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Abstract

If A is a real symmetric matrix and P is an orthogonal projection onto a hyperplane, then we derive a

formula for the Moore–Penrose inverse of PAP. As an application, we obtain a formula for the Moore–

Penrose inverse of an Euclidean distance matrix (EDM) which generalizes formulae for the inverse of a

EDM in the literature. To an invertible spherical EDM, we associate a Laplacian matrix (which we define

as a positive semidefinite n × n matrix of rank n − 1 and with zero row sums) and prove some properties.

Known results for distance matrices of trees are derived as special cases. In particular, we obtain a formula

due to Graham and Lovász for the inverse of the distance matrix of a tree. It is shown that if D is a nonsingular

EDM and L is the associated Laplacian, then D−1 − L is nonsingular and has a nonnegative inverse. Finally,

infinitely divisible matrices are constructed using EDMs.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

A real symmetric n × n matrix D is called an Euclidean distance matrix (EDM) if there exist

points p1, p2, . . . , pn ∈ Rk such that

dij = (pi − pj )
′(pi − pj ), i, j = 1, 2, . . . , n.

(As usual, the transpose of a matrix A is denoted A′.) EDMs have a wide literature and appli-

cations. For details, we refer to Schoenberg [14], Gower [7], Johnson and Tarazaga [12],
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Hayden et al. [11] and the references therein. In [15], Styan and Subak-Sharpe discuss electrical

network theory through EDMs. They obtain an expression for the inverse of a EDM and give

physical interpretations in terms of networks.

Let

1 = (1, 1, . . . , 1)′

be the vector of all ones in Rn. Schoenberg [14] showed that a nonnegative symmetric matrix D

with zero diagonal is a EDM if and only if

F := −
1

2

(

I −
11′

n

)

D

(

I −
11′

n

)

is positive semidefinite (p.s.d.). If F = XX′ is a decomposition of F then the rows of X give

coordinates of points that generate D. In [15], it is shown that if D is an invertible EDM then

D−1 = −Y + uu′,

where u is a nonzero vector in Rn and Y is the symmetric matrix satisfying the conditions (1)

Y is p.s.d., (2) rank(Y ) = n − 1, and (3) 1′Y = 0. It can be shown that Y is the Moore–Penrose

inverse, F †, of F . (The definition of Moore–Penrose inverse is given later in this section.) It is

easy to see that P :=I − 11′

n
is the orthogonal projection onto the hyperplane {1}⊥.

Motivated by these results, we find a formula for the Moore–Penrose inverse of PAP where

A is any symmetric matrix and P is the orthogonal projection onto the hyperplane {a}⊥, where

a ∈ Rn is in the column space of A, satisfying a′A†a /= 0. If D is a EDM, Gower [8] proved that 1

is in the column space of D and 1′D†1 � 0. When 1′D†1 > 0, Gower [8] showed that there exists

a sphere of radius 1′D†1 such that D is the EDM of points on the sphere. If such a sphere exists

then we will say that D is a spherical EDM. We give an expression for the Moore–Penrose inverse

of a spherical EDM. This generalizes the result proved by Styan and Subak-Sharpe [15]. We define

the notion of a Laplacian matrix for nonsingular spherical EDMs which satisfy 1′D−11 > 0 and

prove various properties in connection with EDMs. For nonspherical EDMs, we get an expression

for the Moore–Penrose inverse by choosing the orthogonal projection onto the hyperplane {D1}⊥.

Distance matrices of trees have a close interconnection with EDMs. A tree is a connected

acyclic graph. The (i, j)-element of the distance matrix of a tree is the length of the shortest path

between vertices i and j of the tree. Distance matrices of trees are special cases of nonsingular

spherical EDMs. In [9], Graham and Lovász obtained a significant formula for the inverse of the

distance matrix of a tree. The inverse is expressed as a sum of the Laplacian matrix of the tree

and a matrix of rank one. By specializing our results to distance matrices of trees we derive the

Graham and Lovász formula and also a well-known formula for the determinant of the distance

matrix of a tree due to Graham and Pollack [10].

In Section 5 we show that if D is a nonsingular EDM and L is any Laplacian matrix, then

D−1 − L is a nonsingular matrix and has a nonnegative inverse.

The last section brings out some connections between EDMs and infinitely divisible matrices.

In particular, we construct examples of infinitely divisible matrices based on EDMs.

We now introduce some definitions.

Definition 1.1. Let A be a real n × n matrix. Then H is called a g-inverse of A if AHA = A. If

HAH = H then we say that H is an outer inverse of A.

