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Janus particles propel themselves by generating concentration gradients along their active
surface. This induces a flow near the surface, known as the diffusio-osmotic slip, which
propels the particle even in the absence of externally applied concentration gradients.
In this work, we study the influence of viscoelasticity and shear-thinning (described by
the second-order-fluid and Carreau model, respectively) on the diffusio-osmotic slip on an
active surface. Using matched asymptotic expansions, we provide an analytical expression
for the modification of slip induced by the non-Newtonian behavior. The results reveal
that the modification in slip velocity, arising from polymer elasticity, is proportional to the
second tangential derivative of the concentration field. Using the reciprocal theorem, we
estimate the influence of this modification on the mobility of a Janus sphere. The current
study also has direct implications on the understanding of the transport of complex fluids
in diffusio-osmotic pumps.

1. Introduction

Synthetic active particles are micron and submicron sized colloidal particles which
can propel themselves along predictable trajectories. The self-propulsion arises from the
generation of local concentration gradient at the surface, which is induced by variation
in the surface activity such as adsorption or reaction (Anderson 1989; Golestanian et al.

2005, 2007; Jülicher & Prost 2009). These active particles play an important role in
biomedical research; they offer possible applications in drug-delivery micromachines and
controlled studies of microbial infections through bio-sensing (Gao &Wang 2014; Su et al.

2019). Furthermore, a suspension of active particles represents a non-equilibrium system
which exhibits characteristics such as enhanced fluid mixing in complex fluids (Gomez-
Solano et al. 2016) and inertia-less turbulence, which are also observed in microbial
suspensions and granular matter (Patteson et al. 2016). Therefore, understanding such
novel self-propelled systems provides insights which extend to a wide range of physical
phenomena, making it intriguing from a scientific standpoint.
The notion of self-propulsion at the micro-scale was introduced via exploitation of

electrochemical-mechanical transduction mechanism i.e. conversion of electrochemical
energy (stored in electrolytes) to power mechanical motion. Paxton et al. (2004, 2006) and
Fournier-Bidoz et al. (2005) fabricated bimetallic micro rods by coating the two halves
with platinum and silver. When immersed in an aqueous solution of hydrogen peroxide,
the oxidation process generates excess electrons and protons (H+) at the platinum end.
The electrons are transported to the other end through conduction, where they are
consumed to reduce hydrogen peroxide. The asymmetric distribution of protons drives
the autonomous motion of the micro-rod, which was later called ‘self-electrophoresis’.

† Email address for correspondence: spush@iitm.ac.in

ar
X

iv
:1

90
9.

11
74

5v
3 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

6 
A

pr
 2

02
0



2 A. Choudhary, T. Renganathan and S. Pushpavanam

Golestanian et al. (2005); Howse et al. (2007) studied the second mechanism of self-
propulsion: conversion of chemical energy (arising from molecular interactions such as van
der Waals) to power the mechanical motion in a non-electrolytic medium. Golestanian
et al. (2007) proposed the first continuum framework to understand the underlying
mechanism which drives the self-propulsion of Janus spheres. On the basis of existing
experimental studies (Golestanian et al. 2005; Fournier-Bidoz et al. 2005), three major
assumptions were made: (i) the interaction layer is asymptotically thin in comparison
to the particle radius (ǫ ≪ 1, where ǫ is the ratio of the thickness of interaction
layer to particle radius); (ii) the active (catalytic) surface adsorbs (or desorbs) the
solute molecules at a fixed rate and diffusion time scale is much shorter than the
reactive time scale; (iii) advective effects are negligible. Borrowing insights from the
seminal works of Derjaguin et al. (1947), Anderson, Prieve and co-workers (Anderson
et al. 1982; Anderson 1989), they showed that the interaction between the particle and
the solute molecules creates a pressure gradient inside the thin interaction layer. This
pressure gradient is balanced by the viscous stresses which is the driving mechanism
for self-propulsion. An external variation in solute concentration around the colloid can
trigger the pressure gradient which generates a surface slip. Consequently, the freely
suspended particle moves in the direction of chemical gradient, known as diffusio-phoresis:
a macro-scale motion manifested through an asymmetry at the micro-scale. A Janus
sphere (possessing a chemically active cap coated on an inert particle) can create and
sustain this pressure gradient as its asymmetrically active surface facilitates a tangential
concentration gradient and is therefore also called a self-diffusiophoretic particle.
The continuum description assumes that the solute molecules do not occupy volume

and therefore loses its validity for nanometer sized Janus spheres. For such cases, Córdova-
Figueroa & Brady (2008); Brady (2011) provided a colloidal perspective to diffusiophore-
sis: solute molecule and particle interact both energetically (through hard-sphere and van
der Waals forces) and hydrodynamically with each other. Later Sharifi-Mood et al. (2013)
demonstrated that the results derived by Brady (2011) (for diffusiophoretic velocity)
can be obtained through a continuum description, in the limit of asymptotically small
solute molecules. They relaxed the assumption of thin interaction layer and incorporated
the effects of an irreversible reaction (characterized by Damkhler number) at the active
surface which was found to dampen the propulsion.
Michelin & Lauga (2014) explored the effects of finite advection on self-propulsion.

They found that the particles exhibiting attractive interaction with solute molecules
show a maxima in swimming speed at a finite Pclet number (Pe ∼ O(1), here Pe is
the ratio of diffusive to advective time scales); whereas for repulsive interactions, the
swimming speed always reduces with increase in advection. In agreement with Sharifi-
Mood et al. (2013), they also reported a monotonic decrease in swimming velocity with
an increase in Damkhler number. Utilizing matched asymptotic expansions, they showed
that the diffusive flux at the surface of the Janus sphere is equal to that at the outer
edge of the interaction layer, provided ǫPe≪ 1.
All the aforementioned studies assume the surrounding medium to be Newtonian.

Since a majority of potential applications of the synthesized active particles lie in drug-
delivery and other areas of biological research (Patteson et al. 2016; Su et al. 2019),
understanding the influence of complex rheology on self-propulsion is essential. There
has been limited progress towards this, both experimentally and theoretically. Table 1
summarizes the theoretical studies which analyzed self-propulsion in various regimes.
The experimental and theoretical analysis of Gomez-Solano et al. (2016); Aragones et al.
(2018) demonstrated that the translational swimming of a Janus particle is coupled to
the rotational motion in a viscoelastic medium. Recently, Saad & Natale (2019) studied
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Investigation Regime Description

Golestanian et al.
(2005, 2007)

ǫ→ 0
Da→ 0; Pe→ 0

Built the first continuum-level frame-
work using the foundation laid by
Anderson et al. (1982).

Brady (2011)
Sharifi-Mood et al. (2013)

ǫ ∼ O(1)
Da≪ 1; Pe→ 0

Bridged continuum and colloidal
perspectives.

