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The concept of balanced decomposition numberwas introduced by Fujita andNakamigawa
in connection with a simultaneous transfer problem. A balanced colouring of a graph G is a
pair (R, B) of disjoint subsets R, B ⊆ V (G) with |R| = |B|. A balanced decomposition D of a
balanced colouring C = (R, B) of G is a partition of vertices V (G) = V1 ∪ V2 ∪ · · · ∪ Vr such
that G[Vi] is connected and |Vi ∩ R| = |Vi ∩ B| for 1 ≤ i ≤ r . Let C be the set of all balanced
colourings of G and D(C) be the set of all balanced decompositions of G for C ∈ C. Then
the balanced decomposition number f (G) of G is

f (G) = max
C∈C

min
D∈D(C)

max
1≤i≤r

|Vi|.

Fujita and Nakamigawa conjectured that if G is a 2-vertex connected graph of n vertices,
then f (G) ≤ ⌊ n

2
⌋ + 1. In this paper, we confirm this conjecture in the affirmative.

© 2013 Published by Elsevier B.V.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. We use V (G) to denote the vertex set of a graph
G and E(G), the edge set. The concept of balanced decomposition number was introduced by Fujita and Nakamigawa [9]
in connection with a simultaneous transfer problem. A balanced colouring C of a graph G is a pair (R, B) of disjoint subsets
R, B ⊆ V (G) with |R| = |B|. For any vertex subset S ⊆ V , the subgraph induced by S is the graph G[S] with vertex set S and
edge set E[S] = {xy ∈ E : x, y ∈ S}. A balanced decomposition D of a balanced colouring C = (R, B) of G is a partition of
vertices V (G) = V1 ∪ V2 ∪ . . . ∪ Vr such that G[Vi] is connected and balanced, i.e. |Vi ∩ R| = |Vi ∩ B|, for 1 ≤ i ≤ r . The size

of the decomposition is size(D) = max1≤i≤r |Vi|. The balanced decomposition number f (G) of a graph G is then defined as

f (G) = max
C∈C

min
D∈D(C)

size(D).

In other words, f (G) is the smallest positive integer such that no matter what balanced colouring is given, there is always
a balanced decomposition of G into vertex sets of size at most f (G). As a balanced decomposition may not exist for a
disconnected graph, we only consider balanced decomposition numbers for connected graphs. For a non-negative integer
k, let f (k,G) be defined analogously with the additional restriction that we consider only balanced colourings (R, B) of G
where |R| = k. It is then the case that f (G) = maxk f (k,G).

There are a few applications for the balanced decomposition. Theorem 6 in [9] tells us that f (G) − 1 is a sharp upper
bound for the simultaneous transfer number. The balanced decomposition is also deeply connected to the decomposition
of k-linked graphs. For further details and comments, refer to [9].
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Fujita and Nakamigawa [9] proved that f (G) = 2 if and only if G is a complete graph of at least two vertices. They also
established that f (T ) = n for a tree T of n vertices, f (Km,n) = ⌊ n−2

m
⌋+3 for a complete bipartite graph Km,n with 2 ≤ m ≤ n,

and f (Cn) = ⌊ n

2
⌋+1 for an n-cycle Cn. Using this support, they then gave an interesting conjecturewhich is themain concern

of this paper.

Conjecture 1 (Fujita and Nakamigawa [9]). If G is a 2-connected graph of n vertices, then f (G) ≤ ⌊ n

2
⌋ + 1.

While it is easy to see that f (1,G) ≤ ⌊ n

2
⌋ + 1 for any 2-connected graph of n ≥ 2 vertices, they in fact proved that

f (2,G) ≤ ⌊ n

2
⌋ + 1 for any 2-connected graph of n ≥ 4 vertices. The conjecture was then confirmed in [8] for generalized

θ-graphs, and in [6] for subdivisions of K4 and serial–parallel graphs. It was also proved in [7] that f (3,G) ≤ ⌊ n

2
⌋+1 for any

2-connected graph of n ≥ 6 vertices.
In the present paper, we prove this conjecture as the following theorem.