Definition 1.2. Let A ∈ Rn×n. Then Moore–Penrose inverse of A is a matrix A† satisfying the

equations: AA†A = A, A†AA† = A†, (AA†)′ = AA† and (A†A)′ = A†A.
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It is well known that Moore–Penrose inverse of a matrix exists and is unique. For basic proper-

ties of the Moore–Penrose inverse, see [4]. We use R(A) to denote the column space of a matrix

A. For y ∈ Rn, let Diag(y) denote the diagonal matrix with y1, y2, . . . , yn along the diagonal. If

X is an n × n matrix, let diag(X) = (x11, . . . , xnn)
′.

A symmetric n × n matrix A is called a conditionally negative definite (c.n.d.) matrix if for all

x ∈ {1}⊥, x′Ax � 0. It is known that a EDM is c.n.d., see [14]. Thus an n × n EDM is negative

semidefinite on an n − 1 dimensional subspace. Hence every EDM has exactly one positive

eigenvalue.

2. A formula involving the Moore–Penrose inverse

Let a be a nonzero vector in Rn. We now derive a formula for the Moore–Penrose inverse of

PAP , where P :=I − aa′

a′a
and A is a real symmetric matrix of order n. We first prove a preliminary

result.

Lemma 2.1. Let A be a symmetric n × n matrix and let a ∈ Rn be a vector such that β = a′A†a /=

0. If P :=I − aa′

a′a
is the orthogonal projection onto the hyperplane {a}⊥, then

T = A† −
(A†a)(a′A†)

β

is an outer inverse of K = PAP ; that is, T satisfies TKT = T .

Proof. We claim that TP = PT = T . Let v ∈ Rn. Then v = v1 + v2 where v1 ∈ span(a) and

v2 ∈ {a}⊥. Since P is an orthogonal projection onto {a}⊥, then Pv = v2. Thus, TPv = T v2. Now

T v1 = 0 and hence T v = T v2. This shows that TP = T . Since T is symmetric, TP = PT . This

proves our claim. Now, we need to show that TAT = T . We note that,

TAT =

(

A† −
(A†a)(a′A†)

β

)

A

(

A† −
(A†a)(a′A†)

β

)

=

(

A†A −
A†aa′A†A

β

) (

A† −
(A†a)(a′A†)

β

)

= A† −
(A†a)(a′A†)

β
−

(A†a)(a′A†)

β
+

(A†a)(a′A†)

β
= T .

This completes the proof. �

Theorem 2.1. Let A be a symmetric n × n matrix and let a ∈ R(A) be a vector such that

β :=a′A†a /= 0. If P :=I − aa′

a′a
is the orthogonal projection onto the hyperplane {a}⊥, then

T :=A† −
(A†a)(a′A†)

β

is the Moore–Penrose inverse of K = PAP.

Proof. We claim that PAA† is symmetric. Since a ∈ R(A), there exists w ∈ Rn such that Aw = a.

Now we have

PAA† =

(

I −
aa′

a′a

)

AA† = AA† −
(Aw)(w′AAA†)

a′a
= AA† −

(Aw)(w′A)

a′a
.
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Thus PAA† is symmetric. We claim that B = PA(A†a)(a′A†) = 0. Note that A†a = A†Aw.

Therefore B = PA(A†Aw)(w′AA†). Since AA†Aw = Aw = a and Pa = 0 it follows that B =

0. We now prove that KT = TK . We see that

KT =PAPT

=PAT (as PT = TP = T ) (1)

=PAA† −
B

β

=PAA†. (2)

Since PAA† is symmetric, as already noted, we get KT = TK . By Lemma 2.1, T is an outer

inverse of K . It remains to show that T is a g-inverse of K . Now,

KTK = KTPAP = KTAP = PAA†AP = PAP = K.

This completes the proof. �

3. Spherical Euclidean distance matrices

Let D be a EDM. Gower [8] proved that DD†1 = 1, 1′D†1 � 0 and D is spherical if and only

if 1′D†1 > 0. Hence 1 ∈ R(D). Let β :=1′D†1. Using Theorem 2.1 we get the following result:

Theorem 3.1. Let D be a spherical EDM and let P :=I − 1
n

11′. If G := − 1
2PDP, then setting

u = D†1,

D† = − 1
2G† +

1

β
uu′. (3)

Continuing with the notation of Theorem 3.1, Schoenberg [14] proved that G is p.s.d. and

D = diag(G)11′ + 11′diag(G) − 2G. (4)

From (3) we deduce,

− 1
2G†DG† = G†. (5)

We now consider the case when D is spherical and nonsingular. In this case, let us define

L† := − 1
2 PDP. Clearly 1′L† = 0 and L† is p.s.d. Since D is nonsingular and P is of rank

n − 1, we see that rank(L†) = n − 1. Therefore 1′L = 0, L is p.s.d. and rank(L) = n − 1. These

observations motivate the next definition.

