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Abstract

In the setting of Euclidean Jordan algebras, we study the Lipschitz continuity of the solution map of

linear complementarity problems. We show that if the solution map is Lipschitz continuous and if the linear

transformation has the Q-property, then the linear transformation has the positive principal minor property.
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1. Introduction

A real n × n matrix M is said to be a P-matrix if every principal minor of M is positive. It is

well-known that this property can be described in any one of the following ways:

1. For all q ∈ Rn, the linear complementarity problem LCP(M, q) has a unique solution.

2. The map q �→ SOL(M, q) is single valued and Lipschitzian on Rn, where SOL(M, q) denotes

the solution set of LCP(M, q).

3. For any q ∈ Rn, SOL(M, q) is nonempty and the set-valued map q �→ SOL(M, q) is

Lipschitzian.
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In this article, we study an analog of the above for a linear transformation defined on a Euclidean

Jordan algebra, which is a finite dimensional inner product space equipped with a Jordan product,

the corrresponding (symmetric) cone of squares. The space Sn of all n × n real symmetric matrices

is an example of a Euclidean Jordan algebra where Sn
+ is the set of all positive semidefinite matrices

in Sn is the cone of squares. Given a Jordan frame {e1, . . . , er} in a Euclidean Jordan algebra V

and a linear transformation L on V . Gowda et al. [9] introduced the concept of a principal sub-

transformation for L by restricting L to the eigenspace V (l) = {x ∈ V : x ◦ (e1 + · · · + el) = x}.

A principal minor of L is then the determinant of this restriction. This is a modified version of

the concept of a principal minor in Euclidean Jordan algebra, see [9].

Given a Euclidean Jordan algebra V , a symmetric cone K in V , a linear transformation L :

V → V and q ∈ V , the linear complementarity problem LCP(L, q) is to find a vector x ∈ V such

that

x ∈ K, y :=L(x) + q ∈ K, and 〈x, y〉 = 0.

If K = Rn
+, the problem is well understood and well-studied, see [2]. A linear complementarity

problem is a special case of variational inequality problem which appears in many applications,

see [3].

One of the unsolved problems in the linear complementarity theory is the characterization

of global uniqueness of solutions: find a necessary and sufficient condition on L so that for all

q ∈ V , LCP(L, q) has a unique solution. This is related to the question of global invertibility of

the normal map x �→ L(x+) + x − x+ on V . When K is polyhedral, there is a well-known result

of Robinson [13] that describes the invertibility of the normal map in terms of the determinants

of a certain collection of matrices. In the case when V = Rn, says that for a real square matrix M ,

LCP(M, q) has a unique solution for all q ∈ Rn iff M is a P-matrix. Murthy et al. [12] proved that

M is a P-matrix iff the LCP(M, q) has a solution for all q ∈ V and the map q �→ SOL(M, q) is

Lipschitzian. Gowda and Sznajder [6] further generalized this result to affine variational inequality

problems. However, when K is nonpolyhedral, we do not have an analog of this result. In relation

to this, Gowda et al. [9], proved the following result: if LCP(L, q) has a unique solution for all

q ∈ V and if q �→ SOL(L, q) is Lipschitzian then L has the positive principal minor property. As

SOL(L, q) is a single valued map in this case, the normal map is a Lipschitzian homeomorphism

and by using techniques from nonsmooth analysis, Gowda et al. [9] proved that the determinant

of the linear transformation L and its principal minors are positive. Motivated by the above

result, we ask whether this result holds if SOL(L, q) has a solution for all q ∈ V and if the

map q �→ SOL(L, q) is Lipschitzian. In this article, we prove this result. In the case of standard

LCP, the continuity of the solution map is well-studied, see [2,5]. However when the cone is

nonpolyhedral, only few results are known.

In Section 2, we present some background material. In Section 3, we obtain our main result

and in the end, we make a note on Lyaounov-like transformations.