Theorem 1. If G is a 2-connected graph of n vertices, then f (G) ≤ ⌊ n

2
⌋ + 1.

2. Preliminaries

The deletion of a proper subset S ⊂ V (G) fromG is the graphG−S = G[V (G)\S]. For a vertex v, we useG−v forG−{v}. A
cut-vertex in G is a vertex v such that G−v has more components than G. A graph of at least three vertices is 2-connected if it
is connected and does not contain any cut-vertex. A 2-connected graph isminimally 2-connected if G − e is not 2-connected
for any edge e. A block in G is a maximal connected subgraph without a cut-vertex. An end-block is a block containing at
most one cut-vertex of G. For a graph G, the block–cut-vertex structure is the graph G∗ whose vertex set V (G∗) contains all
cut-vertices and blocks of G and a cut-vertex v of G is adjacent to a block A of G in the graph G∗ whenever v ∈ V (A). Notice
that G∗ is always a forest, and in fact a tree if G is connected. A vertex of degree at most 1 in G∗ is precisely an end-block in
G. We refer the reader to the books [4,12] for more terms relating to graphs.

The following property and its proof technique for 2-connected graphs are useful in our proof of the main theorem.

Lemma 2. If u and v are two distinct vertices in a 2-connected graph G, then there is an ordering u = x1, x2, . . . , xn = v of

V (G) such that the graphs Gi = G[x1, x2, . . . , xi] and G′
i = G − V (Gi) are connected for 1 ≤ i ≤ n − 1.

Proof. We shall construct the ordering by adding the vertices one by one. Initially, choose x1 = u. Then G1 and G′
1 are

connected since G is 2-connected. Assume that i ≥ 2 and x1, x2, . . . , xi−1 are chosen such that Gi−1 and G′
i−1 are connected,

where v is in G′
i−1. By the fact that G is 2-connected, every end-block of G′

i−1 has a non-cut-vertex adjacent to some vertex in
Gi−1. Choose such a vertex xi, which can be assumed to be different from v in the case where G′

i−1 has at least two vertices.
Hence both Gi and G′

i are connected. Continue this process until the ordering is complete. �

The following lemma follows easily from the definition.

Lemma 3. If H is a connected spanning subgraph of G, then f (G) ≤ f (H).

According to Lemma 3, in order to prove an upper bound on f (G) for 2-connected graphs, we only need to consider
minimally 2-connected graphs. The properties of minimally 2-connected graphs were studied independently by Dirac [5]
and Plummer [11]. A summary of these results appears in [1]. Recent works on acyclic edge colouring [10], strong edge
colouring [2] and k-intersection edge colouring [3] make use of these properties and show the potential that this class of
graphs has for giving insight into improve colouring bounds of various edge colouring problems.

We now consider some useful properties for minimally 2-connected graphs.

Lemma 4 (Plummer [11]). A 2-connected graph is minimally 2-connected if and only if no cycle in the graph contains a chord.

The following lemma serves as the induction basis for the proof of the main theorem.

Lemma 5. If G is a minimally 2-connected graph, then G − {u, v} is connected for any edge uv.

Proof. Suppose to the contrary that G− {u, v} is not connected. Since G is 2-connected and u ≠ v, u and v have neighbours
ui and vi respectively in every component Gi of G − {u, v}, for otherwise removal of a single vertex will disconnect G. For
component Gi, choose a shortest ui-vi path Pi. As there are at least two components G1 and G2, we have that u, P1, v, P−1

2 , u

is a cycle for which uv is a chord, a contradiction to the assumption that G is minimally 2-connected and Lemma 4. �

3. Proof of the main theorem

We are now ready to prove the main theorem.
By Lemma 3, wemay assume that G is minimally 2-connected. Consider any balanced colouring (R, B) of G. We first claim

that G has a balanced connected induced subgraph H such that H ′ = G − V (H) is also connected and balanced. To see this,
we consider two cases. For the case where G has some vertex v ∉ R∪ B, the induced subgraphs H = G[{v}] and H ′ = G− v
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Fig. 1. A representation of H , H ′ and H ′∗ .

