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Abstract

Let W, denote the wheel graph having n-vertices. If ¢ and j are any two
vertices of W,,, define

0 ifi=jy
dij == q 1 ifiand j are adjacent
2 else.

Let D be the n x n matrix with (i, )" entry equal to d;;. The matrix D is
called the distance matrix of W,,. Suppose n > 5 is an odd integer. In this
paper, we deduce a formula to compute the Moore-Penrose inverse of D. More
precisely, we obtain an n x n matrix L and a rank one matrix ww’ such that

Here, Lis positive semidefinite, rank(i) = n — 2 and all row sums are equal to
Z€ero.
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1 Introduction

Let G be a connected graph with vertex set V' := {1,...,n}. Since G is connected, any
two vertices 7 and j in V' are now connected by a path in GG. Let the minimum length of
all such paths be denoted by d,;. The distance matrix of G is then the n xn symmetric
matrix with (i, 7)™ off-diagonal entry equal to d;; and all diagonal entries equal to
zero. Distance matrices of connected graphs have several interesting properties and
have applications in various fields like data communication, chemistry and biology.
Distance matrices have a wide literature. For a comprehensive introduction, we refer
to the survey article [1] and the monograph [2] and [3]. There are several interesting
problems on distance matrices. One of them is the following: If GG is a connected graph
and D is the distance matrix of GG, deduce a formula to compute the determinant and
the inverse of D. This problem originates from a well-known result of Graham and
Lovéasz [4]. To introduce this result, we need to recall the notion of the Laplacian
matrix of G. Define S := diag(sy, ..., s,), where s; is the degree of the vertex i in G.
Suppose A is the adjacency matrix of G. Then the matrix M := S — A is called the
Laplacian matrix of G with the following properties:



(M1) M is positive semidefinite.
(M2) All row sums of M are zero.
(M3) rank(M) =n — 1.

Suppose E is the distance matrix of a tree with n-vertices. According to Graham and
Lovész [4], X X
-1 !

E ——§L+mﬂ', (1)
where L is the Laplacian matrix of the tree and 7 = (2 — §1,...,2 — §,)" with §;
equal to the degree of the vertex 7. The remarkable feature of this formula is that the
inverse can be expressed just by using the adjacency matrix and the vertex degrees
of the tree. A question that arises now naturally is how to generalize formula (1) to
connected graphs other than trees. In the case of trees, there is an elegant identity
that connects the Laplacian with the distance matrix. If E = [e;;] and LT = [8;],
then

ei; = Bii + Bij — 2By, (2)
where LT is the Moore-Penrose inverse of the Laplacian L. All the known proofs for
(1) rely on the relation (2) either directly or indirectly and the properties (M1), (M2)
and (M3) of the Laplacian. If the connected graph is not a tree, then the identity
(2) does not hold and hence in general it is very difficult to get an elegant formula
similar to (1). However, for some special cases like weighted trees, complete graphs,
complete bipartite graphs and wheel graphs with even number of vertices, there are
formula in the spirit of (1): see [5, 6, 7].

Let W, be the wheel graph having n-vertices. In this paper, we assume n is
an odd integer. Suppose D is the distance matrix of W,,. Define a vector d :=
(0,1,—-1,1,-1,...,—1) € R". Then Dd = 0. So, det(D) = 0. We now deduce a
formula to compute the Moore-Penrose inverse of D which is similar to (1). Precisely,
we obtain a matrix L and a rank one matrix ww’ such that

1~ 4
D =L
2 +n—1

/
ww',

where L is positive semidefinite, rank(Z) =n — 2 and all row sums are equal to zero.
We also show that if LT = [6;;], then

dij — 9” + Hjj - 29”

2 Notation and conventions

e The notation n will always denote an odd positive integer which is at least 5 and
W,, will stand for the wheel graph with n number of vertices. The center of W,
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Figure 1: Wheel graph W

is labelled w;. All vertices other than w; lie in a cycle of length n — 1. We label
these vertices by ws, ws, ..., w,_1 such that (w;, w;+1) is an edge. For example,
see Figure 1. Since any other labelling of W,, leads to a distance matrix which
is permutation similar to D, without loss of generality, we fix this labelling.

All vectors are assumed to be column vectors unless stated otherwise. The
identity matrix of order n is denoted by I. If £ < n, we use I to denote the
identity matrix of order k.

We denote the vector of all ones in R"™! by 1 and the (n — 1) x (n — 1) matrix
of all ones by J. If v # n — 1, we use the notation 1, to denote the vector
of all ones in R” and .J, to denote the v X v matrix of all ones. As usual,
we use 0 to denote the scalar zero. To denote the zero vector (row/column),
we use the notation 0. A matrix with more than one row/column and having
all entries equal to zero is denoted by O. If (z1,...,x) is a row vector, then
Circ(xq, ..., zx) will be the circulant matrix with first row equal to (z1, ..., zy).