Michelin & Lauga (2014) ǫ≪ 1
Da > O(1); Pe > O(1)

Studied advective and reactive effects.
Showed well-posedness of flux bound-
ary condition at the macro-scale.

Zhu et al. (2012)
De Corato et al. (2015)

ǫ→ 0; two modes Swimming kinematics and hydrodyna-
mics of swimmers in complex media.
Zhu et al. (2012) → De ∼ O(1)
De Corato et al. (2015) → De≪ 1

Datt et al. (2015, 2017)
Pietrzyk et al. (2019)

ǫ→ 0
χ≪ 1; De≪ 1

Extended Golestanian et al. (2007) &
showed the importance of higher swim-
ming modes and asymmetry of surface
activity, assuming the swimming gait
to be Newtonian.

Natale et al. (2017) ǫ→ 0
Da ∼ O(1);Pe ∼ O(1)

De≪ 1

Extended Datt et al. (2017) to
include advective and reactive effects.
FEM simulations revealed sharp grad-
ient in stresses due to viscoelasticity.

This work
ǫ≪ 1
Da→ 0

De≪ 1; χ≪ 1

Extends Anderson et al. (1982) to inc-
lude the effects of complex rheology.
Uses Golestanian et al. (2007) frame-
work to study non-Newtonian effects
on the swimming gait and mobility
of Janus sphere for Pe→ 0& ǫPe≪ 1.

Table 1. A summary of continuum-level studies in the past towards the modeling of a
non-Brownian active particle; first section of the table describes the studies in Newtonian
medium in various regimes; second section summarizes the studies which explored the effects of
Non-Newtonian behavior. Here, ǫ is the interaction layer thickness, normalized by the particle
radius; Da is the Damkhler number which represents the ratio of time scale associated with
diffusion to that of reaction; Pe is the Pclet number which is the ratio of time scale associated
with diffusion to that of advection; De is the Deborah number which governs the ratio of time
scale of polymer relaxation to that of advection; χ represents the deviation of infinite shear rate
viscosity from that of zero shear rate (the difference is normalized with zero shear rate viscosity).

the effect of polymer entanglements on active motion and showed that the particle can
escape the entangled confinements at time-scales significantly shorter than the polymer
relaxation time.

There have been a few theoretical studies in the past which have used the continuum-
level framework and studied the effect of bulk non-Newtonian stresses on active propul-
sion. Zhu et al. (2012) employed the Giesekus model to study squirming in a viscoelastic
fluid, considering the first two modes of swimming. They reported that swimming speed
(and the swimming power required) is always lower than that in Newtonian fluids, with a
minimum at a moderate value of Weissenberg number. Using a second-order fluid model,
De Corato et al. (2015) also studied locomotion of a two-mode squirmers. They reported
that ‘pullers’ are slowed, ‘pushers’ are hastened and ‘neutral’ squirmers are unaffected in
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viscoelastic fluids. Later Datt et al. (2015) showed that it is essential to consider higher
modes while modeling squirmers in a non-Newtonian medium as the constitutive equation
is non-linear. Using a Carreau-Yasuda model, they demonstrated that the swimming may
be faster or slower in shear-thinning fluids (compared to Newtonian fluids) depending
upon the rate of actuation i.e. strength of the swimming modes. Their subsequent study
(Datt et al. 2017) extended the analysis of Golestanian et al. (2007) to understand the self-
propulsion of Janus sphere in complex media. Through an approach based on reciprocal
theorem (Elfring & Goyal 2016), they showed the effect of bulk non-Newtonian stresses
on the swimming velocity, assuming a prescribed slip velocity. They found: (i) swimming
is always slower in weakly shear-thinning fluids; (ii) for weakly viscoelastic fluid, a Janus
sphere swims faster if surface coverage of activity is more than half (> π/2) and vice-
versa. However, they have acknowledged that the assumption of Newtonian slip in a non-
Newtonian medium may not hold true. A change in slip velocity may significantly alter
self-propulsion and therefore entails further investigation. A recent study by Natale et al.
(2017) extended the work of Datt et al. (2017) to investigate the effects of advection and
reaction (i.e. finite Pclet and Damkhler numbers) on self-diffusiophoresis through complex
media. Their FEM simulations demonstrated the presence of an extensional flow across
the point of discontinuity in the surface activity. This behavior was triggered due to large
gradients in viscoelastic stresses. The origin of these viscoelasticity-triggered extensional
flows is currently unknown. Given the recent interest in self-propulsion through complex
medium with several open questions in the literature (Datt et al. 2017; Natale et al. 2017;
Pietrzyk et al. 2019), it is natural to ask: how does the slip change in complex fluids and
what is its relationship to the concentration field?

The importance of considering non-Newtonian effects in the thin interaction region
around a diffusio-phoretic particle can be realized by considering the progress in the field
of electrophoresis. Khair et al. (2012) demonstrated that the modification in slip due
to shear-thinning can alter the mobility of an electrophoretic particle and the flow field
around it. Very recently, through the use of various continuum-level rheological models
(Oldroyd-B, Giesekus, FENE-P, and FENE-CR), Li & Koch (2020) showed that the
electrophoretic particle (similar to a neutral squirmer in Newtonian fluid) behaves like
a puller-type squirmer at low Weissenberg numbers. Such behavior arises primarily due
to the elastic effects in the thin electrical double layer. These studies show that the high
shear rate inside the thin layer generates significant polymer extension and deformation
which needs to be accounted in the prediction of phoretic motion. Motivated by these
recent developments in the context of electrophoresis (Khair et al. 2012; Zhao & Yang
2013; Li & Koch 2020), we aim to investigate the modification due to complex rheology
in both slip and mobility of a self-propelling active particle.

In this work, we study the influence of viscoelasticity (second-order-fluid model) and
shear-thinning (Carreau-fluid model) on the slip and mobility of an axisymmetric Janus
particle. Using matched asymptotic expansions, we provide an analytical expression for
the modification of the diffusio-osmotic slip due to complex rheology. Employing the
reciprocal theorem, we evaluate the modification in the swimming velocity. Our results
are applicable to a general diffusio-osmotic flow of complex fluid and hence can be used
to model the transport of biological fluids through narrow channels and confinements,
where applying pressure drop is undesirable (Michelin et al. 2015; Lisicki et al. 2016;
Michelin & Lauga 2019).
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Figure 1. Schematic of an axisymmetric Janus particle suspended in a non-Newtonian medium
with uniform external solute concentration. Zoomed-in view shows the solute in the thin
interaction layer above a surface with varying activity. λ∗

I is the interaction layer thickness.