2. Preliminaries

2.1. The projection map

Consider a finite dimensional inner product space (H, 〈·, ·〉) and a closed convex cone K in

H . This K induces a (partial) order on H :

x � y ⇔ y − x ∈ K.
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We use the notation x < y when y − x ∈ int K (if exists). Corresponding to K , let �K denote

the metric projection onto K: For an x ∈ H , x∗ = �K(x) iff x∗ ∈ K and ‖x − x∗‖ � ‖x − y‖

for all y ∈ K . Let K∗ :={x : 〈x, y〉 � 0 ∀x, y ∈ K} denote the dual cone of K . We then have the

Moreau decomposition [9]: Any x ∈ H can be written as

x = �K(x) − �K∗(−x) with 〈�K(x), �K∗(−x)〉 = 0.

Also, x = x1 − x2 with x1 ∈ K , x2 ∈ K∗ and 〈x1, x2〉 = 0 if and only if x1 = �K(x) and x2 =

�K∗(−x).

Definition 1. Suppose that K is a closed convex cone in H . Assume that K is self-dual, i.e.,

K∗ = K . For any x ∈ H , we define the nonnegative part of x and the nonpositive part of x, by

x+ = �K(x) and x− = x+ − x.

The following result is well-known:

Proposition 1. Let K be a closed convex self-dual cone in H. Then for any element x ∈ H,

x = x+ − x−, x+, x− � 0, and 〈x+, x−〉 = 0. This decomposition is unique.

2.2. Euclidean Jordan algebras

In this section, we recall some basic concepts of Euclidean Jordan algebras. We refer to Faraut

and Korányi [4] for details. A Euclidean Jordan algebra is a triple (V , ◦, 〈·, ·〉) where (V , 〈·, ·〉) is

a finite dimensional real Hilbert space and (x, y) �→ x ◦ y : V × V → V is a bilinear mapping

satisfying the following conditions:

(a) x ◦ y = y ◦ x for all x, y ∈ V ,

(b) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 :=x ◦ x, and

(c) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V .

In addition, we assume that there is an element e ∈ V such that x ◦ e = x for all x ∈ V . The

element e is called the unit element in V . Henceforth, we assume that V is a Euclidean Jordan

algebra with the unit element and call x ◦ y the Jordan product of x and y. In V , the set of squares

K = {x ◦ x : x ∈ V }

is a symmetric cone. This means that K is a self-dual closed convex cone and for any two elements

x, y ∈ int K , there exists an invertible linear transformation � : V → V such that �(K) = K and

�(x) = y.

For an element z ∈ V , we write

z � 0 ⇔ z ∈ K,

and z � 0 when −z � 0. We write z > 0 if z ∈ int K .

For x ∈ V , we define

m(x) := min{k > 0 : {e, x, x2, . . . , xk} is linearly independent}

and rank of V by r = max{m(x) : x ∈ V } (by x2 we mean x ◦ x).
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An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it is nonzero and

cannot be written as a sum of two nonzero idempotents. We say that a finite set {e1, . . . , em} of

primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 if i /= j and e1 + · · · + em = e.

It is easy to note that 〈ei, ej 〉 = 〈ei ◦ ej , e〉 = 0 whenever i /= j .

Theorem 1. Let V be a Euclidean Jordan algebra with rank r. Then for every x ∈ V, there exists

a Jordan frame {e1, . . . , er} and real numbers λ1, . . . , λr such that

x = λ1e1 + · · · + λrer . (1)

The numbers λi are called the eigenvalues of x.

The expression λ1e1 + · · · + λrer is the spectral decomposition of x. Given (1), it can be

verified that

x+ =

r∑

i=1

λ+
i ei and x− =

r∑

i=1

λ−
i ei .

It is easy to show that if x � 0, then every eigenvalue of x is nonnegative. We say that an element

x is invertible, if every eigenvalue of x is nonzero.

Example 1. Let Sn be the set of all n × n real symmetric matrices with the inner and Jordan

product given by

〈X, Y 〉 := trace(XY) and X ◦ Y =
1

2
(XY + YX).

In this setting, the cone of squares Sn
+ is the set of all positive semidefinite matrices in Sn.

The identity matrix is the unit element. The set {E1, . . . , En} is a Jordan frame in Sn where Ei

is the diagonal matrix with 1 in the (i, i)-slot and zeros elsewhere. The rank of Sn is n. Given

any X ∈ Sn, there exists an orthogonal matrix U with columns u1, u2, . . . , un and a real diagonal

matrix D = diag(λ1, . . . , λn) such that X = UDUT. Clearly, X =
∑n

i=1 λiuiu
T
i .