We reserve the letter u to denote the row vector (0,1,2,...,2,1) with n — 1
components. The distance matrix of W,, now has the form

DZHH, (3)

where D = Circ(u). We record the equation

D1=2(n—3)1 (4)

for later use. An n xn matrix A = [a;;] is an Euclidean distance matrix if there
exist z',2?, ..., 2" € R" such that a;; = (¢" — 27)' (2" — 27). By Theorem 12 in
8], it follows that D is an Euclidean distance matrix.



o L

et © = (x1,...,7,-1). We say that x follows symmetry with respect to the
(%)

b coordinate in its last n — 2 coordinates if # has the form
(ZIfl,LEQ,...,LU%,JZnTH,I%,...,SCg,SCQ),
or equivalently, x satisfies the equations
Ti=Tpi1—; foralle =23, ...,n—1.
We define

A={(xy,...,xp1) X =Tpi1; foralli=23,....n—1}.

e We fix m to denote 2. For each k € {1,2,...,m}, define (cf,...,cf_;) by

n—1

J

o 1 j=k+1lorj=n—k
0 otherwise.

Let c® = (ck ... ¢ _|) and C}, := Circ(c¥). By an easy verification,
Cy.D = Cire(c*D). (5)
We shall say that ¢!, ..., ¢™ are special vectors for W,, and C,Cs, ..., C,, are

special matrices for W,,. Each Cj, is symmetric. For ¢ € {1,2,...,n—1}, define

{ 1 ifiisodd
Vi =

1 if 7 is even.

Let v := (v1,v9,...,0,-1) and V := Circ(v). If k € {1,2,...,m — 1}, then each
column of U}, has exactly two ones and remaining entries equal to zero. Further,
k +1is odd if and only if n — k is odd. On the other hand, each column of C,,
has exactly one entry equal to one and remaining entries equal to zero. Further,
the first column of C,, has one in the even position if and only if m is even.
Also, each C}, is a Toeplitz matrix. In view of these observations, we get

(6)

1)k T _
oGy — (—1)"2v %fk: I....m—1
(=)™ if k=m.

3 Special Laplacian for W,

We now associate a special Laplacian L to W,,. This definition is motivated from
numerical computations.



Definition 1. For each k € {1,2,...,m}, define

glk) = —————
and (=1)9®(2m2 — 6(m — k)2 + 1)
o . (7)

6(n—1)
We say that the n x n matrix L defined by

~ n-loo nn—2)[0 0 1[0 1 - 0 0
— 2 _Z
L: [ 0 O}+6(n—1) 0 L.| 2[10 +;O"f e
is the special Laplacian of W,,.

In the rest of the paper, we reserve the notation aq,...,q,, for the numbers
obtained by substituting £ = 1,...,m respectively in the right hand side of the
equation (7).

3.1 Illustration for Wy and W-

The interconnection between the special Laplacian and the distance matrix for Wjs
and W7 is given now. Later, in our main result, we generalize the result mentioned
here to a general n.

e Consider Ws. The special vectors are now ¢! = (0,1,0,1) and ¢* = (0,0, 1,0)
and the special matrices are given by Circ(c') and Circ(c?). We have a; = %
and ay = —%. The special Laplacian for W5 can now be written easily using
the definition: _

16 -4 —4 -4 —4

-4 5 1 -3 1
L=-| —4 1 5 1 =3
-4 -3 1 5 1
—4 1 -3 1 5

The distance matrix D of Wj is given by

01111
1 01 21
D=|1101 2
12101
11210



By setting w := 3(0,1,1,1,1)’, we note that

1
4

-4 1 1 1 1

Ly 1 -1 0 1 0

— I =— | 1 —1 1
5 + ——ww 0 0 (8)

1 1 0 -1 0
1 0 1 0 -1

The Moore-Penrose inverse of D and the matrix in the right hand side of (8)
are equal. This can be verified directly.

Consider W;. There are three special vectors now. These are given by
' =(0,1,0,0,0,1), ¢*=(0,0,1,0,1,0), and ¢* = (0,0,0,1,0,0).

Using the special matrices C; = Circe(c'), Cy = Cire(c?) and C3 = Circ(c?)

and the numbers a; = ay; = —8 and a3 = &2, we compute the special
Laplacian for Wy:

_35 19
367 36 36

[ 108 —18 —18 —18 —18 —18 —18 ]
-18 35 -5 —-13 19 —-13 -5
-18 -5 35 -5 —-13 19 -13

L=—|-18 =13 -5 3 -5 —-13 19
-18 19 —-13 -5 35 -5 —13
-18 -13 19 -13 -5 35 -5

| 18 -5 —-13 19 —-13 —-5 35

The distance matrix D of W7 is given by

[0 1 111 1 17
1012221
1101222
D=[1210122
1221012
1222101
1122210
By setting w := 1(—2,1,1,1,1,1,1)’, we note that
24 3 3 3 3 3 3]
3 -8 2 4 —4 4 2
1. ] 3 2 -8 2 4 —4 4
——L+ ww' = — 3 4 2 -8 2 4 —4
2 n—l 81 3 4 4 2 8 2 4
3 4 -4 4 2 -8 2
| 3 2 4 -4 4 2 -8

The matrix on the right hand side of the above equation is the Moore-Penrose
inverse of D.