2. Active particle in a second-order-fluid

We consider an active particle surrounded by a non-Newtonian fluid medium consisting
of a solute at uniform concentration C∗

∞. The solute, treated as a continuum, interacts
with the active particle of radius a∗. The short-range interaction potential is governed
by

P∗(r, θ) = k∗BT
∗ψ(r, θ), (2.1)

which acts over the length scale corresponding to the interaction layer thickness (λ∗I),
where λ∗I ≪ a∗. Here ∗ denotes the dimensional variables. ψ is interaction potential
energy between the solute molecules and particle surface, scaled with the thermal energy
(k∗BT

∗). This interaction generates a pressure field in the thin interaction layer, which
decays to zero far away from the surface. The particle surface is partially active; a fixed-
flux adsorption (A∗) varies as a step function in the tangential direction. Since the
interaction layer (λ∗I) is very thin compared to the particle radius (a∗), we model this as
a the diffusio-osmotic flow over a flat surface (see fig.1). This approximation neglects the
curvature effects and introduces an error of O(λ∗I/a

∗) and has been employed earlier in
studies involving particle electrophoresis (Anderson 1989; O’Brien 1983).

We assume the rheology inside and outside the interaction layer to follow the second-
order fluid (SOF) model (Bird et al. 1987). This assumption is valid for slow and weakly
non-Newtonian flows, i.e. polymers with low molecular weight (∼ 104) and radius of
gyration smaller than the interaction layer thickness which is typically 1−10 nm (Sharifi-
Mood et al. 2013). The qualitative insights obtained through such continuum models can
also be extended to the cases of larger polymers as their segments would experience strong
shear, which can result in modification of the dynamics in the interaction layer (Li &
Koch 2020). We also assume the solute molecules, inside and outside the interaction
layer, to follow Fickian diffusion with constant diffusivity. It has been reported that
the presence of polymers significantly affects the diffusive mass transport in stagnant
polymeric medium (Maldonado-Camargo & Rinaldi 2016; Makuch et al. 2020). To our
knowledge, there has been no study conducted on the mass transport in sheared complex
flows. As a first step, we focus on gaining qualitative insights and assume that the solute
molecules and polymers are in the dilute concentration regime and the associated effects,
such as volume exclusion and variable diffusivity, do not affect the system at leading
order.

Following Anderson et al. (1982); Michelin & Lauga (2014), we represent the system
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using the following non-dimensional equations

∇ · u = 0, −∇p+∇2
u+De∇ · S −

1

ǫ2
(c+ C∞)∇ψ = 0, (2.2a)

Pe(u · ∇c) = ∇ · [∇c+ (c+ C∞)∇ψ]. (2.2b)

The characteristic scales are

Cch =
|A∗|a∗

D∗
, Uch =

k∗BT
∗λ∗ 2
I Cch

µ∗a∗
, pch =

µ∗Uch
a∗

, ych = xch = a∗. (2.3)

Here, D∗ is the solute diffusion coefficient, |A∗| is the maximum magnitude of activity,
c denotes the disturbance to the uniform concentration C∞ (defined as: c = C − C∞).
In eq. (2.2a), the polymeric stress S = A · A + δB, where A is the rate of strain tensor
(∇u+ (∇u)T ) and B is the steady-state Rivlin-Ericksen tensor (covariant derivative of
rate of strain tensor A) (Bird et al. 1987).

B = U · ∇A + A · ∇U
T +∇U · A. (2.4)

Here T denotes the transpose. The dimensionless quantities are defined as

Pe =
Ucha

∗

D∗
, De =

Ψ∗
1 + Ψ∗

2

µ∗

(

Uch
a∗

)

, δ =
−Ψ∗

1

2 (Ψ∗
1 + Ψ∗

2 )
and ǫ =

λ∗I
a∗
, (2.5)

where Pe (Peclet number) is the ratio of diffusive to advective time scales; De (Deborah
number) is defined as the ratio of viscoelastic time scale to that based on shear arsing
due to macro-scale movement of the Janus sphere; δ is a viscometric parameter which
compares first and second normal stress coefficients (Ψ∗

1 and Ψ∗
2 , respectively); ǫ is the

dimensionless thickness of the interaction layer.
The boundary conditions are
(

∂c

∂y

∣

∣

∣

∣

y=0

+ (c+ C∞)
∂ψ

∂y

∣

∣

∣

∣

y=0

)

=
A∗(x)

|A∗|
= K(x) and u = 0 at y = 0; (2.6a)

p→ 0, ψ → 0 and c→ 0 as y → ∞. (2.6b)

In the next sections, we investigate the influence of non-Newtonian effects on the diffusio-
osmotic slip on a partially active surface using matched asymptotic expansions (MAE).

2.1. Evaluation of the diffusio-osmotic slip

For an asymptotically thin interaction region (ǫ ≪ 1), we expand the field variables
(u, c, p, ψ) as

f(x, y) = f (0)(x, y) + ǫf (1)(x, y) + · · · . (2.7)

Following Michelin & Lauga (2014), we divide the domain into an ‘inner’ (0 ≪ y ≪ 1)
and ‘outer’ region (y ≫ 1). We use MAE to replace the solution of the inner region with
coarse-grained boundary conditions for the outer region.

2.1.1. Outer region

Neglecting the rapidly decaying interaction potential in the outer region i.e. ψ = 0
(Sharifi-Mood et al. 2013; Michelin & Lauga 2014), the leading order equations read

∇ · u
(0) = 0, −∇p(0) +∇2

u
(0) +De∇ · S

(0) = 0, (2.8a)

Pe(u(0)
· ∇c(0)) = ∇2c(0), (2.8b)
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subject to the following boundary conditions

u
(0) → 0, p(0) → 0 and c(0) → 0 as y → ∞, (2.9a)

n · ∇c(0) = K(x) at y → 0. (2.9b)

The concentration boundary condition (2.9b) has been shown to be well-posed, provided
ǫPe≪ 1 (Michelin & Lauga 2014, p. 580). To obtain the macro-scale boundary condition
for velocity at the surface (i.e. y → 0), the outer solution must be matched with the inner
solution.

2.1.2. Inner region

We first rescale the variables to derive the equations in the inner layer. The variables
in the inner layer are defined as f̂ . In the thin interaction layer limit (ǫ ≪ 1), using
boundary layer principles, we define the characteristic scales for y∗− direction, vertical
velocity (v∗) and pressure (p∗) as λ∗I , ǫ Uch and pch ǫ

−2, respectively. Using (2.7) and
(2.2), we obtain the leading order equations in the inner region as

∂û(0)

∂x̂
+
∂v̂(0)

∂ŷ
= 0, (2.10a)

−
∂p̂(0)

∂x̂
+
∂2û(0)

∂ŷ2
+De

(

∂Ŝ
(0)
xx

∂x̂
+
∂Ŝ

(0)
yx

∂ŷ

)

= (ĉ(0) + C∞)
∂ψ̂(0)

∂x̂
, (2.10b)

−
∂p̂(0)

∂ŷ
+De

(

∂Ŝ
(0)
yy

∂ŷ

)

= (ĉ(0) + C∞)
∂ψ̂(0)

∂ŷ
, (2.10c)

