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Abstract

Let Wn denote the wheel graph having n-vertices. If i and j are any two
vertices of Wn, define

dij :=





0 if i = j

1 if i and j are adjacent

2 else.

Let D be the n × n matrix with (i, j)th entry equal to dij . The matrix D is
called the distance matrix of Wn. Suppose n ≥ 5 is an odd integer. In this
paper, we deduce a formula to compute the Moore-Penrose inverse of D. More
precisely, we obtain an n× n matrix L̃ and a rank one matrix ww′ such that

D† = −
1

2
L̃+

4

n− 1
ww′.

Here, L̃ is positive semidefinite, rank(L̃) = n− 2 and all row sums are equal to
zero.

Keywords. Wheel graphs, circulant matrices, Laplacian matrices, distance ma-
trices, Moore-Penrose inverse.
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1 Introduction

Let G be a connected graph with vertex set V := {1, . . . , n}. Since G is connected, any
two vertices i and j in V are now connected by a path inG. Let the minimum length of
all such paths be denoted by dij . The distance matrix of G is then the n×n symmetric
matrix with (i, j)th off-diagonal entry equal to dij and all diagonal entries equal to
zero. Distance matrices of connected graphs have several interesting properties and
have applications in various fields like data communication, chemistry and biology.
Distance matrices have a wide literature. For a comprehensive introduction, we refer
to the survey article [1] and the monograph [2] and [3]. There are several interesting
problems on distance matrices. One of them is the following: If G is a connected graph
and D is the distance matrix of G, deduce a formula to compute the determinant and
the inverse of D. This problem originates from a well-known result of Graham and
Lovász [4]. To introduce this result, we need to recall the notion of the Laplacian
matrix of G. Define S := diag(s1, . . . , sn), where si is the degree of the vertex i in G.
Suppose A is the adjacency matrix of G. Then the matrix M := S − A is called the
Laplacian matrix of G with the following properties:
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(M1) M is positive semidefinite.

(M2) All row sums of M are zero.

(M3) rank(M) = n− 1.

Suppose E is the distance matrix of a tree with n-vertices. According to Graham and
Lovász [4],

E−1 = −
1

2
L+

1

2(n− 1)
ττ ′, (1)

where L is the Laplacian matrix of the tree and τ = (2 − δ1, . . . , 2 − δn)
′ with δi

equal to the degree of the vertex i. The remarkable feature of this formula is that the
inverse can be expressed just by using the adjacency matrix and the vertex degrees
of the tree. A question that arises now naturally is how to generalize formula (1) to
connected graphs other than trees. In the case of trees, there is an elegant identity
that connects the Laplacian with the distance matrix. If E = [eij ] and L† = [βij ],
then

eij = βii + βjj − 2βij, (2)

where L† is the Moore-Penrose inverse of the Laplacian L. All the known proofs for
(1) rely on the relation (2) either directly or indirectly and the properties (M1), (M2)
and (M3) of the Laplacian. If the connected graph is not a tree, then the identity
(2) does not hold and hence in general it is very difficult to get an elegant formula
similar to (1). However, for some special cases like weighted trees, complete graphs,
complete bipartite graphs and wheel graphs with even number of vertices, there are
formula in the spirit of (1): see [5, 6, 7].

Let Wn be the wheel graph having n-vertices. In this paper, we assume n is
an odd integer. Suppose D is the distance matrix of Wn. Define a vector d :=
(0, 1,−1, 1,−1, . . . ,−1)′ ∈ R

n. Then Dd = 0. So, det(D) = 0. We now deduce a
formula to compute the Moore-Penrose inverse of D which is similar to (1). Precisely,

we obtain a matrix L̃ and a rank one matrix ww′ such that

D† = −
1

2
L̃+

4

n− 1
ww′,

where L̃ is positive semidefinite, rank(L̃) = n− 2 and all row sums are equal to zero.

We also show that if L̃† = [θij ], then

dij = θii + θjj − 2θij .

2 Notation and conventions

• The notation n will always denote an odd positive integer which is at least 5 and
Wn will stand for the wheel graph with n number of vertices. The center of Wn
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Figure 1: Wheel graph W7

is labelled w1. All vertices other than w1 lie in a cycle of length n−1. We label
these vertices by w2, w3, . . . , wn−1 such that (wi, wi+1) is an edge. For example,
see Figure 1. Since any other labelling of Wn leads to a distance matrix which
is permutation similar to D, without loss of generality, we fix this labelling.

• All vectors are assumed to be column vectors unless stated otherwise. The
identity matrix of order n is denoted by I. If k < n, we use Ik to denote the
identity matrix of order k.

• We denote the vector of all ones in R
n−1 by 1 and the (n− 1)× (n− 1) matrix

of all ones by J . If ν 6= n − 1, we use the notation 1ν to denote the vector
of all ones in R

ν and Jν to denote the ν × ν matrix of all ones. As usual,
we use 0 to denote the scalar zero. To denote the zero vector (row/column),
we use the notation 0. A matrix with more than one row/column and having
all entries equal to zero is denoted by O. If (x1, . . . , xk) is a row vector, then
Circ(x1, . . . , xk) will be the circulant matrix with first row equal to (x1, . . . , xk).

• We reserve the letter u to denote the row vector (0, 1, 2, . . . , 2, 1) with n − 1
components. The distance matrix of Wn now has the form

D =

[
0 1′

1 D̃

]
, (3)

where D̃ = Circ(u). We record the equation

D̃1 = 2(n− 3)1 (4)

for later use. An n×n matrix A = [aij ] is an Euclidean distance matrix if there
exist x1, x2, . . . , xn ∈ R

r such that aij = (xi − xj)′(xi − xj). By Theorem 12 in
[8], it follows that D is an Euclidean distance matrix.
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• Let x = (x1, . . . , xn−1). We say that x follows symmetry with respect to the
(n+1

2
)th coordinate in its last n− 2 coordinates if x has the form

(x1, x2, . . . , xn−1
2
, xn+1

2
, xn−1

2
, . . . , x3, x2),

or equivalently, x satisfies the equations

xi = xn+1−i for all i = 2, 3, . . . , n− 1.