Example 2. Consider Rn (n > 1), where any element x can be written as

x =

[
x0

x̄

]

with x0 ∈ R and x̄ ∈ Rn − 1. The inner product in Rn is the usual inner product. The Jordan

product x ◦ y in Rn is defined by

x ◦ y =

[
x0

x̄

]
◦

[
y0

ȳ

]
:=

[
〈x, y〉

x0ȳ + y0x̄

]
.

We shall denote this Euclidean Jordan algebra (Rn, ◦, 〈·, ·〉) by Ln. In this algebra, the cone

of squares, denoted by Ln
+, is called the Lorentz cone (or the second order cone). It is given by

Ln
+ = {x : ‖x̄‖ � x0}.

Definition 2. Let x ∈ V . We define the corresponding Lyapunov transformation Lx : V → V by

Lx(z) = x ◦ z.
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Definition 3. We say that x and y operator commute if Lx and Ly commute, i.e.,

LxLy = LyLx .

It is known that x and y operator commute if and only if x and y have their spectral decompositions

with respect to a common Jordan frame [4].

We recall the following from Gowda et al. [9]

Proposition 2. For x, y ∈ V the following are equivalent:

(a) x � 0, y � 0, and 〈x, y〉 = 0, and

(b) x � 0, y � 0, and x ◦ y = 0.

2.3. Simple Jordan algebras and the structure theorem

A Euclidean Jordan algebra is said to be simple if it is not the direct sum of two Euclidean

Jordan algebras. The classification theorem [3] says that every simple Euclidean Jordan algebra

is isomorphic to one of the following:

(a) The algebra Sn of n × n real symmetric matrices.

(b) The algebra Ln (Example 2).

(c) The algebra H n of all n × n complex Hermitian matrices with trace inner product and

X ◦ Y = 1
2 (XY + YX).

(d) The algebra Qn of all n × n quaternion Hermitian matrices with trace inner product and

X ◦ Y = 1
2 (XY + YX).

(e) The algebra O3 of all 3 × 3 octonion Hermitian matrices with trace inner product and

X ◦ Y = 1
2 (XY + YX).

The following result characterizes all Euclidean Jordan algebras.

Theorem 2 (Faraut and Korányi [3]). Any Euclidean Jordan algebra is, in a unique way, a direct

sum of simple Euclidean Jordan algebras. Moreover, the symmetric cone in a given Euclidean

Jordan algebra is, in a unique way, a direct sum of symmetric cones in the constituent simple

Eulcidean Jordan algebras.

2.4. The Peirce decomposition

Fix a Jordan frame {e1, . . . , er} in a Euclidean Jordan algebra V . For i, j ∈ {1, . . . , r}, define

the eigenspaces

Vii = {x ∈ V : x ◦ ei = x} = Rei

and when i /= j ,

Vij :=

{
x ∈ V : x ◦ ei =

1

2
x = x ◦ ej

}
.

Theorem 3 (Faraut and Korányi [4]). The space V is the orthogonal direct sum of spaces Vij

(i � j). Furthermore,
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Vij ◦ Vij ⊂ Vii + Vjj ,

Vij ◦ Vjk ⊂ Vik if i /= k,

Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given any Jordan frame {e1, . . . , er}, we can write any element x ∈ V as

x =

r∑

i=1

xi +
∑

i<j

xij ,

where xi ∈ Rei and xij ∈ Vij .

2.5. Principal subtransformations and principal minors

Given a Jordan frame {e1, . . . , er} in V , we define

V (l) :=V (e1 + · · · + el, 1) = {x ∈ V : x ◦ (e1 + · · · + el) = x}

for all 1 � l � r . Corresponding to V (l), we consider the (orthogonal) projection P (l) : V →

V (l). For a given linear transformation L : V → V , the transformation P (l)L : V (l) → V (l) is a

principal subtransformation of L corresponding to {e1, . . . , el}, and is denoted by L{e1,...,el}.