4 Main result

We are now ready to state our main result. The Moore-Penrose inverse of D is given
by

1~ 4
Dl = 2L '
5 + W, (9)
where w := i(S —n,1,...,1). Furthermore, L has the following properties:

(i) L is positive semidefinite.
(i) L1 = 0. That is, all row/column sums of L are zero.
(iii) rank(L) =n — 2.
In view of Section 3.1, the result is true for W5 and W;. We now proceed to show

that the result holds for any odd integer n. In the rest of the paper, we assume n > 9.

4.1 Some identities

To prove the main result, we need the following identities.

Lemma 1. Let n be odd and m = "T_l Define

Then the following are true.

—3m? + 3m if m is even
—m?+3m+1 if m is odd.

(L) Yo, (1)@ (2m? = 6(m — k)* + 1) = {
(Iy) Yoty (=1)F9®(2m? — 6(m — k)* + 1) = —3m>.

6m — 4m? + 1
I) 257 -y = ————————
( 3) Zk:l o « 6(n _ 1)

(Iy) If 7,5 — 1,5 — 2 belong to {1,2...,m}, then

o2
20éj_1 + Q; + Q9 = (_1)]72, — 1
(Is)
“ 2n — n?
2 Doy — (D)™, = ———.



Proof. We begin with the proof of (I;).
Case 1. Suppose m is even. Then,

(k) = "TH k is even
g 1l ks odd.
Since m + 1 = 2L and m is assumed to be even, we have

2

( 1)g(k) B {—1 k is even

Therefore,

k=1

1 kis odd.

We now use the formula: If p is even, then,

1-2+3—-4+

Applying this to (10), we get

> (=1
k=1
If p is even, then we know that
12 —27 43— ..
By this formula, we deduce
Z(_l)g(k)k2 -
k=1
By (11), (12) and (13),

NE

e
Il

1

(=1)®(2m? — 6(m — k)* 4 1)

p
B e —p = —2
b=
k) — I
2
5 plp+])
p= 2
~m(m+1)
2

=—6> (—1)*"(m — k)

k=1

— 12m Z(_l)g(k)k _ 62(_1)g(k)k2
k=1 k=1

—-m —m(m + 1)
=12 —
m(—2) — o~
= 3m — 3m?>.
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Case 2: Suppose m is odd. Then,

(—1)90) — { 1 kisodd

—1 kis even.

Therefore, "
D (1) =1
k=1
If p is odd, then,
1—2+3—4—~-~+p=2%1.

In view of this formula, we have

Z(_l)g(k)k — LH

m
2
k=1

If p is odd, then

1
So,
Z(—l)g(k)k‘2 — M
k=1 2
By (15), (16), and (17),
= 1
S (=12 (m — k)? = m? + % —m(m+1)
k=1
- mP—m
2

Again by (15), (16) and (17), and by (18), we get
m? —m

D (1M (@2m® — 6(m — k)* + 1) = 2m® — 6( 5

m
k=1

)+ 1

=-—m®>+3m+ 1.

This completes the proof of (I).



We now prove (I). If m is even, then by (10), (—1)¥*9*) = —1 for any k. Similarly,
if m is odd, then by (14), (—1)¥+9%) = —1 for any k. Thus we have,

S (=1 @m? —6(m — k) +1) = (-1) Y _ (—4m* — 6k + 12mk + 1)

k=1 k=1

:(4m2—1)§:1+6§:k2—12m§:k5
k=1 k=1

k=1

= —3m?.

The proof of (I3) is complete.
We now prove (I3). Define § := 2> " | ) — oy, Suppose m is even. Then by

(11)7

Xm:a —3m? + 3m
E= -
p 6(n—1)

By definition,

n+12m2+1
m=(—1)"72 ——.
“ (=1)= 6(n—1)
Sincem:"T_landmis even,m+1—"—+118 odd. Hence,
B 2m? + 1
m = 6(n—1)
Now,
1
§=———(2(3m — 3m?) +2m> + 1
6(n—1)((m m*) +2m° + 1)
_6m—4m2—|—1
6(n—1)
If m is odd, then by (I;)
zm: -m?+3m+1
p 6(n—1)
Also, by definition
2m? + 1
Ay = ————.
6(n—1)
Now,
1
§=——2(-m*+3m+1) - (2m* + 1
6(n—1)(m+m+> (2m* +1)
_6m—4m2+1
6(n—1)

The proof of (I3) is complete.

10



We now prove (I;). In view of (7),

n+(71)(m7(j71))

()= (@m*—6(m—(—1)°+1)

Y1 = 6(n—1) ’
n4+(—1 (m—j)
DT em? 6= )+ 1)
! 6(n—1) ’
n+(—1)(m=0-2)) )
O ) 2 (2m? — 6(m — (j —2))* +1)
i 6(n—1) '
We note that
et (=) (M=)
. (—1) = (=8m? — 1252 + 24mj + 245 — 24m — 22)
aj+ajg =
J -2 6(n — 1) (19)
(1) (8m? + 1252 — 24mj — 245 + 24m + 22)
B 6(n—1) '
Also,
n—(—1)(m=17) 9 9 . .
5 (—1) 2 (—8m* — 125° + 245 + 24myj — 24m — 10)
aj_q =
_(—1)(8m?* 4 125% — 24mj — 245 + 24m + 10)
B 6(n—1) '
Adding equations (19) and (20), we get
2

20éj_1 + Oéj + aj_g = (—l)jn — 1.