ǫ2Pe

(

û(0)
∂ĉ(0)

∂x̂
+ v̂(0)

∂ĉ(0)

∂ŷ

)

=
∂

∂ŷ

(

∂ĉ(0)

∂ŷ
+ (ĉ(0) + C∞)

∂ψ̂(0)

∂ŷ

)

, (2.10d)

subject to the following surface boundary conditions at the leading order

u
(0)
∣

∣

∣

ŷ=0
= 0 and

(

∂ĉ(0)

∂ŷ

∣

∣

∣

∣

ŷ=0

+ (ĉ(0) + C∞)
∂ψ

∂ŷ

∣

∣

∣

∣

ŷ=0

)

= 0. (2.11)

For low to moderate advective effects (i.e. Pe≪ ǫ−2), we can neglect the LHS of (2.10d).
This decouples the solute concentration field from the hydrodynamics. The pressure
scaling in the inner region suggests a decay condition as ŷ → ∞ (Michelin & Lauga 2014,
p.579). The components of the polymeric stress tensor (S) are rescaled as:

Sxx =
Ŝxx
ǫ2

=
1

ǫ2

(

∂û

∂ŷ

)2

, Syy =
Ŝyy
ǫ2

=
1

ǫ2
(1 + 2δ)

(

∂û

∂ŷ

)2

, (2.12a)

Sxy = Syx =
Ŝxy
ǫ

=
Ŝyx
ǫ

=
2δ

ǫ

(

∂û

∂ŷ

∂û

∂x̂
+
v̂ ∂

2û
∂ŷ2 + û ∂2û

∂ŷ∂x̂

2

)

. (2.12b)

We now perform a perturbation expansion in Deborah number (De) i.e. accounting
for weakly non-linear viscoelastic effects such that ǫ ≪ De ≪ 1. The field variables for
each term in (2.7) can be further expanded as

f (i)(x, y) = f
(i)
0 (x, y) +Def

(i)
1 (x, y) + · · · . (2.13)

Here f represents the velocity and pressure field. The concentration field is not expanded
in De as it is decoupled from velocity field in the inner region.
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O(De0) solution: Since our objective is to obtain leading order change in the diffusio-
osmotic slip, for convenience, we temporarily drop the superscript (0) from all the
variables. The solution to leading order (i.e. O(De0)) governing equations is obtained
as

ĉ(x̂, ŷ) = I(x̂)e−ψ̂(x̂,ŷ) − C∞, p̂0(x̂, ŷ) = I(x̂)
(

e−ψ̂(x̂,ŷ) − 1
)

, and (2.14a)

û0(x̂, ŷ) = −I ′(x̂)

∫ ŷ

0

∫ ∞

t

(

e−ψ̂(x̂,s) − 1
)

ds dt+ J0(x̂) ŷ. (2.14b)

Here, I(x̂) and J0(x̂) are to be determined through matching, I ′(x̂) represents dI/dx̂.
The leading order velocity field (û0) is represented in a form different from that reported
by Anderson et al. (1982); Michelin & Lauga (2014), as it helps in the evaluation of
higher order velocity field. It can be seen in fig. 2(a) that this expression is equivalent to
that provided in the literature.

O(De1) solution: For ease of calculation, we assume the interaction potential (ψ̂) to
be independent of the tangential direction (x). The flow field at O(De) is governed by

∂û1
∂x̂

+
∂v̂1
∂ŷ

= 0, (2.15a)

−
∂p̂1
∂x̂

+
∂2û1
∂ŷ2

+
∂Ŝxx 0

∂x̂
+
∂Ŝxy 0
∂ŷ

= 0, (2.15b)

−
∂p̂1
∂ŷ

+
∂Ŝyy 0
∂ŷ

= 0. (2.15c)

Using the pressure decay condition (p̂ → 0 as ŷ → ∞), the solution to (2.15c) yields
p̂1 = Ŝyy 0 − J0(x̂)

2(1 + 2δ). Simplifying (2.15b), we obtain

∂2û1
∂ŷ2

= −δ

{

−
∂û0
∂ŷ

∂2û0
∂ŷ∂x̂

+
∂û0
∂x̂

∂2û0
∂ŷ2

+ v̂0
∂3û0
∂ŷ3

+ û0
∂3û0
∂x̂∂ŷ2

}

+
∂p̂1
∂x̂

. (2.16)

Here, v̂0 is found by substituting (2.14b) in the continuity equation and integrating it
over ŷ direction. Substituting (2.14b) and v̂0 into (2.16), integrating twice over ŷ direction
and using the no-slip condition, we obtain †

û1 = J1(x̂)ŷ − δI′(x̂)I′′(x̂)

∫ ŷ

0

dp

∫

∞

p

{

(
∫

∞

r

F(s) ds

)2

+ 2F(r)

(
∫ r

0

sF(s)ds+ r

∫

∞

r

F(s)ds

)

dr

+ ψ̂′(r)e−ψ̂(r)

(
∫ r

0

(

r − s

2

)

sF(s)ds +
r2

2

∫

∞

r

F(s)ds

)

−
(

J0(x̂)

I′(x̂)
+

J ′

0(x̂)

I′′(x̂)

)(

rF(r) +

∫

∞

r

F(s)ds

)

+
J0(x̂)

I′′(x̂)
F ′(r)

r2

2
+

J0(x̂)J ′

(0)(x̂)

I′(x̂)I′′(x̂)
− 2J0(x̂)J ′

0(x̂)(1 + 2δ)

δI′(x̂)I′′(x̂)

}

dr.

(2.17)

Here, F(ξ) = −1 + e−ψ̂(ξ), J0, J1, and I are to be determined through matching.

2.1.3. Matching

For any field variable f , the matching condition at O(ǫ0) is

lim
y→0

(f
(0)
0 +Def

(0)
1 + · · · ) = lim

ŷ→∞
(f̂

(0)
0 +Def̂

(0)
1 + · · · ). (2.18)

† Details of the derivation can be found in the supplementary material.
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The matching condition for the concentration field (ĉ) yields I(x̂) = lim
y→0

c(0)(x, y)+C∞.

