dominant infinite matrices than the ones described in
[1-3].
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