This proves (I;). The proof of (I5) is direct from (Iy). This completes the proof. [

5 Computation of LD

To prove the inverse formula, it is useful to compute LD precisely.

Lemma 2.
1-n 5—n
1/
— 2 2
LD = ,
1
-1 M
2
where
. . n(n - 2) 1 / - k7
M = Cer(mu — 51 + Zakc D)

k=1

11



Proof. Direct multiplication of L and D gives

]_ _
LD = ,
B M
where . )
A=""21_Z1D,
2 2

m

n(n —2)
6(n—1) ;

— N~ 1 m ~
n(n )D - —11, + ZakaD

M= "2
6(n—1) 2 —

We now simplify A, B and M. Since D = Circ(u), 11/ = Cire(1') and C,D =
Cire(ck D), we get

. n(n—2) 1, & s
M = ClI‘C(mU - 51 +;OK1€C D)

To complete the proof, we need to show that

5— 1
"1 and B= 51.

A=

By (4), D1 =2(n —3)1. So, A = "11" — (n — 3)1'. This gives

o—n 1
2

To simplify B, we make the following observation first. If 1 < k < m—1, then the the

first row of C} has exactly two ones and remaining entries equal to zero. On the other

hand, the first row of C,, has exactly one entry equal to one and remaining entries

equal to zero. Using this observation together with the fact that C} is circulant, we

A:

now get
21 if k= —1
Ckl . 1 ) , M
1 ifk=m
So,
m—1
n(n —2)
B = 1+2 apl + apl
6(n—1) ;
n(n — 2) “
= 2142 a1 - 20,1+ apl (21)
6(n—1) ;
n(n — 2) “
= 1 —+ 2 Oék]_ — Oém].
6(n—1) ;



Let .
0=2 Zak — Qe
k=1

Then by (I3), )
5= 6m —4m~ + 1
6(n—1)

Hence (21) reduces to

_ n(n—2)46m—4m?+ 1

B = 1.
6(n—1)
Since m = ”T_l,
n(n —2) —4m?+6m+1=3n — 3.

So,

1

B=-1.

2
The proof is complete now. O
5.1 The vectors ¢*D
We now compute the vectors 015, ceey ¢™D which appear in the matrix M.

Lemma 3. ¢!D = (2,2,3,4,...,4,3,2) and ¢'D € A.
—

n—6

Proof. We first note that
' =(0,1,0,...,0,1).

So, ¢' D is the sum of the second row and the last row of D. Let x be the second row
and y be the last row of D. Then,

z=(1,0,1,2,...,2) and y=(1,2,...,2,1,0).

Now, ¢'D = z+y = (2,2,3,4,...,4,3,2). To verify ¢! D € A is direct. This completes
——

n—6
the proof. O
Lemma 4. B
"D =(2,...,2,1,0,1,2,...,2),
H,'_/
nT%
and ™D € A.
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Proof. We write ¢™:

Put j = ”T“ Then, ¢™D is the 3™ row of D. This means that if (ri,...,r,) is the

i + 1) row of D, then D = ro,...,Tn). The vertex w;y; in W,, is adjacent to
J G+ ]
Wi, Wj and Wj42- T‘hU.S7

0 ifv=75+1
r, =11 ifv=147+2

2 otherwise.
If (01,...,0,-1) = (re,...,7,), then the above equation gives
0 ifi=j
;=<1 ifi=5j—-1,7+1
2 otherwise.

As j = ”T“ and ¢,,D = (b4,...,0,-1), we conclude that

"D =(2,...,2,1,0,1,2,...,2).
——

n—3
2

Again, ¢™D € A is direct. This completes the proof. O
Lemma 5. B
"D = (4%%%, 3,2,2,2,3,4, ;1..7,4),
3 =
and ¢ 'D € A.

Proof. Since,

¢ 1=(0,...,0,1,0,1,0,...,0),
(H,_/ \,_)

n—3 n—>5
2

¢™ 1D is the sum of (25H)™ and (2£2)™ rows of D. Let these two rows be 6 :=
(01,...,0,1) and p := (p1,..., pu_1) respectively.
Suppose (s1, ..., s,) is the (22)™ row of D. Then, (s,...,s,) is the (%)™ row

of D. The vertex wn+1 is adjacent to wy, wn+s and wn—1 in W,. Thus,
2 2 2

0 ifV:”TJrl

s, =41 ifv=1123 11

2 otherwise.
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As (91, .. .,en_1> = (82, .. .,Sn>,