We define

∆ := {(x1, . . . , xn−1) : xi = xn+1−i for all i = 2, 3, . . . , n− 1}.

• We fix m to denote n−1
2
. For each k ∈ {1, 2, . . . , m}, define (ck1, . . . , c

k
n−1) by

ckj :=

{
1 j = k + 1 or j = n− k

0 otherwise.

Let ck := (ck1, . . . , c
k
n−1) and Ck := Circ(ck). By an easy verification,

CkD̃ = Circ(ckD̃). (5)

We shall say that c1, . . . , cm are special vectors for Wn and C1, C2, . . . , Cm are
special matrices for Wn. Each Ck is symmetric. For i ∈ {1, 2, . . . , n− 1}, define

vi =

{
1 if i is odd

−1 if i is even.

Let v := (v1, v2, . . . , vn−1) and V := Circ(v). If k ∈ {1, 2, . . . , m− 1}, then each
column of Ck has exactly two ones and remaining entries equal to zero. Further,
k + 1 is odd if and only if n− k is odd. On the other hand, each column of Cm

has exactly one entry equal to one and remaining entries equal to zero. Further,
the first column of Cm has one in the even position if and only if m is even.
Also, each Ck is a Toeplitz matrix. In view of these observations, we get

vCk =

{
(−1)k2v if k = 1, . . . , m− 1

(−1)mv if k = m.
(6)

3 Special Laplacian for Wn

We now associate a special Laplacian L̃ to Wn. This definition is motivated from
numerical computations.
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Definition 1. For each k ∈ {1, 2, . . . , m}, define

g(k) :=
n+ (−1)(m−k)

2

and

αk :=
(−1)g(k)(2m2 − 6(m− k)2 + 1)

6(n− 1)
. (7)

We say that the n× n matrix L̃ defined by

L̃ :=

[
n−1
2

0

0 O

]
+

n(n− 2)

6(n− 1)

[
0 0

0 In−1

]
−

1

2

[
0 1′

1 O

]
+

m∑

k=1

αk

[
0 0

0 Ck

]

is the special Laplacian of Wn.

In the rest of the paper, we reserve the notation α1, . . . , αm for the numbers
obtained by substituting k = 1, . . . , m respectively in the right hand side of the
equation (7).

3.1 Illustration for W5 and W7

The interconnection between the special Laplacian and the distance matrix for W5

and W7 is given now. Later, in our main result, we generalize the result mentioned
here to a general n.

• Consider W5. The special vectors are now c1 = (0, 1, 0, 1) and c2 = (0, 0, 1, 0)
and the special matrices are given by Circ(c1) and Circ(c2). We have α1 = 1

8

and α2 = −3
8
. The special Laplacian for W5 can now be written easily using

the definition:

L̃ =
1

8




16 −4 −4 −4 −4
−4 5 1 −3 1
−4 1 5 1 −3
−4 −3 1 5 1
−4 1 −3 1 5



.

The distance matrix D of W5 is given by

D =




0 1 1 1 1
1 0 1 2 1
1 1 0 1 2
1 2 1 0 1
1 1 2 1 0



.
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By setting w := 1
4
(0, 1, 1, 1, 1)′, we note that

−
1

2
L̃+

4

n− 1
ww′ =

1

4




−4 1 1 1 1
1 −1 0 1 0
1 0 −1 0 1
1 1 0 −1 0
1 0 1 0 −1



. (8)

The Moore-Penrose inverse of D and the matrix in the right hand side of (8)
are equal. This can be verified directly.

• Consider W7. There are three special vectors now. These are given by

c1 = (0, 1, 0, 0, 0, 1), c2 = (0, 0, 1, 0, 1, 0), and c3 = (0, 0, 0, 1, 0, 0).

Using the special matrices C1 = Circ(c1), C2 = Circ(c2) and C3 = Circ(c3)
and the numbers α1 = − 5

36
, α2 = −13

36
and α3 = 19

36
, we compute the special

Laplacian for W7:

L̃ =
1

36




108 −18 −18 −18 −18 −18 −18
−18 35 − 5 −13 19 −13 − 5
−18 − 5 35 − 5 −13 19 −13
−18 −13 − 5 35 − 5 −13 19
−18 19 −13 − 5 35 − 5 −13
−18 −13 19 −13 − 5 35 − 5
−18 − 5 −13 19 −13 − 5 35




.

The distance matrix D of W7 is given by

D =




0 1 1 1 1 1 1
1 0 1 2 2 2 1
1 1 0 1 2 2 2
1 2 1 0 1 2 2
1 2 2 1 0 1 2
1 2 2 2 1 0 1
1 1 2 2 2 1 0




.

By setting w := 1
4
(−2, 1, 1, 1, 1, 1, 1)′, we note that

−
1

2
L̃+

4

n− 1
ww′ =

1

18




−24 3 3 3 3 3 3
3 −8 2 4 −4 4 2
3 2 −8 2 4 −4 4
3 4 2 −8 2 4 −4
3 −4 4 2 −8 2 4
3 4 −4 4 2 −8 2
3 2 4 −4 4 2 −8




.

The matrix on the right hand side of the above equation is the Moore-Penrose
inverse of D.
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4 Main result

We are now ready to state our main result. The Moore-Penrose inverse of D is given
by

D† = −
1

2
L̃+

4

n− 1
ww′, (9)

where w := 1
4
(5− n, 1, . . . , 1)′. Furthermore, L̃ has the following properties:

(i) L̃ is positive semidefinite.

(ii) L̃1 = 0. That is, all row/column sums of L̃ are zero.

(iii) rank(L̃) = n− 2.

In view of Section 3.1, the result is true for W5 and W7. We now proceed to show
that the result holds for any odd integer n. In the rest of the paper, we assume n ≥ 9.

4.1 Some identities

To prove the main result, we need the following identities.

Lemma 1. Let n be odd and m = n−1
2
. Define

g(k) :=
n + (−1)m−k

2
k = 1, 2, . . . , m.

Then the following are true.