We call the determinant of L{e1,...,el} a principal minor of L. If all the principal minors of

L are positive, then we say that L has positive principal minor property, see [9]. This is a

modified version of the concept of principal minor of an element in a Euclidean Jordan alge-

bra. Note that for a given Jordan frame {e1, . . . , er} we can permute the objects and select the

first l objects (for any 1 � l � r). Thus there are 2r − 1 principal subtransformations (minors)

corresponding to a Jordan frame. For examples and illustration of this concept, we refer to

[9].

2.6. Automorphisms

A linear transformation � : V → V is said to be an automorphism of V if � is invertible and

�(x) ◦ �(y) = �(x ◦ y) for all x, y ∈ V . The set of all automorphisms is denoted by Aut(V ).

A linear transformation � : V → V is said to be an automorphism of K if �(K) = K . We

denote the set of all automorphisms of K by Aut(K).

2.7. Definition

Let L : V → V be a linear transformation and q ∈ V . The linear complementarity problem

LCP(L, q) is: Find x ∈ V such that

x ∈ K, y :=L(x) + q ∈ K and 〈x, y〉 = 0.

In view of Proposition 2, we can replace 〈x, y〉 = 0 by x ◦ y = 0. This condition is called com-

plementarity condition. We denote the set of all solutions of LCP(L, q) by SOL(L, q). We say

that L has

1. The R0-property if SOL(L, 0) = {0}.

2. The Q-property if SOL(L, q) /= ∅ for all q ∈ V .
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3. The Lipschitzian property if the map q �→ SOL(L, q) satisfies the following condition:

There exists a constant C > 0 such that

SOL(L, q) ⊆ SOL(L, q ′) + C‖q − q ′‖B (2)

for all q, q ′ ∈ V satisfying SOL(L, q) /= ∅ and SOL(L, q ′) /= ∅. Here B is the closed unit

ball in V .

4. The positive principal minor property if every principal minor of L is positive.

5. The strong monotonicity property if 〈v, L(v)〉 > 0 for all nonzero v ∈ V .

6. The Lipschitzian Q-property if L has the Lipschitzian and Q-property.

For G ⊆ V , we denote by int G, the topological interior of the set G in V . The boundary of G is

denoted by �G.

The following result is well-known, see [9].

Proposition 3. Let L : V → V be linear. Then

1. L has the R0-property if and only if SOL(L, q) is a compact set for all q ∈ V.

2. If SOL(L, e) = {0} and if L has the R0-property, then L has the Q-property.

3. If L has the strong monotonicity property, then L has the Lipschitzian property.

3. Main results

We now prove our main result.

Theorem 4. If L has the Lipschitzian Q-property, then L has the positive principal minor

property.

The proof of the above theorem is based on the following lemmas. The following lemma is

proved for the Euclidean Jordan algebra Sn (Example 5), see Lemma 2.4 [1]. We now generalize

this result.

Lemma 1. If L has the Lipschitzian Q-property, then L is invertible.

Proof. Suppose LT(x) = 0 for some nonzero x ∈ V . Let q := − L(e) and qm be a sequence such

that qm → q and for each m, 〈qm, x〉 /= 0. Since L has the Lipschitzian Q-property, there exists

xm ∈ SOL(L, qm) such that

e ∈ xm + C‖qm − q‖B

for all m. This means that xm > 0 for large m. Let ym :=L(xm) + qm. Now from the complemen-

tarity condition xm ◦ ym = 0, it follows that, for large m, ym = 0 and hence 〈ym, x〉 = 0. This

implies that 〈x, qm〉 = 0 which is a contradiction. Therefore, L must be invertible. �

Lemma 2. Let {e1, . . . , er} be a Jordan frame in V and for x ∈ V, let x =
∑r

i=1 xi +
∑

i<j xij

be the Peirce decomposition of x. Then we have the following:

(a) If x � 0, then P (l)(x) ∈ K(l).

(b) If x > 0, then P (l)(x) ∈ int K(l).



90 R. Balaji / Linear Algebra and its Applications 426 (2007) 83–95

(c) If x � 0 and xk = 0 for some index k, then
∑

k<j xkj +
∑

i<k xik = 0.

(d) Let {xn} be a convergent sequence in K. Suppose xn :=
∑r

i=1 xn
i +

∑
i<j xn

ij be the peirce

decomposition of xn. If xn
k → 0 for some index k, then yn :=

∑
k<j xn

kj +
∑

i<k xn
ik → 0.