0 ifi=251
_ s ntl n=3
97;— 1 lfl—%,T (22)
2 otherwise.
Suppose (1, ...,t,) is the (%£2)™ row of D. Then, (t,...,t,) is the (%52)™ row of
D. The vertex Wais is adjacent to wy, Wnis and Wit Thus
0 ifv= "TJFS
t, =41 ifv=1, "+3,”T+7
2 otherwise.
As (pl, e 7pn—1) = (tz, e ,tn),
0 ifi=2
_ s ntl ndd
pi=4q1 ifi= 1 (23)
2 otherwise.
By (22) and (23),
2 for i = 2t mgd, mi
(@™ 'D)i = (0+p)i =3 fori="152 nts
4  otherwise.
We now show that ¢™ 1D € A. Define
n— 1 n+1 n+3
0, —
1 { 9 ' 9 }>
n—>o
T}’
Qg = {2,,’)7,—1}\(Q1UQQ)
It is easy to see that, for each j = 1,2, 3,
ve; <= n+l-vely
and hence ¢ 1D € A. The proof is complete. O

Lemma 6. Let 1 < k < m — 1. Define ¢* := +D. If¢* = (¢¥ ...,q¢" ), then

2 ifj=k+1n—k
¢=1¢3 ifj=kk+2n—k—-1n—-k+1
4 otherwise.

Furthermore, each ¢* € A.
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Proof. Let 1 < k < m — 1. Since ¢* has 1 in the (k + 1) and (n — k)™ positions
and zeros elsewhere, ¢* is the sum of (k 4 1)™ and (n — k)™ rows of D. Let these
rows be 0 = (01,...,0,_1) and n = (11, ...,m,_1) respectively. Let (si,...,s,) be the
(k 4+ 2)™ row of D. The vertex wyo is adjacent to wy, wy, and wys.
We now have
0 ifj=k+2
s;=41 ifj=1k+1k+3
2 otherwise.

As (91, .. .,en_1> = (82, .. .,Sn>,

0 ifj=Fk+1
0, =<1 ifj=kk+2 (24)

2 otherwise.
Let (n —k + 1)™ row of D be (t,...,t,). Then,

0 ifj=n—-Fk+1
ti=<q1 ifj=1n—kn—Fk+2

2 otherwise.

Because (m1,...,10n—1) = (ta,. .., tn),

0 ifj=n—=k
nj=4q1 ifj=n—-k—1n—-k+1 (25)

2 otherwise.
We now compute € + 7. Since 1 < k < m — 1, we have n — 2k > n —2m + 1. As
n—2m+1=2 n—2k > 2. Thus, n—k—1> k+ 1. Combining this inequality with
the fact that k < m — 1, we have
k+2<n-—k-—2.
From (24) and (25), we immediately get

4 ifj=1,...,k—1
@+n); =<3 ifj=kk+2 (26)
2 ifj=k+1.

Ifk+2<j<n—k—2 then 6; =n; =2. So,

@+n); =4 forall k+2<j<n—k—2. (27)

16



We note that
1 fj=n—k—-1n—-k+1
W:{Oiwzn—k
Since 0; =2 forall j > k+2and n -k —1 >k + 2, we have
0; =2 forall j>n—-Fk—1
In view of (28) and (29),

(9+U)j={

Finally, from (24) and (25),
;=2 and n; =2 forallj>n—-Fk+1.

3 ifj=n—k—1ln—Fk+1
2 ifj=n—k.

So,
@+n);=4ifn—-k+1<j<n-1
By (26), (27), (30) and (31), we get
2 ifj=k+1n—k
=143 ifj=kk+2n—k—1n—k+1
4 otherwise.

(31)

We now show that ¢* € A. For this, we partition the set Q := {2,...,n — 1} into
three parts. Define 0y := {k+ 1,n —k}, Qo :={k,k+2,n—k—1,n—k+ 1} and

Q3 := QN (Q UQy). Each Q; has the property
vel, <= n+1-vel,.
Therefore, ¢* € A.

~

5.2 Computation of Y, axc*D

To simplify M, we need to compute the linear combination

f= i axc®D.
k=1

For 1 < k < m, define ¢* := ¢*D. We shall write ¢* := (¢, ..

(fis-- -, fam1). Now,

(.fla .. >.fn) = Zak(qlf> s aqz—l)
k=1

= (Z gy, ..., Zakqs_l).
k=1 k=1

We now compute f precisely.

17
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Lemma 7.

Proof. By Lemma 3, 4, 5 and 6, we have

s J2 ifk=1m
M=V ith=2. . m—1

In view of this,

m
k
fi= g Ak
k=1
m—1

:2a1+2am+42ak

2 (32)
=201 + 20, +4Zak — 4oy — 4oy,
k=1
= 201 — 200y, + 42 .
k=1
Let 6 =23 7" | a — am. By (Is),
5= 6m —4m? + 1
 6(n—1)
Therefore,
= —8m? 4+ 12m + 2
4 — 2, = .
; ay — 2« 6(n — 1) (33)
From (7),
—4m? +12m — 5
= ) 34
Qi 6(n—1) (34)
Substituting (33) and (34) in (32) gives
2 2m
o= n—-1 n-1
Since m = "T_l,
3—n
fi=——
The proof is complete. O
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Lemma 8.