We substitute (2.14b) and (2.17) in the above matching condition and obtain: J0 = J1 =
0 at the leading order. At the present order of approximation, the total slip velocity at
the outer edge of the interaction layer is

u(0)
∣

∣

∣

y=0
= c(0)x

∣

∣

∣

y=0

(

M0 +De δM1 c
(0)
xx

∣

∣

∣

y=0

)

, (2.19)

where M0 and M1 are the mobility coefficients representing the Newtonian and non-
Newtonian contribution, respectively:

M0 = −

∫ ∞

0

∫ ∞

t

F(s)ds dt and M1 = −

∫ ∞

0

∫ ∞

p

G(r)dr dp, (2.20)

where G(r) =

{

(∫ ∞

r

F(s) ds

)2

+ 2F(r)

(∫ r

0

sF(s)ds+ r

∫ ∞

r

F(s)ds

)

+ψ̂′(r) e−ψ̂(r)
(∫ r

0

(

r −
s

2

)

sF(s)ds+
r2

2

∫ ∞

r

F(s)ds

)}

. (2.21)

Modification to the diffusio-osmotic slip velocity (arising from the non-Newtonian effects)
is found to be proportional to the first and second tangential derivative of the bulk-scale
concentration at the particle surface. The dependency of viscoelastic effects on the second
derivative can be intuitively understood by realizing that the polymers stretch only when
there exists a spatial variation (or gradient) in the flow. In the current physics, as the
flow itself is generated by the chemical gradient, an appearance of second derivative at
the leading order is intuitive. The proportionality to De δ and the definitions described in
(2.5) suggests that the effect of viscoelasticity is solely due to first normal stress difference.
Furthermore, the dimensional form of the slip velocity reveals that the first order slip
has a dependency on the characteristic length scale (a∗), whereas the Newtonian slip is
independent of it.

2.1.4. Velocity profile in the inner region

Fig. 2(a) shows the Newtonian component of the velocity field (2.14b) inside the thin
interaction layer for an exponentially decaying solute-surface attraction (Anderson et al.

1982; Sharifi-Mood et al. 2013). The velocity monotonically grows away from the surface
and approaches an asymptotic value, which upon multiplication with the tangential
concentration gradient provides the Newtonian slip velocity. The viscoelastic component

of the velocity field (û
(0)
1 ), shown in Fig. 2(b), also grows monotonically away from the

surface and attains an asymptotic value. The magnitude of this asymptotic value increases
with the magnitude of interaction (Φ0).
The interactions between solute molecules and the particle surface can be either

attractive or repulsive; if the solute is more attracted to the surface than the solvent, the
interaction coefficient (Φ0) is negative and vice-versa. To show that the current analysis is
valid for other forms of potential, we evaluate the velocity field inside the interaction layer
for (i) an exponentially repulsive and (ii) a long-range van der Waals type interaction
(arising primarily from the dipolar forces ∼ 1/r6). (i) For repulsive interactions, the
thin ‘layer’ is characterized by an absence of solute concentration and the direction of
motion (and slip) is opposite to that observed for an attractive interaction (Michelin &
Lauga 2014). Fig 3 (a) shows that while the Newtonian slip is reversed (c.f. fig.2a), the
contribution from viscoelasticity is in the same direction as the case of attraction potential
(c.f. fig.2b). (ii) To incorporate long-range attractive van der Waals interactions, we follow
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ŷ

û
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Figure 2. (a) Velocity field of Newtonian fluid inside the interaction layer (for Φ0 = −1).
(b) Variation of the modification to the velocity field. The results are for an exponentially

decaying solute-surface interaction (ψ̂(ξ) = Φ0e
−ξ), where a negative Φ0 represents an attractive

interaction. Here cx and cxx are the concentration gradients at the outer edge of the inner region
i.e. cx|y=0 and cxx|y=0.
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û0/cx
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Figure 3. Velocity field inside the interaction layer for: (a) repulsive exponential interaction
(Φ0 = +1); (b) attractive long-range van der Waals interaction (Φ0 = −1). Here cx and cxx are
the concentration gradients at the outer edge of the inner region i.e. cx|y=0 and cxx|y=0.

Anderson et al. (1982, p. 112) and assume the dipolar interactions between the solute
molecules to be pairwise additive. The potential is defined as

ψ̂(ξ) = Φ0

(

−
1

(1 + ξ)9
+

1

(1 + ξ)3

)

. (2.22)

The velocity fields (Newtonian and viscoelastic) remain qualitatively similar to that
obtained from the attractive exponential interactions. As (2.22) decays slower than the
exponential interaction, the asymptotic value (i.e. slip velocity) is obtained at larger
distances from the surface.
The above results demonstrate that the velocity fields inside the inner region approach

an asymptotic value, the slip velocity. The Newtonian component of this slip is equal
to the product of concentration gradient (cx|y=0) and mobility coefficient M0. Similarly,
the viscoelastic component of velocity field involves M1 (see eq.2.19). The magnitude
of mobility coefficients depends on the nature of interaction (exponential or van der
Waals) and magnitude of attraction or repulsion (Φ0). Fig. 4 quantifies the effect of
the type and magnitude of interaction on M0 and M1. Fig. 4(a) shows that the sign of
Newtonian mobility coefficient is opposite for repulsive interactions (Φ0 > 0) as compared
to attractive ones (Φ0 < 0), for both the type of interactions i.e. short-range exponential
or long-range van der Waals solute-surface interaction. Fig. 4(b) shows that the sign of
M1 is always negative and does not depend on the nature of interaction. Furthermore,
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Figure 4. Variation of mobility coefficient (a) M0 and (b) M1 with respect to Φ0, for
exponential and van der Waals interactions.

for repulsive interactions, the magnitude of mobility coefficients (M0 and M1) is reduced
because the adsorption coefficient in such cases is generally lower than that of attractive
interactions (Anderson 1989, p.69).
The above results, valid for moderate advective effects (ǫPe ≪ 1), are also applicable

to diffusio-osmotic flows of complex fluids in micro-channels, arising from externally
imposed concentration gradients or generated due to active ‘patches’ (Michelin et al.

2015; Michelin & Lauga 2019).
Several experimental studies (Ebbens & Howse 2011; Baraban et al. 2012; Ke et al.

2010) have shown that the particles are propelled with catalytic surface oriented at the
rear-end, suggesting an attractive interaction between the solute molecules and active
particle. Thus, we focus primarily on the exponentially attractive interaction because of
its simplicity and ease of computation. We follow Sabass & Seifert (2012); Sharifi-Mood
et al. (2013) and assume |Φ0| = 1 in the results which follow.

2.2. Diffusio-osmotic slip on an active particle

We now extend the results of previous section (eq.2.19) to an axisymmetric Janus
particle. Here, direction normal to the surface is r; the tangential direction is polar angle
θ, varying from 0 to π. The surface activity K follows a step function (Golestanian et al.