(I1)
∑m

k=1(−1)g(k)(2m2 − 6(m− k)2 + 1) =

{
−3m2 + 3m if m is even

−m2 + 3m+ 1 if m is odd.

(I2)
∑m

k=1(−1)k+g(k)(2m2 − 6(m− k)2 + 1) = −3m2.

(I3) 2
∑m

k=1 αk − αm =
6m− 4m2 + 1

6(n− 1)
.

(I4) If j, j − 1, j − 2 belong to {1, 2 . . . , m}, then

2αj−1 + αj + αj−2 = (−1)j
2

n− 1
.

(I5)

2

m∑

k=1

(−1)kαk − (−1)mαm =
2n− n2

6(n− 1)
.
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Proof. We begin with the proof of (I1).
Case 1. Suppose m is even. Then,

g(k) =

{
n+1
2

k is even
n−1
2

k is odd.

Since m+ 1 = n+1
2

and m is assumed to be even, we have

(−1)g(k) =

{
−1 k is even

1 k is odd.
(10)

Therefore,
m∑

k=1

(−1)g(k) = 0. (11)

We now use the formula: If p is even, then,

1− 2 + 3− 4 + 5− · · · − p = −
p

2
.

Applying this to (10), we get

m∑

k=1

(−1)g(k)k = −
m

2
. (12)

If p is even, then we know that

12 − 22 + 32 − · · · − p2 = −
p(p+ 1)

2
.

By this formula, we deduce

m∑

k=1

(−1)g(k)k2 = −
m(m + 1)

2
. (13)

By (11), (12) and (13),

m∑

k=1

(−1)g(k)(2m2 − 6(m− k)2 + 1) = −6
m∑

k=1

(−1)g(k)(m− k)2

= 12m
m∑

k=1

(−1)g(k)k − 6
m∑

k=1

(−1)g(k)k2

= 12m(
−m

2
)− 6(

−m(m+ 1)

2
)

= 3m− 3m2.
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Case 2: Suppose m is odd. Then,

(−1)g(k) =

{
1 k is odd

−1 k is even.
(14)

Therefore,
m∑

k=1

(−1)g(k) = 1. (15)

If p is odd, then,

1− 2 + 3− 4− · · ·+ p =
p+ 1

2
.

In view of this formula, we have

m∑

k=1

(−1)g(k)k =
m+ 1

2
. (16)

If p is odd, then

1− 22 + 32 − 42 + · · ·+ p2 =
p(p+ 1)

2
.

So,
m∑

k=1

(−1)g(k)k2 =
m(m+ 1)

2
. (17)

By (15), (16), and (17),

m∑

k=1

(−1)g(k)(m− k)2 = m2 +
m(m+ 1)

2
−m(m+ 1)

=
m2 −m

2
.

(18)

Again by (15), (16) and (17), and by (18), we get

m∑

k=1

(−1)g(k)(2m2 − 6(m− k)2 + 1) = 2m2 − 6(
m2 −m

2
) + 1

= −m2 + 3m+ 1.

This completes the proof of (I1).
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We now prove (I2). Ifm is even, then by (10), (−1)k+g(k) = −1 for any k. Similarly,
if m is odd, then by (14), (−1)k+g(k) = −1 for any k. Thus we have,

m∑

k=1

(−1)k+g(k)(2m2 − 6(m− k)2 + 1) = (−1)
m∑

k=1

(−4m2 − 6k2 + 12mk + 1)

= (4m2 − 1)

m∑

k=1

1 + 6

m∑

k=1

k2 − 12m

m∑

k=1

k

= −3m2.

The proof of (I2) is complete.
We now prove (I3). Define δ := 2

∑m
k=1 αk − αm. Suppose m is even. Then by

(I1),
m∑

k=1

αk =
−3m2 + 3m

6(n− 1)
.

By definition,

αm = (−1)
n+1
2

2m2 + 1

6(n− 1)
.

Since m = n−1
2

and m is even, m+ 1 = n+1
2

is odd. Hence,

αm = −
2m2 + 1

6(n− 1)
.

Now,

δ =
1

6(n− 1)
(2(3m− 3m2) + 2m2 + 1)

=
6m− 4m2 + 1

6(n− 1)
.

If m is odd, then by (I1)
m∑

k=1

αk =
−m2 + 3m+ 1

6(n− 1)
.

Also, by definition

αm =
2m2 + 1

6(n− 1)
.

Now,

δ =
1

6(n− 1)
2(−m2 + 3m+ 1)− (2m2 + 1)

=
6m− 4m2 + 1

6(n− 1)
.

The proof of (I3) is complete.
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We now prove (I4). In view of (7),

αj−1 =
(−1)

n+(−1)(m−(j−1))

2 (2m2 − 6(m− (j − 1))2 + 1)

6(n− 1)
,

αj =
(−1)

n+(−1)(m−j)

2 (2m2 − 6(m− j)2 + 1)

6(n− 1)
,

αj−2 =
(−1)

n+(−1)(m−(j−2))

2 (2m2 − 6(m− (j − 2))2 + 1)

6(n− 1)
.

We note that

αj + αj−2 =
(−1)

n+(−1)(m−j)

2 (−8m2 − 12j2 + 24mj + 24j − 24m− 22)

6(n− 1)

=
(−1)j−1(8m2 + 12j2 − 24mj − 24j + 24m+ 22)

6(n− 1)
.

(19)

Also,

2αj−1 =
(−1)

n−(−1)(m−j)

2 (−8m2 − 12j2 + 24j + 24mj − 24m− 10)

6(n− 1)

=
(−1)j(8m2 + 12j2 − 24mj − 24j + 24m+ 10)

6(n− 1)
.

(20)

Adding equations (19) and (20), we get

2αj−1 + αj + αj−2 = (−1)j
2

n− 1
.

This proves (I4). The proof of (I5) is direct from (I2). This completes the proof.

5 Computation of L̃D

To prove the inverse formula, it is useful to compute L̃D precisely.

Lemma 2.

L̃D =




1− n

2

5− n

2
1′

1

2
1 M


 ,

where

M := Circ(
n(n− 2)

6(n− 1)
u−

1

2
1′ +

m∑

k=1

αkc
kD̃).