—n? +8n — 18
fa= :
6(n—1)
Proof. By Lemma 3, 4, 5 and 6,
2 ifk=1m

=43 ifk=2
4 otherwise.

This gives,
m—1
fo=2(a1 + ) +3a2+4zak
k=3
— —20{1 — 20[m+4zak — Q2
k=1
Put § =2 Z?:l O — Q. By (13)7
5= 6m — 4m? + 1
 6(n—1)

Now,
fo=—2a1 + 26 — as.
We note that
(—4m? + 12m — 5) 4m?* — 24m + 23
6(n — 1) and ez = =577
In view of the above equations,

_ —2(—4m?* 4 12m —5) + 2(6m — 4m* + 1) — (4m? — 24m + 23)

o =

f2= 6(n—1)
B —4m? +12m — 11
6(n—1)
Asm = ”T_l,
—n? +8n — 18
fa=
6(n—1)
Lemma 9. Let 2 < j < "T_?’ Then,
—2n% 4+ 10n — 18 i i
if 7 1s even
6(n—1) J
fi=
—2n? 4+ 10n+6
f 7 is odd.
6n—1) if jis o
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Proof. Let j be such that 2 < j < "7_3 By Lemma 3,
g = 3 ifj=3
I 4 otherwise.
By Lemma 4,

In view of Lemma 5,

me1 )3 ifj=m-—1
4 14 otherwise.

From Lemma 6,

2 ifj=k+1
1<k<T:>qj: 3 fjg=kk+2
4 otherwise.

Together, all these equations give

(

ifj:k:—l—land1<k<"7_3

if k=251

2
2
qf: 3 %ftyiz?)andkzl
3 1fj:k::”T_3
3
4

ifj:k,k+2and1<k<"7_3

otherwise.

Thus,
2 itk=53—-1m
=43 ifk=jj—2
4 otherwise.

We need to compute
fi=2_owd
k=1
for 2 < j < 222, By (L),

2
n—1

2(1]'_1 + Oéj + Oéj_g = (—l)j

20
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Define Q := {j — 2,5 — 1,4,m}. By (35), we have

[i =201 + 200, + 30 + 300 + 4 Z ay,
k¢Q

= —(2aj_1 + o + j_2) — 20, + 42 Qy,
k=1

where the last two equations follow from (I3) and (I;). Replacing m by 251 in (36),
we get

—2n% 4+ 10n — 18 £
if 7 is even
6(n—1) J
fi=
—2n? 4+ 10n + 6
if 7 is odd.
6= 1) if 7is o
The proof is complete. O
Lemma 10.
—2n? +10n — 18 . _
if m is even
6(n—1)
fm -
—9In2
n+10n+ 6 if m is odd.
6(n—1)
Proof. In view of Lemma 3, 4, 5 and 6, we have
1 ifk=m
2 ifk=m-1
k
= 37
TN ifk=m—2 (37)
4 otherwise.

We need to compute

fm = Z akqlrfv,
k=1
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By (37),

m—3

fu =4 + Bt + 2001 + oy
k=1

m
=4 E QO — Qe — 2Q0—1 — 30y,
k=1
m

= 2(22 A — Q) — Oy — Q9 — 200y, 1.
k=1

Define .
0= 2(2 ag — Q) and ¥ 1= @ + Qg + 200, 1.
k=1
In view of (I3) and (I4),

6m —4m? + 1 2
4 3(n—1) (=1) n—1
Upon substituting m = "T_l,
—2n?4+10n—18 . |
if m is even
6(n—1)
fm =
—92n?
w100+ 6 if m is odd.
6(n—1)
The proof is complete.
Lemma 11.
—2n%2 4+ 10n +6 , _
if m is even
6(n—1)
fopr =
—2n% +10n —1
n+ 100 — 18 if m is odd.
6(n—1)

Proof. In view of Lemma 3, 4, 5 and 6, we have

0 ifk=m
¢Fa={2 iftk=m-1
2
4 otherwise.
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We now have

fn+1 = Z akqngl
k=1
m—2
=4 o+ 201 (38)
k=1
= 4Zak — 20—1 — 4au,.
k=1
By (7), , )
2m* +1 2m* —5
= (=)™ "~ and = (=1 -
am = ()" 5n gy wd ama = (D" gE =
and hence,
4m? + 14
201 + 4o, = (1) ———. 39
Suppose m is even. Then by (Iy), (38) and (39),
Faus = 4(—3m? + 3m) + 4m? + 14
= 6(n—1)
_ —8m’+12m + 14
B 6(n—1)
Substituting m = "T_l gives
Fanr = —2n? +10n + 6
" 6(n—1)
Suppose m is odd. Then by (Iy), (38) and (39),
o = 4(—=m? +3m+1) — (4m* + 14)
= 6(n—1)
_ —8m?+12m —10
B 6(n—1)
Upon substituting m = "T_l,
fas = —2n% +10n — 18
E 6(n—1)
This completes the proof. O

23



By Lemma 9, 10 and 11, we get

—2n% 4+ 10n—18 . .
if 7 is even
n+1 6(n —1)
2<j=— = fi= (40)
—2n? 4+ 10n+6 £ is odd
if 7 is odd.
6(n—1) J

To this end, we have computed fi, ..., fnTH . We now deduce f.