satisfy the desired properties, since G is 2-connected. For the case where R ∪ B = V (G), there is a vertex u ∈ R adjacent
to a vertex v ∈ B. Then H = G[{u, v}] and H ′ = G − {u, v} satisfy the desired properties by Lemma 5. We may assume
that H is chosen such that |V (H)| ≤ ⌊ n

2
⌋ + 1 and |V (H)| is as large as possible under this condition. It is then the case that

|V (H)| ≤ ⌊ n

2
⌋ − 1, for otherwise ⌊ n

2
⌋ ≤ |V (H)| ≤ ⌊ n

2
⌋ + 1 and so |V (H ′)| ≤ ⌊ n

2
⌋ + 1 implies the theorem.

If H ′ is 2-connected, then we may use induction to get a balanced decomposition of H ′ in which each part has size at

most ⌊ n′

2
⌋ + 1 ≤ ⌊ n

2
⌋ + 1. This together with H gives a desired balanced decomposition for G. Hence H ′ is not 2-connected.

Let C be the set of all cut-vertices of H ′ and B the set of all blocks of H ′. Consider the block–cut-vertex tree H ′∗ of H ′ with
vertex set C ∪ B and edge set {vA : v ∈ C, A ∈ B, v ∈ A} as a tree rooted at some vĎ ∈ C. Notice that each vertex v ∈ C

has degree at least 2 in H ′∗. Further, H ′∗ has r ≥ 2 leaves A1, A2, . . . , Ar which are end-blocks of H ′. Since G is 2-connected,
each Ai contains a non-cut-vertex ui adjacent to some vertex zi in H; see Fig. 1.

First, each ui ∈ R ∪ B, for otherwise H + ui = G[V (H) ∪ {ui}] and (H + ui)
′ = H ′ − ui are balanced connected induced

subgraphs of G with |V (H)| < |V (H + ui)| ≤ ⌊ n

2
⌋, a contradiction to the choice of H . Secondly, u1, u2, . . . , ur are all in R or

all in B. Otherwise, if some ui ∈ R and some uj ∈ B, then H + {ui, uj} = G[V (H) ∪ {ui, uj}] and (H + {ui, uj})
′ = H ′ − {ui, uj}

are balanced connected induced subgraphs of G with |V (H)| < |V (H + {ui, uj})| ≤ ⌊ n

2
⌋ + 1, again a contradiction to the

choice of H . We therefore assume that u1, u2, . . . , ur ∈ R.
For a vertex v ∈ C, consider the subtree rooted at v, namely H ′∗

v from the tree H ′∗. Notice that since H ′∗ is a rooted
tree (rooted at vĎ), this defines a unique subtree of the block–cut-vertex tree of H ′. Let H ′

v be the subgraph of H ′ induced
by ∪{V (A): A ∈ B ∩ V (H ′∗

v )}. For technical reasons, when v ∈ V (H ′) is not a cut-vertex of H ′, we define H ′
v as the graph

containing the single vertex v. It is then the case that, for any vertex w in H ′, the graphs H ′
w and H ′ − V (H ′

w) are connected
induced subgraphs of H ′. For any induced subgraph F of H ′, define c(F) = |V (F) ∩ R| − |V (F) ∩ B|. Then c(H ′

ui
) = 1 for

1 ≤ i ≤ r and c(H ′
vĎ

) = 0.