Definition 3.1. Let L be a symmetric n × n matrix. Then we say that L is a Laplacian matrix if

L is p.s.d. with rank n − 1 and has row sums zero.

We remark that a conventional Laplacian has nonpositive, integer off-diagonal entries but we

do not require this property here. We now prove the following result:

Theorem 3.2. Let D be a spherical, nonsingular EDM. Then there exists a unique Laplacian

matrix L satisfying
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D−1 = −
1

2
L +

uu′

β
, (6)

where u = D−11, β = 1′D−11.

Proof. We only need to show that the Laplacian associated with D is unique, as (6) follows from

Theorem 3.1 and the definition of the Laplacian. Let z :=D−11. Suppose, D−1 = − 1
2L + uu′ =

− 1
2M + vv′. Then, z = uu′1 = vv′1. Since rank(uu′) = 1, and z ∈ R(uu′), then z = βu for a

nonzero β. Thus, uu′ = k2zz′ for some nonzero k. Similarly, vv′ = c2zz′. Since uu′1 = vv′1,

then c2 = k2. Therefore, uu′ = vv′ and hence L = M . �

The above result was obtained, in a different form, in Styan and Subak-Sharpe [15].

For a matrix A, we denote by A(i, j) the submatrix obtained by deleting row i and col-

umn j of A. The matrix A(i, i) is denoted A(i). We now deduce some simple properties of the

Laplacian.

Proposition 3.1. Let D be a spherical EDM and let L be the corresponding Laplacian. Then

1. − 1
2LDL = L.

2. For i /= j ∈ {1, 2, . . . , n}, dij =
det(L(i,j))
det(L(i))

.

Proof. The first equation follows from (5). We now prove the second equation. We first claim

that if L is a Laplacian matrix, then for any two g-inverses of L, say, S = (sij ) and T = (tij ),

sii + sjj − sij − sji = tii + tjj − tij − tji for all i /= j.

Let x be the column vector with xi = 1 and xj = −1 and with its remaining coordinates zero.

Clearly, 1′x = 0. Thus x belongs to the orthogonal complement of the null space of L, which

is the same as R(L) and hence there exists a vector y ∈ Rn such that Ly = x. It is easy to see

that x′Sx = y′Ly = sii + sjj − sij − sji and x′T x = y′Ly = tii + tjj − tij − tji . This proves

our claim. Let H be the n × n matrix with H(i) = L(i)−1 and each entry in row and column i

equal to zero. The matrix H depends on i but we suppress this in the notation. Note that for all j ,

hii = hij = hji = 0 and for j /= i, hjj =
det(L(i,j))
det(L(i))

. It is easily verified that H is a g-inverse of

L. Thus, hii + hjj − hij − hji =
det(L(i,j))
det(L(i))

. Now the result follows from the first equation and

the above claim. �

We now find an expression for the determinant of a spherical, nonsingular EDM. If A is a

symmetric matrix with 1′A = 0, then all the cofactors of A are equal. We call this common

cofactor value of A as the common cofactor.

Theorem 3.3. Let D be a nonsingular spherical EDM and let L be the corresponding Laplacian.

If γ is the common cofactor of L and α = 1′D−11 then

det(D−1) =

(

−
1

2

)n−1
γ

α
. (7)

Proof. The proof follows from (6) and the multilinearity of the determinant. �
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We now consider nonspherical EDMs. In this case 1′D†1 = 0. Hence Theorem 3.2 is not

true. However by choosing the orthogonal projection P1 :=I − uu′

u′u
, where u = D1, we get the

following result:

Theorem 3.4. Let D be a nonspherical EDM and let β :=1′D1. If K := − 1
2P1DP1 where

P1 :=I − uu′

u′u
, and u = D1, then

D† = −
1

2
K† +

1

β
11′. (8)

Proof. Let K1 :=P1DP1. By Theorem 2.1, we have

K
†
1 = D† −

1

β
11′.

Now,

K† =

(

−
1

2
K1

)†

= −2K1
† = −2

(

D† −
1

β
11′

)

.

Therefore,

D† = −
1

2
K† +

1

β
11′

and the proof is complete. �

Continuing with the notation of Theorem 3.4, let u = D1 and U = Diag(u). From (8) we have

UD−1U = −
1

2
UK†U +

1

β
U11′U. (9)

Put H :=UK†U . Then

UD−1U = −
1

2
H +

1

β
U11′U. (10)

Since 1′H = 0, then all the cofactors of H are equal. Let γ1 be the common cofactor of H . Using

(10) and the multilinearity of the determinant we see that

det(D−1) =
1

�
n
i=1u

2
i

(

−
1

2

)n−1

γ1β.