Lemma 12. Define
3—n
f1 =
—n?+8n—18
f2 = 5
6(n—1)
—2n% +10n — 18
T =
6(n—1) ’
—2n%2 +10n+6
W= )
6(n—1)

n—1

Then,
f = (flaf2>wa7_aw777'"aTawan)-

Proof. We begin with the following observation: If z,y € A and 8 € R, then Sz +y €
A. We have shown that ¢! D, %D, ..., c™D € A. Thus,
f= Z axc®D € A.
k=1
So, by Lemma 7, Lemma 8 and equation (40),
f = (f17f27w77-7wv7—7 H .,T,W,fg).

The proof is complete. 0

5.3 Simplification of M

Using the values of fi, fo, w and 7, we simplify the expression:

. n(n—2) 1
M = Cire(———u — =1 :
1rc(6(n_1)u 5 + f)
Lemma 13. ] N
M=-J—2l+ Cire(1,—1,1,~1,...,—1).
2 n—1
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Proof. Define
n(n —2) 1_,

Recall that w is given by (0,1,2,...,2,1). Now,

h:=

1 3—n
hy = —-

! 5 T h_1
3 9

2+n—1'

Suppose j = 2,n — 1. Since fo = f,_1 and us = u,,_1 = 1, we get

nn—2) 1 —-n*+8n—18

hy =~ =/ ___
7 6(n—1) 2" 6(n —1)
_n—3 1
T n—1 2
1 2
2 -1

If 2<j<n—1isodd, then f; =w and u; = 2. So,

h 2n(n —2) 6+ 10n—2n? 1
j:

_n+1 1
T n—1 2
1 2

2+n—1'

If 2<j<n-—1iseven, then f; = 7 and u; = 2. So,

6n—1)  6mn-1) 2

n(n—2) 1 —2n®+10n —18

/i S
7 6(n—1) 2" 6(n —1)
B n—3 1
n—1 2
1 2
2 n-1
In view of (41), (42), (43) and (44),
h—(3+ 2 1 2 1+ 2 1 2
V2 =12 n—-12 n-1""7"2 n-1
Thus, h can be written
h=ts, 21,1
- 2 Pt I n—l 9 - ) ) .

(41)

(42)

(43)

(44)



It is easy to see that

1 1
Circ(=(—-3,1,...,1)) = =J — 21.
lrc(2( il ? )) 2
Thus,
1 2
M = Cire(h) = 5J = 21 + ———=Cire(1, ~1,1,~1,..., ).
n_

6 Inverse formula

We now prove our main result.

Theorem 1. Let W, be a wheel graph with n vertices, where n is an odd integer. If
D is the distance matriz of W,, given by (3), then

where w = (5 —n,1,...,1).

Proof. We recall that v = (1,—1,1,—1,...,—1) and V = Circ(v). By Lemma 2 and
Lemma 13, we have

1—n 5—n1,
~ 2 2
LD =
1
-1 1J-2I v
2 2 + n—1
We write LD as
5 — 5 —
n_, oy 0 o
2 2 9
* n—1
1 _
= S Y 0V
Thus,
S5—n O5— ny
- 2 2 00
LD = — 21 + —]
2 2
By an easy verification,
o—mn 5—n1,
2 2
2wl! =
1 1
-1 -11’
2 2



Thus,

~ p

0 1/
D—llb}’

where D = Circ(u), by (4) we deduce,

As,

1
Dw = Z(n - 1)1,. (46)
Define ]
_ -7 /
K = 2L+n_1ww

To complete the proof, we show that KD is symmetric, DKD = D and KDK = K.
We first compute K D. By (45) and (46),

4

n—1

1~ , 1 [o o
—5LD = —ul, ~ {0 v

' /
ww' D =wl,,

— I.
n—1 ]_l_

Adding the above two equations, we get

1 o o
KD_J—m{O V]. (47)

So, KD is symmetric.
Before proceeding further, we note that, since n is odd, uwv’ = 0 and 1v" = 0.
Since D = Circ(u) and V' = Circ(v), DV = Circ(uV'). So, DV = O.
By (47), it follows that
1 0 1V
DKD=D— —— ~
n—1 { 0 DV }

1 0 0
:D‘m[o fw]
=D.

We now compute K DK. From (6), we recall the following observation for the special
matrices C4,...,C,, for W,:

—1)*2 itk=1,... -1
v = [V ik =1m )
(=)™ ifk=m.
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We claim that

By a direct computation, we have
0 0|~ 0 0
ov]i-[o ]

n(n — 2 =
—=V+ > V(.
n—1) ;

Since V' = Circ(v) and V Cj, = Circ(vCy),

where

~—

. n(n—2) -
N = CITC(WU + Z ak'UCk)

L

Using (48),

[y

Z apvCy = 2 Z(—l)kakv + (=) v
k=1

k=1

In view of (I5),

This implies N = O and the claim is proved.
As 1'v" = 0, we have V1 = 0. So,

l 8 ‘(/). } w = 0.
From equation (47), we obtain
1 0 0 |~ 4 0 0
KDK = K + —— _
+2(71—1)[0 v} (n—1)2[0 v

By (49) and (50), we get K DK = K. The proof is complete.
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7 Properties of the special Laplacian matrix

In this section, we obtain certain properties of the special Laplacian matrix. In

order to do this, we need a preliminary result. Define p := (p, ...