Since c(H ′
vĎ

) = 0, we may choose a cut-vertex w ∈ C farthest from vĎ in the tree H ′∗ (if it is not unique, pick one

arbitrarily) such that c(H ′
w) ≤ 0. Consider any child A of w in H ′∗, which is a block of H ′. For the case where A is an end-

block Aj, choose u = uj; when A is not an end-block, choose u as some cut-vertex different from w. By Lemma 2, there is an
ordering u = x1, x2, . . . , xp = w of V (A) such that Ai = A[x1, x2, . . . , xi] and A′

i = A−V (Ai) are connected for 1 ≤ i ≤ p−1.
Let H ′

Ai
be the subgraph of H ′ induced by ∪1≤j≤i V (H ′

xj
) for 1 ≤ i ≤ p − 1. Then H ′

Ai
and (H ′

Ai
)′ = H ′ − V (H ′

Ai
) are connected

with c(H ′
Ai
) =


1≤j≤i c(H

′
xj
) for 1 ≤ i ≤ p − 1.

If c(H ′
Ai
) ≤ 0 for some 2 ≤ i ≤ p − 1, then choose a minimum such index i∗. Thus c(H ′

Ai∗−1
) > 0 ≥ c(H ′

Ai∗
) =

c(H ′
Ai∗−1

) + c(H ′
xi∗

) and so c(H ′
xi∗

) < 0. By the choice of w (being the farthest from vĎ), the vertex xi∗ is not a cut-vertex of

H ′. Hence c(H ′
xi∗

) = −1 and so c(H ′
Ai∗

) = 0. This gives two balanced connected induced subgraphs H ′
Ai∗

and (H ′
Ai∗

)′ of H ′. If

both of them are of size at most ⌊ n

2
⌋ + 1, then these two subgraphs together with H form a balanced decomposition of G,

which implies that f (G) ≤ ⌊ n

2
⌋ + 1. If one of them is of size greater than ⌊ n

2
⌋ + 1, then the other one together with H forms

a balanced induced subgraph of size at most ⌊ n

2
⌋ − 1 but greater than the size of H , a contradiction to the choice of H .

Hence we can assume that c(H ′
Ap−1

) > 0 for any child A of w. Then

0 ≥ c(H ′
w) = |R ∩ {w}| − |B ∩ {w}| +



A:A is a child of w, p=|A|

c(H ′
Ap−1

).

This is possible only when c(H ′
w) = 0, w ∈ B and w has exactly one child A (since the first difference is at best −1 and

each term in the sum is at least +1). Thus w ≠ vĎ and so either we get a contradiction (inductively, from the fact that



1514 G.J. Chang, N. Narayanan / Discrete Mathematics 313 (2013) 1511–1514

c(H ′
vĎ

) = 0) or H ′
w and H ′ − H ′

w are two balanced connected induced subgraphs of H ′. The same argument as before leads

to f (G) ≤ ⌊ n

2
⌋ + 1. �

4. Conclusion

For positive integers k and n, define g(k, n) = max{f (G):G is a k-connected graph of n vertices}. By the fact that f (T ) = n

for a tree T of n vertices [9], g(1, n) = n. By the fact that f (Cn) = ⌊ n

2
⌋ + 1 for an n-cycle Cn and the main theorem in this

paper, g(2, n) = ⌊ n

2
⌋ + 1. It is clear that g(n − 1, n) = 2. By the following two results, it is the case that g(k, n) = 3 for

⌊ n

2
⌋ ≤ k ≤ n − 2.
f (G) = 2 if and only if G is a complete graph of at least two vertices [9].
f (G) = 3 if and only if G ≠ Kn is ⌊ n

2
⌋-connected and has n vertices [8].

It is interesting to note that for a graph on n-vertices with connectivity k, all the above results satisfy g(k, n) = ⌈ n+k−1
k

⌉.
We close the paper by proposing the following conjecture on g(k, n).

Conjecture 2. If n ≥ k + 1, then g(k, n) = ⌈ n+k−1
k

⌉. Equivalently, f (G) ≤ ⌈ n+k−1
k

⌉ for any k-connected graph on n ≥ k + 1

vertices, and there exists some k-connected graph G on n-vertices such that f (G) = ⌈ n+k−1
k

⌉.

Notice that powers of cycles provide extremal graphs in the conjecture above.
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