Thus, using the notation introduced above, we have the following theorem:

Theorem 3.5. Let D be a nonsingular nonspherical EDM. Then

det(D−1) =
1

�
n
i=1u

2
i

(

−
1

2

)n−1

βγ1,

where β :=1′D1, u = D1, γ1 is the common cofactor of H :=UK†U and U :=Diag(u).

4. Distance matrices of trees

Let T = (V ,E) denote a tree with the set of vertices V and the set of edges E. We assume that

V = {1, 2, . . . , n}, and the edges are unordered pairs (i, k), i /= k. To each edge (i, k) we assign
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a number wik = 1 if i /= k and (i, k) is an edge of T , i, k ∈ V . If i /= k and (i, k) is not an edge

of T then we define wik = 0. The Laplacian is then the matrix

L =

⎛

⎜

⎜

⎝

∑

k w1k −w12 −w13 . . . −w1n

−w21

∑

k w2k −w23 . . . −w2n

. . . . . . . . . . . . . . .

−wn1 −wn2 −wn3 . . .
∑

k wnk

⎞

⎟

⎟

⎠

.

Clearly the row sums of L are zero. It is well known that L is p.s.d. with rank n − 1. The distance

matrix E of T is an n × n matrix with the (i, j)-entry equal to the distance (i.e. the length of the

shortest path) between vertices i and j . In this section, we obtain the results due to Graham and

Lovász [9] and Graham and Pollack [10] as special cases of our earlier results.

Several relations between L and E are known. By induction it can be easily shown that

−
LEL

2
= L. (11)

We now obtain the Graham and Lovász formula.

Theorem 4.1. Let T be a tree on n vertices with Laplacian L and distance matrix E. Let δi denote

the degree of the vertex i, i = 1, 2, . . . , n and let δ = (δ1, . . . , δn) and λ := (2 − δ1, . . . , 2 − δn).

Then

E−1 = −
1

2
L +

1

2(n − 1)
λλ′.

Proof. From (11) we get the following equation, noting that P = LL† = I − 11′

n
:

− 1
2 PEP = L†. (12)

By Theorem 3.2,

E−1 = −
1

2
L +

(E−11)(1′E−1)

1′E−11
. (13)

It is easy to verify, by induction on n, that

Eλ = (n − 1)1 and 1′λ = 2, (14)

and hence

λ′Eλ = 2(n − 1). (15)

It follows from (13)–(15) that

E−1 = −
1

2
L +

1

2(n − 1)
λλ′

and the proof is complete. �

We now obtain the Graham and Pollack [10] formula for the determinant of the distance matrix

of a tree. By the matrix–tree theorem, any cofactor of L is the number of spanning trees and hence

the common cofactor, say, K = 1. Thus by Theorem 3.3 we have:

Theorem 4.2. Let T be a tree on n vertices and let E be the distance matrix of T . Then det(E) =

(−1)n−1(n − 1)2n−2.
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5. Inverse EDMs perturbed by Laplacians

Let D be the distance matrix of a tree. If L is the Laplacian matrix of an arbitrary connected

graph, then it was shown in [1] that (D−1 − L)−1 is a nonnegative matrix. Now let D be a EDM.

Motivated by the result in [1], we may ask the following question: If L is a Laplacian, is (D† − L)†

necessarily a nonnegative matrix? From numerical experiments, we found that for small ǫ > 0,

(D† − ǫL)† is not a nonnegative matrix when D is singular. However when D is a nonsingular

EDM, we observed that D−1 − L has a nonnegative inverse. We give a proof of this in the next

theorem. First, we prove the following lemma which is true even for singular EDMs.

We recall that a matrix S is called a signature matrix if it is a diagonal matrix with diagonal

entries as 1 or −1. A matrix A ∈ Rn×n is called a N -matrix if all the principal minors are

negative.

Lemma 5.1. Let D be a EDM and let L be a Laplacian matrix. Then the following are true:

1. D† − L is a nonsingular matrix.

2. D† − L is c.n.d.

3. det(L − D†) < 0.

Proof. Suppose that there exists a nonzero vector x ∈ Rn such that (D† − L)x = 0. Then,

1′D†x = 0. Puty = D†x. Theny ∈ {1}⊥. Now,y′Dy � 0 sinceD is c.n.d. and thereforex′D†x �

0. Hence x′Lx � 0. Because L is p.s.d., x′Lx = 0 and therefore, Lx = 0. Thus, x = β1 for some

nonzero β. We now have D†1 = 0. This contradicts the result DD†1 = 1.