2007; Michelin & Lauga 2014; Natale et al. 2017)

K(θ) =

{

1 θ < θc
0 θ > θc,

(2.23)

where θc is the angle at which the activity undergoes a step change; it represents the
surface coverage of activity. To evaluate the slip velocity, we require solution to the
concentration field (c) in the outer region. In the absence of advection (Pe → 0), the
solution to (2.8b) is sought in terms of an expansion in Legendre polynomials. Following
Golestanian et al. (2007), we obtain the solution to bulk-scale concentration field as

c(r, θ) =

∞
∑

n=0

−Kn
(n+ 1)

Pn(cos θ)

rn+1
, (2.24)

where Pn is the nth order Legendre polynomial. Here Kn are the spectral coefficients of
the activity distribution:

K(θ) =

∞
∑

n=0

KnPn(cosθ). (2.25)
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Figure 5. (a) The dashed line represents the Newtonian slip velocity along the polar angle for
three different surface coverages (θc = π/4, π/2, 3π/4). The empty circular markers represent
the maximum magnitude of the slip velocity for a range of surface coverage: θc ∈ (0, π). (b)
The solid line represents the total slip velocity (for three different surface coverages) along the

polar angle for ψ̂(ξ) = −e−ξ, De = 0.01, and δ = −0.5. The empty square markers represent
the maximum magnitude of the slip velocity for a range of surface coverage: θc ∈ (0, π).. (c)
Concentration profile and its gradient along the polar angle (on particle surface) for θc = π/2.
(d) Shows the profile for cθθ. First 700 modes were used to describe the concentration field and
its gradients.

These coefficients are found by taking an inner product of (2.25) with the Legendre
polynomials (Michelin & Lauga 2014), and are obtained as

K0 =
(1− cos θc)

2
and Kn =

−1

2
(Pn+1(cos θc)− Pn−1(cos θc)) for n > 1. (2.26)

Using the expression (2.24) for disturbance concentration, we obtain the total tangential
slip velocity (M0cθ(1, θ) +DeδM1cθ(1, θ)cθθ(1, θ))

u|r=1 =M0

∞
∑

n=1

−Kn
n+ 1

∂Pn
∂θ

eθ +De δM1

(

∞
∑

n=1

−Kn
(n+ 1)

∂Pn
∂θ

)(

∞
∑

n=1

−Kn
(n+ 1)

∂2Pn
∂θ2

)

eθ.

(2.27)

Fig. 5(a) shows the Newtonian slip velocity varying across the polar angle for three
different surface coverages (θc = π/4, π/2, 3π/4). The negative value depicts that the
diffusio-osmotic flow is towards the active region, and is highest in magnitude at the
point of discontinuity of activity (θ = θc) †. For a second-order fluid, figure 5(b) shows
a localized reversal of slip velocity across θc for all three surface coverages i.e. the slip
velocity exhibits sharp non-linear gradients across the point of discontinuity of activity.
Natale et al. (2017) also reported such behavior in viscoelastic stresses at θc in their FEM
simulations. They reported a viscoelasticity triggered extensional flow, across the point
of discontinuity in surface activity.

† These results are validated with those reported by Michelin & Lauga (2014) and are
described in the supplementary material.
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Figure 6. (a) Profile of concentration and its first and second gradient along the polar angle on
particle surface for θc = π/2. (b) Variation of surface activity as a step (dotted line) and smooth
function (solid line). (c) Convergence of spectral modes: solid (blue) line shows fast convergence
for the sigmoidal activity; dotted (black) line depicts slow convergence for step activity. (d)

Different curves represent the total slip velocity along the polar angle for ψ̂(ξ) = −1e−ξ, ζ = 16,
δ = −0.5 and different Deborah numbers. The inset shows the slip velocities for Newtonian and
second-order fluid for the case of repulsive interactions; Φ0 = +1, De = 0 ( ), and De = 0.2
( ).

To analyze this slip reversal or the extensional flow across the point of transition in
activity, we examine the behavior of concentration field around the particle, as the slip
(2.19) depends on the first and second polar gradient of the concentration field. In fig.
5(c,d), c, cθ and cθθ profiles are shown for θc = π/2. A step change in surface activity
causes the second tangential gradient to undergo a sharp reversal at θ = θc, which is also
reflected in the slip velocity (in fig. 5b). The profile of cθθ, despite accounting for first
700 modes, exhibits oscillations near the point of discontinuity of surface activity. This
seemingly divergent behavior is because of the step function representation of surface
activity (2.23), which is widely employed in the literature (Golestanian et al. 2007;
Michelin & Lauga 2014; Natale et al. 2017). This oscillatory behavior indicates a violation
of scaling in the inner region: in section §2.1.2 the length scale in the tangential direction
was assumed to be a∗, which is not the true characteristic of the system as variations in
the tangential direction are rapid for a step discontinuity in surface activity. Since such
step discontinuities are unlikely to be realized in experiments, we now consider a smooth
variation in the activity and demonstrate that the oscillatory behavior of cθθ for step
activity is a mathematical artefact.

2.3. Diffusio-osmotic slip on an active particle: Sigmoidal function approximation

The step change in surface activity is approximated as a logistic function:

K(θ) = 1/ (1 + exp [−ζ (θc − θ)]) . (2.28)

Here ζ (transition parameter) determines the sharpness of the transition of non-
dimensional activity from 1 to 0. We have chosen ζ = 16 such that the transition length
is large enough to maintain the consistency of the analysis with respect to the scaling
used in §2.1.2 (i.e. l∗transition ∼ a∗)†. The expression for concentration and slip velocity
is identical to (2.24) and (2.27), respectively. The spectral modes can be found by
substituting (2.28) into (2.25) and taking the inner product with respect to Pn on both

† For a particle of a∗ = 5µm, ζ = 16 corresponds to a circumferential length of ∼ 2µm, which
is much larger than the typical interaction layer thickness (∼ 10nm).
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Figure 7. Analysis of activity, spectral modes, concentration gradients and slip velocity for
three different transition parameters: ζ = 4 ( ), ζ = 8 ( ), ζ = 16 ( ). (a) Variation
of activity with polar angle θ. (b) Convergence of spectral modes. (c) Tangential concentration
gradient. (d) Second tangential derivative of concentration field. (e) Slip velocity of a Newtonian
fluid. (f) Slip velocity of the second-order fluid. Parameters: De = 0.1, δ = −0.5, Φ0 = −1.

sides

Kn =
2n+ 1

2

∫ π

0

K(θ)Pn(cosθ)dθ. (2.29)

For activity represented by (2.28), the concentration field and its tangential gradients (at
the surface) are depicted in fig.6(a). The variation of concentration field and its gradients
along θ is qualitatively similar to that reported for the step change; the magnitudes,
however, are significantly reduced. Fig. 6(b) & (c) show the variation of activity and its
faster convergence in comparison to the step function. Fig.6(d) compares the slip velocity
for a second-order fluid with that of a Newtonian fluid.
We observe a reduction and an increase in slip velocity (relative to the Newtonian

slip) across θc. The magnitude of modification in the slip is significantly reduced (as
compared to that of step change in activity) which is a consequence of smooth transition
of activity. The above observations are for attractive interactions between solute and
particle surface; for repulsive interactions (as shown in the inset of fig. 6d), the effect of
viscoelasticity is qualitatively reversed.
Fig. 7 demonstrates the effect of the transition parameter (ζ) on the spectral coeffi-

cients, concentration gradients and slip velocity. Fig. 7(a) shows that as ζ decreases, the
transition from active to passive surface becomes smoother. Fig. 7(b) depicts that the
convergence is faster for lower ζ. As the transition becomes smoother the magnitude of
tangential gradients of concentration field reduces (fig.7c,d). As a result, the slip velocity
for Newtonian and second-order fluid reduces (shown in fig.7e-f, respectively).