11



Proof. Direct multiplication of L̃ and D gives

L̃D =




1− n

2
A

B M


 ,

where

A =
n− 1

2
1′ −

1

2
1′D̃,

B =
n(n− 2)

6(n− 1)
1+

m∑

k=1

αkCk1,

M =
n(n− 2)

6(n− 1)
D̃ −

1

2
11′ +

m∑

k=1

αkCkD̃.

We now simplify A, B and M . Since D̃ = Circ(u), 11′ = Circ(1′) and CkD̃ =

Circ(ckD̃), we get

M = Circ(
n(n− 2)

6(n− 1)
u−

1

2
1′ +

m∑

k=1

αkc
kD̃).

To complete the proof, we need to show that

A =
5− n

2
1′ and B =

1

2
1.

By (4), D̃1 = 2(n− 3)1. So, A = n−1
2
1′ − (n− 3)1′. This gives

A =
5− n

2
1′.

To simplify B, we make the following observation first. If 1 ≤ k ≤ m−1, then the the
first row of Ck has exactly two ones and remaining entries equal to zero. On the other
hand, the first row of Cm has exactly one entry equal to one and remaining entries
equal to zero. Using this observation together with the fact that Ck is circulant, we
now get

Ck1 =

{
21 if k = 1, . . . , m− 1

1 if k = m.

So,

B =
n(n− 2)

6(n− 1)
1+ 2

m−1∑

k=1

αk1+ αm1

=
n(n− 2)

6(n− 1)
1+ 2

m∑

k=1

αk1− 2αm1+ αm1

=
n(n− 2)

6(n− 1)
1+ 2

m∑

k=1

αk1− αm1.

(21)

12



Let

δ = 2
m∑

k=1

αk − αm.

Then by (I3),

δ =
6m− 4m2 + 1

6(n− 1)
.

Hence (21) reduces to

B =
n(n− 2) + 6m− 4m2 + 1

6(n− 1)
1.

Since m = n−1
2
,

n(n− 2)− 4m2 + 6m+ 1 = 3n− 3.

So,

B =
1

2
1.

The proof is complete now.

5.1 The vectors ckD̃

We now compute the vectors c1D̃, . . . , cmD̃ which appear in the matrix M .

Lemma 3. c1D̃ = (2, 2, 3, 4, . . . , 4︸ ︷︷ ︸
n−6

, 3, 2) and c1D̃ ∈ ∆.

Proof. We first note that
c1 = (0, 1, 0, . . . , 0, 1).

So, c1D̃ is the sum of the second row and the last row of D̃. Let x be the second row
and y be the last row of D̃. Then,

x = (1, 0, 1, 2, . . . , 2) and y = (1, 2, . . . , 2, 1, 0).

Now, c1D̃ = x+y = (2, 2, 3, 4, . . . , 4︸ ︷︷ ︸
n−6

, 3, 2). To verify c1D̃ ∈ ∆ is direct. This completes

the proof.

Lemma 4.

cmD̃ = (2, . . . , 2︸ ︷︷ ︸
n−3
2

, 1, 0, 1, 2, . . . , 2),

and cmD̃ ∈ ∆.

13



Proof. We write cm:
cm = (0, . . . , 0︸ ︷︷ ︸

n−1
2

, 1, 0, . . . , 0).

Put j = n+1
2
. Then, cmD̃ is the jth row of D̃. This means that if (r1, . . . , rn) is the

(j + 1)th row of D, then cmD̃ = (r2, . . . , rn). The vertex wj+1 in Wn is adjacent to
w1, wj and wj+2. Thus,

rν =






0 if ν = j + 1

1 if ν = 1, j, j + 2

2 otherwise.

If (θ1, . . . , θn−1) = (r2, . . . , rn), then the above equation gives

θi =





0 if i = j

1 if i = j − 1, j + 1

2 otherwise.

As j = n+1
2

and cmD̃ = (θ1, . . . , θn−1), we conclude that

cmD̃ = (2, . . . , 2︸ ︷︷ ︸
n−3
2

, 1, 0, 1, 2, . . . , 2).

Again, cmD̃ ∈ ∆ is direct. This completes the proof.

Lemma 5.

cm−1D̃ = (4, . . . , 4︸ ︷︷ ︸
n−5
2

, 3, 2, 2, 2, 3, 4, . . . , 4︸ ︷︷ ︸
n−7
2

),

and cm−1D̃ ∈ ∆.

Proof. Since,
cm−1 = (0, . . . , 0︸ ︷︷ ︸

n−3
2

, 1, 0, 1, 0, . . . , 0︸ ︷︷ ︸
n−5
2

),

cm−1D̃ is the sum of (n−1
2
)th and (n+3

2
)th rows of D̃. Let these two rows be θ :=

(θ1, . . . , θn−1) and ρ := (ρ1, . . . , ρn−1) respectively.
Suppose (s1, . . . , sn) is the (

n+1
2
)th row of D. Then, (s2, . . . , sn) is the (

n−1
2
)th row

of D̃. The vertex wn+1
2

is adjacent to w1, wn+3
2

and wn−1
2

in Wn. Thus,

sν =





0 if ν = n+1
2

1 if ν = 1, n+3
2
, n−1

2

2 otherwise.
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As (θ1, . . . , θn−1) = (s2, . . . , sn),

θi =





0 if i = n−1
2

1 if i = n+1
2
, n−3

2

2 otherwise.

(22)

Suppose (t1, . . . , tn) is the (n+5
2
)th row of D. Then, (t2, . . . , tn) is the (n+3

2
)th row of

D̃. The vertex wn+5
2

is adjacent to w1, wn+3
2

and wn+7
2
. Thus,

tν =






0 if ν = n+5
2

1 if ν = 1, n+3
2
, n+7

2

2 otherwise.

As (ρ1, . . . , ρn−1) = (t2, . . . , tn),

ρi =






0 if i = n+3
2

1 if i = n+1
2
, n+5

2

2 otherwise.