Proof. The proof of (a), (b) and (c) are given in [7]. Item (d) easily follows from (c) and the fact

that K is a closed set. �

Lemma 3. If L has the Lipschitzian Q-property, then every principal subtransformation of L

with respect to any Jordan frame has the Q-property.

Proof. Fix a Jordan frame {e1, . . . , er} in V . Now consider the principal subtransformation cor-

responding to {e1, . . . , er−1}. Let l = r − 1 and T :=L{e1,...,el}. Suppose q ∈ V (l). We claim that

LCP(T , q) has a solution. Let qk = q + ker and q ′
k = ker . Since q ′

k � 0, 0 ∈ SOL(L, q ′
k). Since

L has the Lipschitzian Q-property, there exists xk ∈ SOL(L, qk) such that

0 ∈ xk + C‖q ′
k − qk‖B.

From the above inclusion, ‖xk‖ � C‖q‖. This means that the sequence {xk} is bounded. Without

any loss of generality, let xk → x∗.

We now write the Peirce decomposition of xk with respect to the Jordan frame {e1, . . . , er}.

Let

xk =

r∑

i=1

xk
i +

∑

i<j

xk
ij ,

where xk
i ∈ Rei and xk

ij ∈ Vij . Let the Peirce decomposition of L(xk) be

L(xk) =

r∑

i=1

yk
i +

∑

i<j

yk
ij ,

where yk
i ∈ Rei and yk

ij ∈ Vij . Since xk is bounded, xk
i , xk

ij , yk
i and yk

ij must be bounded. From

the complementarity condition 〈xk, L(xk) + qk〉 = 0 and the orthogonality of Vij , it follows that,

kxk
r + pk = 0

for some bounded sequence {pk} in V . Hence xk
r → 0. Therefore from item (d) of the previous

lemma
∑

r<j xk
rj +

∑
i<r xk

ir → 0. Thus x∗ ∈ K(l).

Let zk :=L(xk) + qk . By a direct calculation,

zk ◦ (e1 + · · · + el) = P (l)(zk) =

l∑

i=1

yk
i +

∑

i<j�l

yk
ij + q, (3)

and thereforeP (l)(zk) → T (x∗) + q. Note that zk � 0 and hence by the previous lemmaP (l)(zk) ∈

K(l). This means that T (x∗) + q ∈ K(l).

Since xk ◦ zk = 0, 〈xk, zk ◦ (e1 + · · · el)〉 = 0. Therefore, from Eq. (3), 〈xk, P
(l)(zk)〉 = 0.

Now xk → x∗ and P (l)(zk) → T (x∗) + q. This implies that 〈x∗, T (x∗) + q〉 = 0. Thus, x∗ ∈

SOL(T , q). It is easy to note that if l < r − 1, then the same argument can be repeated. This

completes the proof. �

Lemma 4. If L has the Lipschitzian Q-property, then every principal subtransformation

of L with respect to any Jordan frame has the Lipschitzian property.
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Proof. Let {e1, . . . , er} be a Jordan frame in V . Suppose l = r − 1 and T = L{e1,...,el}. We claim

that T has the Lipschitzian property. By the above lemma, T has the Q-property. Let p, q ∈

V (l) and y ∈ SOL(T , p). Because L has the Lipschitzian property, there exists C > 0 satisfying

relation (2). We claim that there exists x∗ ∈ SOL(T , q) such that ‖y − x∗‖ � C‖p − q‖.

By Peirce decomposition,

L(y) =

r∑

i=1

zi +
∑

i<j

zij and p =

r∑

i=1

pi +
∑

i<j

pij .

Now it is easy to verify that T (y) =
∑l

i=1 zi +
∑

i<j�l zij . We now set

q ′
k :=p −

r−1∑

i=1

zir + ker .

Now vk :=L(y) + q ′
k = T (y) + p + ker + zr . As zr is a scalar multiple of er , for all large k,

ker + zr � 0. Now T (y) + p � 0 and hence for all large k, vk � 0.

Since y ∈ V (l), y ◦ (zr + ker) = 0. From the complementarity condition we have y ◦ (T (y) +

p) = 0. Therefore, y ◦ vk = 0. Thus y ∈ SOL(L, q ′
k) for all large k.