The effect of viscoelasticity on the tangential velocity field inside the interaction layer
is shown in fig. 8 (for θc = π/2). Fig. 8(a) depicts the symmetry of velocity field across
θc for Newtonian fluid. Addition of viscoelasticity breaks this symmetry: the contours
of the SOF in 8(b) depict that the magnitude of velocity field is reduced before the
transition of activity (θ < θc) and increased after it (θ > θc). These results suggest
that the elastic effects (characterized by De) tend to locally reverse the slip velocity. At
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(a) (b)

Figure 8. (a) Newtonian tangential velocity contours inside the interaction layer for θc = π/2.

(b) Tangential velocity contours corresponding to the second-order fluid for ψ̂(ξ) = −e−ξ, ζ = 16,

δ = −0.5, and De = 0.2. Arrows depict the velocity vectors (û
(0)
1 ).

higher Deborah numbers, a reversal in slip velocity can generate a local extensional flow
near the transition of activity (as shown by Natale et al. (2017)), resembling a puller or
pusher-type flow field. Interestingly, there have been similar observations in the context
of electrophoresis. Recently, Li & Koch (2020) reported that, in weakly viscoelastic
fluids, polymer elasticity in the inner region changes the electrophoretic particle into
a puller-type squirmer: the strong shear flow in the double layer causes the polymers
to be stretched tangentially, resulting in a pulling-flow at the front & rear end, and a
pushing-flow from the sides. Since electrophoretic and diffusiophoretic mechanisms share
qualitative similarities (such as strong shear inside the thin layer), it is plausible that the
effects of elasticity, observed in electrophoresis, emerge in diffusiophoresis as well.

2.4. Swimming velocity

The motion of the Janus sphere is found by using the reciprocal theorem. Following
Stone & Samuel (1996) and Ho & Leal (1976), we obtain the swimming velocity as

U =
−1

4π

∫

Sp

(u0 +Deu1)|r=1 · ez dS −
1

6π
De

∫

Vf

S0 : ∇u
tdV. (2.30)

Here, u0 is the Newtonian slip velocity (M0cθ(1, θ) eθ); Deu1 is the modification to slip
due to viscoelasticity (DeM1δ cθ(1, θ) cθθ(1, θ) eθ) ; u

t is the test flow field which governs
the motion of a rigid sphere in z-direction with unit velocity in a quiescent Newtonian
medium (Michelin & Lauga 2014; Datt et al. 2015), and S0 is the polymeric stress. The
first integral (Uλ) denotes the contribution to swimming velocity arising from the slip,
which contains a Newtonian (Uλ0

) and a non-Newtonian (Uλ1
) component:

Uλ0
=
M0

2

∫ π

0

cθ(1, θ) sin
2 θ dθ; Uλ1

=
De δM1

2

∫ π

0

cθ(1, θ)cθθ(1, θ) sin
2 θ dθ. (2.31)

We evaluate the above components and compare them in fig. 9 for different surface
coverages. For attractive interactions between the solute molecules and particle, the
Newtonian swimming velocity is in the negative z-direction (see fig. 9(a)). Figure(s).
9(b,c) show that the modification to the swimming velocity is relatively small and changes
sign with the surface coverage: the swimming velocity increases for θc < π/2 and reduces
for θc > π/2.
For a repulsive interaction, Uλ0

changes sign (depicting swimming in the opposite
direction) as also reported by earlier studies (Sharifi-Mood et al. 2013; Michelin &
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Figure 9. (a) Variation of swimming velocity due to Newtonian surface slip (Uλ0
) for various

surface coverages. (b) Perturbation to swimming velocity due to modification in the slip (Uλ1
).

(c) Ratio of the swimming velocity components i.e. (b) and (a). (d) Variation of modification to
the swimming velocity due to bulk polymeric stresses (UB). (e) Ratio of (d) and (c): comparison
of two components arising due to viscoelasticity. Parameters: De = 0.1, δ = −0.5, ζ = 16,
Φ0 = −1 (attractive; ), and Φ0 = +1 (repulsive; ).

Lauga 2014; Natale et al. 2017). However, Uλ1
for a repulsive interaction is in the same

direction as that for attractive interaction. In this case, the contribution of Uλ1
is such

that the swimming velocity is reduced for θc < π/2 and enhanced for θc > π/2. This
outcome can be understood by comparing the flow field inside the interaction layer for
attractive and repulsive cases i.e. fig.2 and fig.3(a), respectively. In comparison to the
attractive interaction, Newtonian velocity field was reversed for repulsive interactions,
whereas the modification (arising from viscoelasticity) was found to be in the same
direction. It is also interesting to note that, contrary to Uλ0

, Uλ1
is an odd function

(antisymmetric about π/2) which is due to the proportionality to double tangential
derivative of surface concentration, whereas the former is solely proportional to the single
tangential derivative.

The second integral (UB) accounts for the contribution from polymeric stresses in the
bulk. In their evaluation of swimming velocity, Datt et al. (2017) accounted for the bulk
viscoelastic effects (UB), and provided the following analytical expression (re-expressed
here using the scales in eq.2.5):

UB
Uλ0

= −De(1 + δ)

∞
∑

n=1

6n

(n+ 1)2(n+ 2)

αnαn+1

α2
1

, (2.32)

where αn = nKn/(2n+ 1) and Kn is determined using (2.28) and (2.29). The modifica-
tion due to the bulk stresses (UB/Uλ0

) is plotted in fig.9(d) for smooth activity. The figure
shows that UB can significantly enhance (or impede) the active swimming, depending
upon the surface coverage (θc) being more (or less) than π/2. This was also reported by
Datt et al. (2017) for step activity. A comparison of the two effects of viscoelasticity, UB
and Uλ1

(shown in fig.9(e)), reveals that the contribution to the swimming velocity from
the modification in slip (Uλ1

) is comparable to that from UB for 5π/6 < θc < π/6.
Fig. 10 shows the effect of transition parameter (ζ) on the components of swimming
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Figure 10. Analysis of different components of swimming velocity for three different transition
parameters: ζ = 4 ( ), ζ = 8 ( ), ζ = 16 ( ). (a) Variation of Uλ0

with different surface
coverages. (b) Variation of activity K with polar angle θ. (c) Variation of Uλ1

for different surface
coverages. (d) Contribution from the slip modification to the swimming velocity for different
surface coverages. (e) Bulk stress contribution to the swimming velocity for different surface
coverages. (f) Comparison of (e) with (d) (i.e. UB with Uλ1

) for different surface coverages.
Parameters: De = 0.1, δ = −0.5, Φ0 = −1.

velocity for various surface coverages. As ζ decreases the Newtonian swimming velocity
reduces (fig.10a) because the slip velocity decreases (shown in fig.7). However, for θc <
π/4 & θc > 3π/4, Uλ0

is greatest for ζ = 4. This is because, for such coverages, the total
area of catalytic activity is more for ζ = 4 than steeper activity transitions (ζ = 8, 16).
Fig.10(b) shows the area under the K − θ curve for ζ = 4, 8, 16, representing the total
area of activity for θc = π/6. For π/4 < θc < 3π/4, the area of catalytic activity is
independent of ζ and thus a direct comparison can be made. Fig.10(c),(d) show that the
contribution from Uλ1

reduces as ζ decreases due to significant reduction in slip velocity.
Similarly, the contribution from bulk polymeric stresses reduces as ζ decreases, as shown
in fig.10(e),(f).