(23)

By (22) and (23),

(cm−1D̃)i = (θ + ρ)i =





2 for i = n−1
2
, n+1

2
, n+3

2

3 for i = n−3
2
, n+5

2

4 otherwise.

We now show that cm−1D̃ ∈ ∆. Define

Ω1 := {
n− 1

2
,
n+ 1

2
,
n+ 3

2
},

Ω2 := {
n− 3

2
,
n− 5

2
},

Ω3 := {2, . . . , n− 1}r (Ω1 ∪ Ω2).

It is easy to see that, for each j = 1, 2, 3,

ν ∈ Ωj ⇐⇒ n+ 1− ν ∈ Ωj ,

and hence cm−1D̃ ∈ ∆. The proof is complete.

Lemma 6. Let 1 < k < m− 1. Define qk := ckD̃. If qk = (qk1 , . . . , q
k
n−1), then

qkj =





2 if j = k + 1, n− k

3 if j = k, k + 2, n− k − 1, n− k + 1

4 otherwise.

Furthermore, each qk ∈ ∆.
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Proof. Let 1 < k < m − 1. Since ck has 1 in the (k + 1)th and (n − k)th positions

and zeros elsewhere, qk is the sum of (k + 1)th and (n − k)th rows of D̃. Let these
rows be θ = (θ1, . . . , θn−1) and η = (η1, . . . , ηn−1) respectively. Let (s1, . . . , sn) be the
(k + 2)th row of D. The vertex wk+2 is adjacent to w1, wk+1 and wk+3.

We now have

sj =





0 if j = k + 2

1 if j = 1, k + 1, k + 3

2 otherwise.

As (θ1, . . . , θn−1) = (s2, . . . , sn),

θj =





0 if j = k + 1

1 if j = k, k + 2

2 otherwise.

(24)

Let (n− k + 1)th row of D be (t1, . . . , tn). Then,

tj =






0 if j = n− k + 1

1 if j = 1, n− k, n− k + 2

2 otherwise.

Because (η1, . . . , ηn−1) = (t2, . . . , tn),

ηj =





0 if j = n− k

1 if j = n− k − 1, n− k + 1

2 otherwise.

(25)

We now compute θ + η. Since 1 < k < m − 1, we have n − 2k > n − 2m + 1. As
n− 2m+1 = 2, n− 2k > 2. Thus, n− k− 1 > k+1. Combining this inequality with
the fact that k < m− 1, we have

k + 2 ≤ n− k − 2.

From (24) and (25), we immediately get

(θ + η)j =






4 if j = 1, . . . , k − 1

3 if j = k, k + 2

2 if j = k + 1.

(26)

If k + 2 < j ≤ n− k − 2, then θj = ηj = 2. So,

(θ + η)j = 4 for all k + 2 < j ≤ n− k − 2. (27)
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We note that

ηj =

{
1 if j = n− k − 1, n− k + 1

0 if j = n− k.
(28)

Since θj = 2 for all j > k + 2 and n− k − 1 > k + 2, we have

θj = 2 for all j ≥ n− k − 1. (29)

In view of (28) and (29),

(θ + η)j =

{
3 if j = n− k − 1, n− k + 1

2 if j = n− k.
(30)

Finally, from (24) and (25),

θj = 2 and ηj = 2 for all j > n− k + 1.

So,
(θ + η)j = 4 if n− k + 1 < j ≤ n− 1. (31)

By (26), (27), (30) and (31), we get

qkj =






2 if j = k + 1, n− k

3 if j = k, k + 2, n− k − 1, n− k + 1

4 otherwise.

We now show that qk ∈ ∆. For this, we partition the set Ω := {2, . . . , n − 1} into
three parts. Define Ω1 := {k + 1, n − k}, Ω2 := {k, k + 2, n− k − 1, n− k + 1} and
Ω3 := Ωr (Ω1 ∪ Ω2). Each Ωi has the property

ν ∈ Ωi ⇐⇒ n+ 1− ν ∈ Ωi.

Therefore, qk ∈ ∆.

5.2 Computation of
∑m

k=1 αkc
kD̃

To simplify M , we need to compute the linear combination

f :=
m∑

k=1

αkc
kD̃.

For 1 ≤ k ≤ m, define qk := ckD̃. We shall write qk := (qk1 , . . . , q
k
n−1) and f :=

(f1, . . . , fn−1). Now,

(f1, . . . , fn) =
m∑

k=1

αk(q
k
1 , . . . , q

k
n−1)

= (
m∑

k=1

αkq
k
1 , . . . ,

m∑

k=1

αkq
k
n−1).

We now compute f precisely.
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Lemma 7.

f1 =
3− n

n− 1
.

Proof. By Lemma 3, 4, 5 and 6, we have

qk1 =

{
2 if k = 1, m

4 if k = 2, . . . , m− 1.

In view of this,

f1 =

m∑

k=1

αkq
k
1

= 2α1 + 2αm + 4

m−1∑

k=2

αk

= 2α1 + 2αm + 4

m∑

k=1

αk − 4α1 − 4αm

= −2α1 − 2αm + 4
m∑

k=1

αk.

(32)

Let δ = 2
∑m

k=1 αk − αm. By (I3),

δ =
6m− 4m2 + 1

6(n− 1)
.

Therefore,

4

m∑

k=1

αk − 2αm =
−8m2 + 12m+ 2

6(n− 1)
. (33)

From (7),

α1 =
−4m2 + 12m− 5

6(n− 1)
. (34)

Substituting (33) and (34) in (32) gives

f1 =
2

n− 1
−

2m

n− 1
.

Since m = n−1
2
,

f1 =
3− n

n− 1
.

The proof is complete.
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Lemma 8.

f2 =
−n2 + 8n− 18

6(n− 1)
.

Proof. By Lemma 3, 4, 5 and 6,

qk2 =






2 if k = 1, m

3 if k = 2

4 otherwise.

This gives,

f2 = 2(α1 + αm) + 3α2 + 4
m−1∑

k=3

αk

= −2α1 − 2αm + 4
m∑

k=1

αk − α2

Put δ = 2
∑m

k=1 αk − αm. By (I3),

δ =
6m− 4m2 + 1

6(n− 1)
.