We now prove (2). Let x ∈ {1}⊥. We claim that D† is c.n.d. We note that D† has exactly one

positive eigenvalue. Since DD†1 = 1, from Theorem 4.1 in [5], D† is c.n.d. Now −L is negative

semidefinite. Hence D† − L is a c.n.d. matrix.

Let A :=D† − L. Then A is a nonsingular c.n.d. matrix. If A is negative definite then 1′A1 < 0.

This is a contradiction. Thus, A has exactly one positive eigenvalue and hence det(L − D†) <

0. �

We now obtain the following identity:

Lemma 5.2. Let D be a nonsingular spherical EDM and L be the corresponding Laplacian

matrix. If D is nonsingular and γ � 0 then

(D−1 − γL)−1 =

(

γ

1 + 2γ

) (

2

1′D−11

)

11′ +
1

1 + 2γ
D. (16)

Proof. From (6), L = −2(D−1 − 1
k
uu′), where u :=D−11 and k :=1′D−11. Now the proof fol-

lows by direct verification. �

From the above result we note that D−1 − L has a nonnegative inverse if L is the corresponding

Laplacian matrix of D. This fact holds even when L is any Laplacian as shown in the following

result:

Theorem 5.1. Let D be a nonsingular EDM. If L is a Laplacian matrix, then (D−1 − L)−1 >

0.
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Proof. As before, let D−1(i) denote the principal submatrix obtained by deleting the ith row

and the ith column. We claim that −D−1(i) is p.s.d. By the interlacing theorem, −D−1(i) can

have at most one nonnegative eigenvalue. But dii = 0 and hence det(D−1(i)) = 0. Thus, 0 is

an eigenvalue of D−1(i). Therefore, −D−1(i) is p.s.d. This implies that αL(i) − D−1(i) is

positive definite for any α > 0. Now, the inertia of αL − D−1 is the same as −D−1 and hence

det(αL − D−1) < 0. Thus, αL − D−1 is an N -matrix. By Lemma 5 in Parthasarathy and Rav-

indran [13], there exists a signature matrix Sα such that Sα(αL − D−1)−1Sα < 0. For α = 0 we

note that Sα = I or −I . By continuity, Sα = I or −I for all α. Hence (D−1 − L)−1 > 0. This

completes the proof. �

6. A note on infinitely divisible matrices

In this section, we construct infinitely divisible matrices from distance matrices. We now define

an infinitely divisible matrix. Let A = (aij ) be a nonnegative symmetric matrix and r � 0. Recall

that the rth Hadamard power of A is defined by A◦r := (ar
ij ).

Definition 6.1. Let A be a p.s.d. matrix. We say that A is infinitely divisible if A◦r is p.s.d. for

all r � 0.

Infinitely divisible matrices are studied in detail by Horn [6]. Interesting examples can be found

in Bhatia [3]. We now construct infinitely divisible matrices from distance matrices. First we state

a result due to Löwner, see, for example, [3]. We say that a matrix A is conditionally positive

definite (c.p.d.) if −A is c.n.d.

Theorem 6.1. If A is a symmetric matrix with positive entries then A is infinitely divisible if and

only if its Hadamard logarithm log◦ A = (log(aij )) is c.p.d.

Now from the previous section, we see that if D is any nonsingular EDM and L is a Laplacian

matrix then D−1 − L is a c.n.d. matrix and its inverse is positive. Hence from Theorem 4.1 in

[5], it follows that the inverse of D−1 − L is a c.n.d. matrix. Now put A = (D−1 − L)−1. By

Theorem 4.4.4. in [2], log◦ A is c.n.d. and hence
(

log
(

1
aij

))

is a c.p.d. matrix. Thus, by Theorem

6.1, we have the following result:

Theorem 6.2. Let D be a nonsingular EDM and L be a Laplacian matrix. If A := (D−1 − L)−1,

then A◦−1 =

(

1
aij

)

is an infinitely divisible matrix.

By a similar argument as before one can prove the following:

Theorem 6.3. Let D be an EDM. For k > 0, let T :=D + kJ . Then T ◦−1 :=

(

1
tij

)

is an infinitely

divisible matrix.

Example. Let D = (dij ) be the distance matrix of a path on n-vertices, where n > 2. Then

dij = |i − j |, 1 � i, j � n. By Theorem 6.3 it follows that (|i − j | + k) is an infinitely divisible

matrix for all k > 0.
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