(qh ) qn—2) by

-1
Dk = —2
. 0
(-1
Qi = 0
[ —2
Define an n x (n — 2) matrix by

C =

We shall find a matrix X such that LDX = C. Define a vector y:= (y1,...

—2
Yr 1= 0
—1
and let Y := Circ(y).
Lemma 14. [If
1 n—"7
X == —-1,_
5 3

then LDX = C.
Proof. From (45), we have

LD +2I = 2wl

So,

ifk=1
if k is even

else;
ifk=1
if k is even

else.

2In—2

p
q

ifk=1
if k is even

else;

_'_2 0 0
n—110 V

- 2
LDX:2w1;X—2X+—{O 0 }X.

By an easy computation,

0V

n—1

,Pn—o) and q =

, Un—3) by



and therefore,

1—
Hence ]
X = 3 [n—=T+(n—=3)(-1) (n—5)1,_3+21, ;Y |
1
A N L RO 2
Recall that V' = Circ(v), where v = (1, —1,1,—1,...,—1) is a row vector with n — 1
components. Define a row vector v with n — 3 components by
v:=(1,-1,1,-1,...,—1).
Let
R= [0, ~T)and Q= | |
= [0, —7] an =1
Then V' can be written
v — Circ(v) R
= I 0
Therefore
0 0 1'0 0 0 n—17 (n—5)1"_,
[ 0V } X = 3 0 Circ(v) R 1,3 2Y ,
0 R Q 0 O
- (53)
1 0 0
| 0 2R'Y
By a direct verification, we see that
- 1—n_
vY = 5 nv.
This gives
Ry —1""p
2
From (53), we have
0 0
1— ~
{8 3})(:7” 0 Circ(®) | . (54)
0 R
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From (51), (52) and (54), we have

0 0
LDX = —4wl,_,—2X — | 0 Circ(?)
0 R
n—7 (n—>5)1/_4 0 0
=—4wl, ,— | —1,3 2Y — | 0 Circ(v)
0 @) 0 R
5—n (5—n)1)_, n—7 (n—=>5)1,_,
= — 1n—3 Jn_g — _1n—3 2Y + CII'C(:[]/)
1, 1,1, 0 R
Thus, i
~ —2 0
LDX = — 0 Jn—3 +2Y + Circ(v)
L L Ll 3+ R
[ —2 0
= — 0 Cire(1],_5 + 2y + )
L L 1,1, s+ R

We note that
1, ,+2y +0=(2,0,2,0,...,2,0) + 29

= —2(1,0,...,0)
and
, , f1010...10
Llis T /=211 ¢ 01
From (55), (56) and (57), we get
LDX = C.

The proof is complete.
We conclude the paper with the following theorem.

Theorem 2. The special Laplacian matrix L has the following properties.

(iii
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Proof. Using Definition 1, we have

~ n—1 nn—2)[0 1[n-1 “ 0
I, =| 2 [48n=2) -
{ 0 ]+6(n—1) 1] 2] 1 +;O"“ il
| ]
= 1
114 B
where B = Z((Z:f))l + >, ayCyl. From Lemma 2, B = %1. Hence L1, = 0. The

proof of (i) is complete. N N N
We will now prove (ii). Since L is symmetric and L1, = 0, all cofactors of L are
equal. Let the common cofactor of L be . By Theorem 1,

1~ 4

T _Z !

D 2L + pamrC LS
Using matrix determinant lemma,
det(D) = det(—~ L) + ——uradi(—+Lyw
2 n—1 2
4 1
= (-1 6.
(=1) n— 1271

Hence § = 0. So, rank(L) < n — 2. In view of Lemma 14, rank(L) > n — 2. Thus,
rank(L) = n — 2. This proves (ii).
To prove (iii), we first note that

1 4
pw="""1, Df1,= w and 1.D'1, = . (58)
n—1 n—1
Define ] ]
P:=1——-J and G:=—=PDP.
n 2
As 1/, D'1,, > 0, by Theorem 3.1 in [9], we have
1
Dl = ——G1 D'1,)(1,,D").
From (58) and (59), we get
1 4
T _ ot !
D 2G + L (60)
By our inverse formula,
1~
Dl =—_L ! 61
2 a1 (61



Equations (60) and (61) imply N
G'=L.
This gives
L'=G= —%PDP. (62)

By putting LT = [0;;], we see that equation (62) gives
dij - 0“ + ejj - 292]

This proves (iii).

Since D is a Fuclidean distance matrix, by a well-known theorem of Schoenberg,
(G is a positive semidefinite matrix. Hence, L is positive semidefinite. This proves
(iv). The proof is complete. O
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