Now,
f2 = −2α1 + 2δ − α2.

We note that

α1 =
(−4m2 + 12m− 5)

6(n− 1)
and α2 =

4m2 − 24m+ 23

6(n− 1)
.

In view of the above equations,

f2 =
−2(−4m2 + 12m− 5) + 2(6m− 4m2 + 1)− (4m2 − 24m+ 23)

6(n− 1)

=
−4m2 + 12m− 11

6(n− 1)
.

As m = n−1
2
,

f2 =
−n2 + 8n− 18

6(n− 1)
.

Lemma 9. Let 2 < j ≤ n−3
2
. Then,

fj =





−2n2 + 10n− 18

6(n− 1)
if j is even

−2n2 + 10n+ 6

6(n− 1)
if j is odd.
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Proof. Let j be such that 2 < j ≤ n−3
2
. By Lemma 3,

q1j =

{
3 if j = 3

4 otherwise.

By Lemma 4,
qmj = 2.

In view of Lemma 5,

qm−1
j =

{
3 if j = m− 1

4 otherwise.

From Lemma 6,

1 < k <
n− 3

2
=⇒ qkj =





2 if j = k + 1

3 if j = k, k + 2

4 otherwise.

Together, all these equations give

qkj =






2 if j = k + 1 and 1 < k < n−3
2

2 if k = n−1
2

3 if j = 3 and k = 1

3 if j = k = n−3
2

3 if j = k, k + 2 and 1 < k < n−3
2

4 otherwise.

Thus,

qkj =






2 if k = j − 1, m

3 if k = j, j − 2

4 otherwise.

(35)

We need to compute

fj =

m∑

k=1

αkq
k
j

for 2 < j ≤ n−3
2
. By (I4),

2αj−1 + αj + αj−2 = (−1)j
2

n− 1
.
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Define Ω := {j − 2, j − 1, j,m}. By (35), we have

fj = 2αj−1 + 2αm + 3αj + 3αj−2 + 4
∑

k/∈Ω

αk

= −(2αj−1 + αj + αj−2)− 2αm + 4

m∑

k=1

αk

= −(−1)j
2

n− 1
− 2(αm − 2

m∑

k=1

αk)

= −(−1)j
2

n− 1
+

6m− 4m2 + 1

3(n− 1)
.

(36)

where the last two equations follow from (I3) and (I4). Replacing m by n−1
2

in (36),
we get

fj =






−2n2 + 10n− 18

6(n− 1)
if j is even

−2n2 + 10n+ 6

6(n− 1)
if j is odd.

The proof is complete.

Lemma 10.

fm =





−2n2 + 10n− 18

6(n− 1)
if m is even

−2n2 + 10n+ 6

6(n− 1)
if m is odd.

Proof. In view of Lemma 3, 4, 5 and 6, we have

qkm =





1 if k = m

2 if k = m− 1

3 if k = m− 2

4 otherwise.

(37)

We need to compute

fm =

m∑

k=1

αkq
k
m.
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By (37),

fm = 4
m−3∑

k=1

αk + 3αm−2 + 2αm−1 + αm

= 4
m∑

k=1

αk − αm−2 − 2αm−1 − 3αm

= 2(2

m∑

k=1

αk − αm)− αm − αm−2 − 2αm−1.

Define

δ := 2(
m∑

k=1

αk − αm) and γ := αm + αm−2 + 2αm−1.

In view of (I3) and (I4),

fm =
6m− 4m2 + 1

3(n− 1)
− (−1)m

2

n− 1
.

Upon substituting m = n−1
2
,

fm =





−2n2 + 10n− 18

6(n− 1)
if m is even

−2n2 + 10n+ 6

6(n− 1)
if m is odd.

The proof is complete.

Lemma 11.

fn+1
2

=





−2n2 + 10n+ 6

6(n− 1)
if m is even

−2n2 + 10n− 18

6(n− 1)
if m is odd.

Proof. In view of Lemma 3, 4, 5 and 6, we have

qkn+1
2

=






0 if k = m

2 if k = m− 1

4 otherwise.
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We now have

fn+1
2

=
m∑

k=1

αkq
k
n+1
2

= 4
m−2∑

k=1

αk + 2αm−1

= 4

m∑

k=1

αk − 2αm−1 − 4αm.

(38)

By (7),

αm = (−1)m+1 2m
2 + 1

6(n− 1)
and αm−1 = (−1)m

2m2 − 5

6(n− 1)
,

and hence,

2αm−1 + 4αm = (−1)m−1 4m
2 + 14

6(n− 1)
. (39)

Suppose m is even. Then by (I1), (38) and (39),

fn+1
2

=
4(−3m2 + 3m) + 4m2 + 14

6(n− 1)

=
−8m2 + 12m+ 14

6(n− 1)
.

Substituting m = n−1
2

gives

fn+1
2

=
−2n2 + 10n+ 6

6(n− 1)
.

Suppose m is odd. Then by (I1), (38) and (39),

fn+1
2

=
4(−m2 + 3m+ 1)− (4m2 + 14)

6(n− 1)

=
−8m2 + 12m− 10

6(n− 1)
.

Upon substituting m = n−1
2
,

fn+1
2

=
−2n2 + 10n− 18

6(n− 1)
.

This completes the proof.
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By Lemma 9, 10 and 11, we get

2 < j ≤
n+ 1

2
=⇒ fj =





−2n2 + 10n− 18

6(n− 1)
if j is even

−2n2 + 10n+ 6

6(n− 1)
if j is odd.

(40)

To this end, we have computed f1, . . . , fn+1
2
. We now deduce f .

Lemma 12. Define

f1 :=
3− n

n− 1
,

f2 :=
−n2 + 8n− 18

6(n− 1)
,

τ :=
−2n2 + 10n− 18

6(n− 1)
,

ω :=
−2n2 + 10n+ 6

6(n− 1)
.

Then,
f = (f1, f2, ω, τ, ω, τ, . . . , τ, ω, f2).