Letq∗
k = q −

∑r−1
i=1 zir + ker . By the Lipschitzian property ofL, there existsxk ∈ SOL(L, q∗

k )

such that

y ∈ xk + C‖q ′
k − q∗

k ‖B. (4)

Let the Peirce decomposition of xk and L(xk) be

xk =

r∑

i=1

xk
i +

∑

i<j

xk
ij and L(xk) =

r∑

i=1

yk
i +

∑

i<j

yk
ij .

We note from (4) that xk must be bounded as ‖q ′
k − q∗

k ‖ = ‖p − q‖. Without any loss of gen-

erality, assume that xk is convergent. From the complementarity condition 〈xk, L(xk) + q∗
k 〉 = 0,

we see that xk
r → 0. Since xk � 0, by Lemma 2, it follows that

∑
r<j xk

rj +
∑

i<r xk
ir → 0. Let

xk → x∗. By using the same argument as in the above lemma, we conclude that x∗ ∈ SOL(T , q).

Now applying the limits in (4), we see that

‖y − x∗‖ � C‖p − q‖.

Therefore T has the Lipschitzian property. The same argument can be repeated if l < r − 1. This

completes the proof. �

The next lemma is known for the standard LCP (see Lemma 3 in [5]). By using the same

technique in [5], we derive the next lemma.

Lemma 5. Suppose that L has the Lipschitzian property and SOL(L, q ′) = {0} for some q ′ > 0.

Then SOL(L, q) = {0} for all q � 0.

Proof. Let � :={q > 0 : SOL(L, q) = {0}} and p ∈ �. We claim that � is open in int K . Let

u ∈ B. By the Lipschitzian property of L,

SOL(L, np + u) ⊆ SOL(L, np) + C‖u‖B.

Let xn ∈ SOL(L, np + u). As SOL(L, np) = {0}, {xn} must be bounded. Hence yn :=L(xn) +

np + u > 0 for all large n and therefore by the complementarity condition xn ◦ yn = 0, xn = 0
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for all large n. Thus np + u ∈ � for all large n. This means that p is an interior point of �. Since

p is arbitrary, � is an open set in int K .

We now show that � is closed in int K . Let q∗ > 0 be a limit point of �. Now there exists a

sequence qn ∈ � such that qn → q∗. Since L has the Lipschitzian property,

SOL(L, q∗) ⊆ SOL(L, qn) + C‖qn − q∗‖B.

This means that SOL(L, q∗) = {0} and therefore q∗ ∈ �. Thus � is closed in int K . Because �

is closed, open and nonempty in int K and int K is connected, � = int K .

Let q ∈ �K . Then there exists a sequence {qn} converging to q such that qn ∈ int K for all n.

By the Lipschitzian property of L,

SOL(L, q) ⊆ SOL(L, qn) + C‖q − qn‖B.

Therefore if x ∈ SOL(L, q), then ‖x‖ � C‖q − qn‖ and hence x = 0. This completes the

proof. �

Lemma 6. If L has the Lipschitzian Q-property, then SOL(L, q ′) = {0} for some q ′ > 0.

Proof. We first assume that V is a Euclidean Jordan algebra of rank 2 and prove the result.

Since L has the Q-property, there exists x∗ > 0 such that L(x∗) > 0. Let q :=L(x∗). Let y be

a nonzero solution to LCP(L, q). Supppose y > 0. Then by the complementarity condition, we

have L(y) + q = 0. By Lemma 1, y = −x∗. This is a contradiction. Let y = αe1 be the spectral

decomposition of y. Then z :=L(y) + q = βe2. We now put l = 1 and T :=L{e1}. Observe that

P (l)(z) = 0. Therefore T (y) + P (l)(q) = 0. By Lemma 2, P (l)(q) > 0 in V (l). Now T is a linear

transformation on a one-dimensional space and hence there exists k > 0 such that T (x) = −kx

for all x ∈ V (l). But Lemma 3 implies that T has the Q-property which means that T (x) = cx

for some c > 0. This is a contradiction and hence y = 0.