Proof. We begin with the following observation: If x, y ∈ ∆ and β ∈ R, then βx+y ∈
∆. We have shown that c1D̃, c2D̃, . . . , cmD̃ ∈ ∆. Thus,

f =

m∑

k=1

αkc
kD̃ ∈ ∆.

So, by Lemma 7, Lemma 8 and equation (40),

f = (f1, f2, ω, τ, ω, τ, . . . , τ, ω, f2).

The proof is complete.

5.3 Simplification of M

Using the values of f1, f2, ω and τ , we simplify the expression:

M = Circ(
n(n− 2)

6(n− 1)
u−

1

2
1′ + f).

Lemma 13.

M =
1

2
J − 2I +

2

n− 1
Circ(1,−1, 1,−1, . . . ,−1).

24



Proof. Define

h :=
n(n− 2)

6(n− 1)
u−

1

2
1′ + f.

Recall that u is given by (0, 1, 2, . . . , 2, 1). Now,

h1 = −
1

2
+

3− n

n− 1

= −
3

2
+

2

n− 1
.

(41)

Suppose j = 2, n− 1. Since f2 = fn−1 and u2 = un−1 = 1, we get

hj =
n(n− 2)

6(n− 1)
−

1

2
+

−n2 + 8n− 18

6(n− 1)

=
n− 3

n− 1
−

1

2

=
1

2
−

2

n− 1
.

(42)

If 2 < j < n− 1 is odd, then fj = ω and uj = 2. So,

hj =
2n(n− 2)

6(n− 1)
+

6 + 10n− 2n2

6(n− 1)
−

1

2

=
n+ 1

n− 1
−

1

2

=
1

2
+

2

n− 1
.

(43)

If 2 < j < n− 1 is even, then fj = τ and uj = 2. So,

hj =
2n(n− 2)

6(n− 1)
−

1

2
+

−2n2 + 10n− 18

6(n− 1)

=
n− 3

n− 1
−

1

2

=
1

2
−

2

n− 1
.

(44)

In view of (41), (42), (43) and (44),

h = (−
3

2
+

2

n− 1
,
1

2
−

2

n− 1
,
1

2
+

2

n− 1
, . . . ,

1

2
−

2

n− 1
).

Thus, h can be written

h =
1

2
(−3, 1, . . . , 1) +

2

n− 1
(1,−1, 1,−1, . . . ,−1).
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It is easy to see that

Circ(
1

2
(−3, 1, . . . , 1)) =

1

2
J − 2I.

Thus,

M = Circ(h) =
1

2
J − 2I +

2

n− 1
Circ(1,−1, 1,−1, . . . ,−1).

6 Inverse formula

We now prove our main result.

Theorem 1. Let Wn be a wheel graph with n vertices, where n is an odd integer. If
D is the distance matrix of Wn given by (3), then

D† = −
1

2
L̃+

4

n− 1
ww′,

where w = 1
4
(5− n, 1, . . . , 1)′.

Proof. We recall that v = (1,−1, 1,−1, . . . ,−1) and V = Circ(v). By Lemma 2 and
Lemma 13, we have

L̃D =




1− n

2

5− n

2
1′

1

2
1 1

2
J − 2I +

2

n− 1
V


 .

We write L̃D as 


5− n

2
− 2

5− n

2
1′

1

2
1 1

2
11′ − 2I


+

2

n− 1




0 0

0 V


 .

Thus,

L̃D =




5− n

2

5− n

2
1′

1

2
1

1

2
11′


− 2I +

2

n− 1




0 0

0 V


 .

By an easy verification,

2w1′
n =




5− n

2

5− n

2
1′

1

2
1

1

2
11′


 .
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Thus,

L̃D + 2I = 2w1′
n +

2

n− 1

[
0 0

0 V

]
. (45)

As,

D =

[
0 1′

1 D̃

]
,

where D̃ = Circ(u), by (4) we deduce,

Dw =
1

4
(n− 1)1n. (46)

Define

K := −
1

2
L̃+

4

n− 1
ww′.

To complete the proof, we show that KD is symmetric, DKD = D and KDK = K.
We first compute KD. By (45) and (46),

4

n− 1
ww′D = w1′

n,

−
1

2
L̃D = −w1′

n −
1

n− 1

[
0 0

0 V

]
+ I.

Adding the above two equations, we get

KD = I −
1

n− 1

[
0 0

0 V

]
. (47)

So, KD is symmetric.
Before proceeding further, we note that, since n is odd, uv′ = 0 and 1′v′ = 0.

Since D̃ = Circ(u) and V = Circ(v), D̃V = Circ(uV ). So, D̃V = O.
By (47), it follows that

DKD = D −
1

n− 1

[
0 1′V

0 D̃V

]

= D −
1

n− 1

[
0 0

0 D̃V

]

= D.

We now compute KDK. From (6), we recall the following observation for the special
matrices C1, . . . , Cm for Wn:

vCk =

{
(−1)k2v if k = 1, . . . , m− 1

(−1)mv if k = m.
(48)
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We claim that [
0 0

0 V

]
L̃ = O. (49)

By a direct computation, we have

[
0 0

0 V

]
L̃ =

[
0 0

0 N

]
,

where

N :=
n(n− 2)

6(n− 1)
V +

m∑

k=1

αkV Ck.

Since V = Circ(v) and V Ck = Circ(vCk),

N = Circ(
n(n− 2)

6(n− 1)
v +

m∑

k=1

αkvCk).

Using (48),
m∑

k=1

αkvCk = 2

m−1∑

k=1

(−1)kαkv + (−1)mαmv

= (2

m∑

k=1

(−1)kαk − (−1)mαm)v.

In view of (I5),
m∑

k=1

αkvCk =
2n− n2

6(n− 1)
v.

This implies N = O and the claim is proved.
As 1′v′ = 0, we have V 1 = 0. So,

[
0 0

0 V

]
w = 0. (50)

From equation (47), we obtain

KDK = K +
1

2(n− 1)

[
0 0

0 V

]
L̃−

4

(n− 1)2

[
0 0

0 V

]
ww′.