Now suppose V is of rank r . We assume that the result is true for any Euclidean Jordan algebra

with rank less than r . Since L has the Q-property, there exists x∗ > 0 such that L(x∗) > 0. Let

q :=L(x∗) and y ∈ SOL(L, q). If y > 0, then by Lemma 1, y = −x∗ which is not possible. Let us

assume that y has the spectral decomposition y = λ1e1 + · · · + λses for some s < r . Put l = s and

T = L{e1,...,el}. Now it is easy to see that y ∈ SOL(T , P (l)(q)). Using Lemma 2, P (l)(q) > 0.

By Lemmas 3 and 4, T has the Lipschitzian Q-property. Therefore by our assumption there

exists q ′′ ∈ int K(l) such that SOL(T , q ′′) = {0}. In view of Lemma 5, SOL(T , q) = {0} for all

q ∈ int K(l). Therefore y = 0. This concludes the proof. �

Lemma 7. If SOL(L, q) = {0} for all q � 0, then L satisfies the following condition:

x � 0, x and L(x) operator commute, and x ◦ L(x) � 0 ⇒ x = 0.

Proof. Since x and L(x) operator commute, there exists a Jordan frame {e1, . . . , er} such that

x =

r∑

i=1

αiei and L(x) =

r∑

i=1

βiei .

As x ◦ L(x) � 0, αiβi � 0 for all i ∈ {1, . . . , r}. Let q :=L(x)+ − L(x+). Clearly x+ ∈

SOL(L, q). As x � 0, L(x+) = L(x) = L(x)+ − L(x)− and so q = L(x)−. Hence q � 0 and

therefore, x+ = 0 by our assumption. Now x = x+ and thus x = 0. �
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Lemma 8. Suppose that L has the Lipschitzian property and the Q-property. Then there exists

q ′ < 0 such that LCP(L, q ′) has a unique solution x′ > 0.

Proof. Since L has the Q-property, there exists x > 0 such that L(x) > 0. Let � ∈ Aut(K).

Then L̂� = �L�
T has the Lipschitzian Q-property iff L has the Lipschitzian Q-property, see

Theorem 5.1 in [7]. Therefore L̂�(e) > 0 for some � ∈ Aut(K). Without any loss of generality,

let L(e) > 0. Now, put q = −L(e). We claim that LCP(L, q) has a unique solution.

Let x be a solution to LCP(L, q). Now x ∈ SOL(L−1, −L−1(q)) if and only if y :=L−1(x) −

L−1(q) ∈ SOL(L, q). Therefore L has the Lipschitzian Q-property if and only if L−1 has the

Lipschitzian Q-property. Put A :=L−1.

By Proposition 6 in [9], x and L(x − e) operator commute. Let the spectral decomposition

of x and L(x − e) be

x =

s∑

i=1

µiei and L(x − e) =

r∑

i=s+1

µiei .

Put T :=A{es+1,...,er }. By Lemmas 4 and 3, T has the Lipschitzian Q-property. Let y :=∑r
i=s+1 µiei . Then A(y) = x − e and therefore T (y) =

∑r
i=s+1 −ei . Observe that by Lemmas

6 and 5, SOL(T , q) = {0} for every q � 0 and hence T satisfies all the conditions of Lemma 7.

Now y and T (y) operator commute. Further y � 0 and y ◦ T (y) � 0. Therefore y = 0 by the

previous lemma. This means that L(x − e) = 0 and hence by Lemma 1, x = e. This completes

the proof. �

In the next lemma, we use degree theory. The usage of degree theory in complementarity

problems is fairly standard; see, for example [3]. Given a bounded open set � in V , a continuous

function f : cl � → V such that 0 /∈ f (��), we can define the (topological) degree of f with

respect to � at 0; see [11]. We denote this degree by deg(f, �, 0). Recall that the normal map

φ : V → V is defined by φ(v) :=L(v+) − v−, see [13]. It is easy to verify that if φ(v) = 0, then

v+ ∈ SOL(L, q).

Lemma 9. Let L satisfy the following conditions:

1. L has the R0-property;

2. For some q ′ < 0, LCP(L, q ′) has unique solution x′ > 0; and

3. SOL(L, e) = {0}.

Then det L � 0.

Proof. Suppose det L < 0. Let φ : V → V be the normal map defined by φ(v) :=L(v+) − v−.

If x > 0, then it is easy to see that φ(x) = L(x). By our assumption, there exists q ′ < 0 such that,

LCP(L, q ′) has a unique solution x′ > 0 so that L(x′) + q ′ = 0. If F1 = φ + q ′, then F1(x
′) = 0.

We claim that x′ is the unique zero of F1. Suppose F1(w) = 0 so that w+ ∈ SOL(L, q ′). Then

w+ = x′. This gives L(w+) − w− + q ′ = 0 and w− = L(x′) + q ′ = 0. Hence w = x′. Let G be

a bounded open set in int K containingx′. OnG,F1 = L + q ′ so that deg(F1, G, 0) = sgn det L =

−1. By the excision property of the degree, it follows that for any open set �1 containing x′,

deg(F1, �1, 0) = −1.

Let F2 = φ + e. Since LCP(L, e) has a unique solution, −e is the unique zero of F2. We

note that φ is the identity transformation on int(−K) and now, as before, for any bounded open
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set �2 containing −e, deg(F2, �2, 0) = 1. Let t ∈ [0, 1]. Now H(t, v) = φ(v) + tq ′ + (1 − t)e

is a homotopy between F1 and F2. Let S :={v ∈ V : H(t, v) = 0 for some t ∈ [0, 1]}. Using

the R0-property of L, it is easy to show that S is bounded. Let � be any bounded open set

containing S. Clearly −e ∈ � and x′ ∈ �. In view of the homotopy invariance property of the

degree, deg(F1, �, 0) = deg(F2, �, 0). This is a contradiction. This completes the proof. �

We now prove our main result:

Theorem 5. If L has the Lipschitzian Q-property, then L has the positive principal minor prop-

erty.

Proof. From Lemma 6, SOL(L, q ′) = {0} for some q ′ > 0. By the Lipschitzian property of L,

SOL(L, 0) ⊆ SOL(L, q ′) + C‖q ′‖B

and hence SOL(L, 0) is compact. This means that L has the R0-property. Now L satisfies all the

conditions of the previous lemma. Therefore det L � 0. In view of Lemma 1, L is invertible and

hence det L > 0.

Now consider any principal subtransformation T with respect to a Jordan frame. From

Lemmas 3 and 4, T has the Lipschitzian Q-property and thus det T > 0. This completes the

proof. �

3.1. A note on Lyapunov-like transformations

For some particular linear transformations, using the extra structure, we can obtain specialized

results. We say that L : V → V has the Z-property if

x, y ∈ K, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 � 0.

The recent article [10] contains examples and properties of such transformations.

Example 3. Let V = Sn. For A ∈ Rn×n, consider the Lyapunov transformation LA : Sn → Sn

defined by LA(X) :=AX + XAT. It is easy to verify that LA has the Z-property. Similarly it can

be verified easily that the Stein transformation SA(X) :=X − AXAT has the Z-property.

We say that a linear transformation L is a Lyapunov-like transformation if L and −L have the

Z-property, that is,

x, y ∈ K, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0. (5)

For details on Lyapunov-like transformations we refer to [8]. We now prove the following

result:

Theorem 6. Let L : V → V be a Lyapunov-like transformation. Then the following are equiva-

lent:

1. L has the strong monotonicity property.

2. L has the Lipschitzian Q-property.
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Proof. The implication (1) ⇒ (2) follows from Proposition 2.3.1 in [3]. Suppose L has the

Lipschitzian Q-property. Let c be a primitive idempotent. We claim that 〈c, L(c)〉 > 0. Consider

a Jordan frame containing c. Then the one-dimensional linear transformation L{c} has the Q-prop-

erty. This means that 〈L{c}(c), c〉 > 0. But L{c}(c)(c) = L(c) and hence 〈L(c), c〉 > 0. For any x

we have the spectral decomposition x =
∑r

i=1 λiei . Since L is a Lyapunov-like transformation,

〈L(ei), ej 〉 = 0 if i /= j . Therefore 〈L(x), x〉 =
∑s

i=1 λ2
i 〈L(ei), ei〉 > 0 for all nonzero x ∈ V .

Thus, L has the strong monotonicity property. �
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