By (49) and (50), we get KDK = K. The proof is complete.
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7 Properties of the special Laplacian matrix

In this section, we obtain certain properties of the special Laplacian matrix. In
order to do this, we need a preliminary result. Define p := (p1, . . . , pn−2) and q :=
(q1, . . . , qn−2) by

pk :=





−1 if k = 1

−2 if k is even

0 else;

qk :=





−1 if k = 1

0 if k is even

−2 else.

Define an n× (n− 2) matrix by

C :=




2In−2

p

q



 .

We shall find a matrix X such that L̃DX = C. Define a vector y := (y1, . . . , yn−3) by

yk :=





−2 if k = 1

0 if k is even

−1 else;

and let Y := Circ(y).

Lemma 14. If

X :=
1

2




n− 7 (n− 5)1′
n−3

−1n−3 2Y
0 O


 ,

then L̃DX = C.

Proof. From (45), we have

L̃D + 2I = 2w1′
n +

2

n− 1

[
0 0

0 V

]

So,

L̃DX = 2w1′
nX − 2X +

2

n− 1

[
0 0

0 V

]
X. (51)

By an easy computation,

1′
n−3y = −2 −

n− 5

2
=

1− n

2
,
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and therefore,

1′
n−3Y =

1− n

2
1′
n−3.

Hence

1′X =
1

2

[
n− 7 + (n− 3)(−1) (n− 5)1′

n−3 + 21′
n−3Y

]

=
1

2

[
−4 (n− 5)1′

n−3 + (1− n)1′
n−3

]

= −21′
n−2.

(52)

Recall that V = Circ(v), where v = (1,−1, 1,−1, . . . ,−1) is a row vector with n− 1
components. Define a row vector ṽ with n− 3 components by

ṽ := (1,−1, 1,−1, . . . ,−1).

Let

R := [ṽ′,−ṽ′] and Q :=

[
1 −1

−1 1

]
.

Then V can be written

V =

[
Circ(ṽ) R

R′ Q

]
.

Therefore

[
0 0

0 V

]
X =

1

2




0 0 0

0 Circ(ṽ) R

0 R′ Q








n− 7 (n− 5)1′

n−3

−1n−3 2Y
0 O



 ,

=
1

2




0 0

0 2Circ(ṽY )
0 2R′Y


 .

(53)

By a direct verification, we see that

ṽY =
1− n

2
ṽ.

This gives

R′Y =
1− n

2
R′

From (53), we have

[
0 0

0 V

]
X =

1− n

2




0 0

0 Circ(ṽ)
0 R′


 . (54)
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From (51), (52) and (54), we have

L̃DX = −4w1′
n−2 − 2X −




0 0

0 Circ(ṽ)
0 R′




= −4w1′
n−2 −




n− 7 (n− 5)1′

n−3

−1n−3 2Y
0 O



−




0 0

0 Circ(ṽ)
0 R′





= −




5− n (5− n)1′
n−3

1n−3 Jn−3

12 121
′
n−3


−




n− 7 (n− 5)1′
n−3

−1n−3 2Y + Circ(ṽ)
0 R′


 .

Thus,

L̃DX = −




−2 0

0 Jn−3 + 2Y + Circ(ṽ)
12 121

′
n−3 +R′




= −




−2 0

0 Circ(1′
n−3 + 2y′ + ṽ)

12 121
′
n−3 +R′


 .

(55)

We note that
1′
n−3 + 2y′ + ṽ = (2, 0, 2, 0, . . . , 2, 0) + 2y′

= −2(1, 0, . . . , 0)′
(56)

and

121
′
n−3 +R′ = 2

[
1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

]
(57)

From (55), (56) and (57), we get

L̃DX = C.

The proof is complete.

We conclude the paper with the following theorem.

Theorem 2. The special Laplacian matrix L̃ has the following properties.

(i) L̃1n = 0.

(ii) rank(L̃) = n− 2.

(iii) If L̃† = [θij ], then dij = θii + θjj − 2θij.

(iv) L̃ is positive semidefinite.
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Proof. Using Definition 1, we have

L̃1n =

[
n−1
2

0

]
+

n(n− 2)

6(n− 1)

[
0
1

]
−

1

2

[
n− 1
1

]
+

m∑

k=1

αk

[
0

Ck1

]

=

[
0

−1
2
1+B

]

where B = n(n−2)
6(n−1)

1 +
∑m

k=1 αkCk1. From Lemma 2, B = 1
2
1. Hence L̃1n = 0. The

proof of (i) is complete.

We will now prove (ii). Since L̃ is symmetric and L̃1n = 0, all cofactors of L̃ are

equal. Let the common cofactor of L̃ be δ. By Theorem 1,

D† = −
1

2
L̃+

4

n− 1
ww′.

Using matrix determinant lemma,

det(D†) = det(−
1

2
L̃) +

4

n− 1
w′adj(−

1

2
L̃)w

= (−1)n−1 4

n− 1

1

2n−1
δ.

Hence δ = 0. So, rank(L̃) ≤ n − 2. In view of Lemma 14, rank(L̃) ≥ n − 2. Thus,

rank(L̃) = n− 2. This proves (ii).
To prove (iii), we first note that

Dw =
n− 1

4
1n, D†1n =

4

n− 1
w and 1′

nD
†1n =

4

n− 1
. (58)

Define

P := I −
1

n
J and G := −

1

2
PDP.

As 1′
nD

†1n > 0, by Theorem 3.1 in [9], we have

D† = −
1

2
G† +

1

1′
nD

†1n

(D†1n)(1
′
nD

†). (59)

From (58) and (59), we get

D† = −
1

2
G† +

4

n− 1
ww′. (60)

By our inverse formula,

D† = −
1

2
L̃+

4

n− 1
ww′ (61)
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Equations (60) and (61) imply

G† = L̃.

This gives

L̃† = G = −
1

2
PDP. (62)

By putting L̃† = [θij ], we see that equation (62) gives

dij = θii + θjj − 2θij .

This proves (iii).
Since D is a Euclidean distance matrix, by a well-known theorem of Schoenberg,

G is a positive semidefinite matrix. Hence, L̃ is positive semidefinite. This proves
(iv). The proof is complete.
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