3. Active particle in a shear-thinning fluid

The equations governing a weak shear-thinning flow are described by

∇
∗
· u

∗ = 0, −∇
∗p∗ +∇

∗
· (µ∗

A
∗)− C∗

∇
∗P∗ = 0. (3.1)

The viscosity follows a general non-linear relation with respect to Newtonian shear-rate
(γ0) (Khair et al. 2012): µ∗(γ0) = µ∗

0 (1 + χµ1(γ0)). Here, χ is a small parameter which
represents the viscosity ratio: (µ∗

0 − µ∗
∞)/µ∗

∞; µ∗
0 is the zero shear rate viscosity and µ∗

∞

is the infinite shear rate viscosity. The variables are non-dimensionalized as in §2. Since
the concentration field is decoupled from the hydrodynamics (provided ǫ2Pe ≪ 1), the
solution to concentration field is unchanged and is given by (2.14a).
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3.1. Evaluation of the diffusio-osmotic slip

Similar to §2.1, we use matched asymptotic expansion (assuming Pe≪ ǫ−2 and ǫ≪ 1)
and perturbation expansion (in ǫ) to obtain the leading order slip for a generalized weakly
shear-thinning fluid.

3.1.1. Outer region

At the leading order, the equations in the outer region are:

∇ · u
(0) = 0, −∇p(0) + µ(γ0)∇

2
u
(0) +∇µ(γ0) · A = 0, (3.2a)

subject to the following boundary conditions

u
(0) → 0, p(0) → 0 as y → ∞. (3.3)

Here µ(γ0) = µ∗/µ∗
0 = 1 + χµ1(γ0).

3.1.2. Inner region

We rescale the variables (similar to §2.1.2) and obtain the governing equations in the
inner region (at the leading order) as:

∂û(0)

∂x̂
+
∂v̂(0)

∂ŷ
= 0, (3.4a)

−
∂p̂(0)

∂x̂
+ µ(γ0)

∂2û(0)

∂ŷ2
+
∂µ(γ0)

∂ŷ

∂û(0)

∂ŷ
= (ĉ(0) + C∞)

∂ψ̂(0)

∂x̂
, (3.4b)

−
∂p̂(0)

∂ŷ
= (ĉ(0) + C∞)

∂ψ̂(0)

∂ŷ
, (3.4c)

subject to the pressure decay and no-slip boundary condition

p̂→ 0 as ŷ → 0; û(0)
∣

∣

∣

ŷ=0
= 0. (3.5)

Assuming that the difference between zero shear and infinite shear viscosity is small
(i.e. χ≪ 1), we perform a regular perturbation expansion in χ and represent the velocity
and pressure fields as

f (i)(x, y) = f
(i)
0 (x, y) + χ f

(i)
1 (x, y) + · · · . (3.6)

Substituting the perturbed field variables in (3.4-3.5) gives the equations governing the
system at O(1) and O(χ).
At O(1), the equations and their solutions are identical to (2.14). The hydrodynamics

at O(χ) is governed by

∂û
(0)
1

∂x̂
+
∂v̂

(0)
1

∂ŷ
= 0, (3.7a)

−
∂p̂

(0)
1

∂x̂
+
∂2û

(0)
1

∂ŷ2
+ µ1(γ0)

∂2û
(0)
0

∂ŷ2
+
∂µ1(γ0)

∂ŷ

∂û
(0)
0

∂ŷ
= 0, (3.7b)

−
∂p̂

(0)
1

∂ŷ
= 0. (3.7c)

Integrating (3.7c) and using the pressure decay condition, we get p̂
(0)
1 = 0. (3.7b) thus

yields

∂2û
(0)
1

∂ŷ2
= −

∂

∂ŷ

(

µ1(γ0)
∂û

(0)
0

∂ŷ

)

(3.8)
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(a) (b)

Figure 11. Non-Newtonian mobility (M1) at θ = π/2 for two interaction potentials (a)
exponential-type and (b) van der Waals-type. Other parameters: n = 0.25, Cuλ = 102,

θc = π/2.

Integrating the above equation twice gives

û
(0)
1 = I ′(x)

∫ ŷ

0

µ1(γ0)

∫ ∞

t

F(s)ds dt− J0(x̂)

∫ ŷ

0

µ1(γ0)ds + J1(x̂)ŷ, (3.9)

where F(s) = −1 + e−ψ̂(s).

3.1.3. Matching

As in §2.1.3, upon matching the inner and outer solutions, we find that J0 = J1 = 0
and obtain:

u(0)
∣

∣

∣

y=0
= c(0)x

∣

∣

∣

y=0
(M0 + χM1) , (3.10)

where M0 is the mobility coefficient representing the Newtonian contribution and is
expressed in (2.20). The expression for M1 is

M1 =

∫ ∞

0

µ1

(

γ
(0)
0

)

∫ ∞

t

F(s)ds dt. (3.11)

Since the power-law model diverges for asymptotically small shear-rates (Bird et al. 1987),

we choose the Carreau model to capture viscosity variation: µ1 =
(

1 + τ∗ 2|γ∗0 |
2
)

n−1

2 − 1
(Bird et al. 1987). Here τ∗ is the fluid relaxation time scale and n characterizes the degree
of shear-thinning (n < 1). For Carreau fluid, the non-Newtonian mobility coefficient (M1)
is

M1 =

∫ ∞

0







[

1 +

(

Cuλ c(0)x

∣

∣

∣

y=0

∫ ∞

t

F(s)ds

)2
]

n−1

2

− 1







∫ ∞

t

F(s)ds dt, (3.12)

where Cuλ (based on shear in the interaction layer) is the ratio of timescales associated
with relaxation (τ∗) to that of shear in the flow (λ∗I/Uch): Cuλ = τ∗/(λ∗I/Uch). This is
different than the Carreau number corresponding to shear in the bulk fluid (i.e. outer
region): CuB = τ∗/(a∗/Uch). The ratio of the two Carreau numbers (Cuλ/CuB = a∗/λ∗I)
provides the comparison of shear rate inside to that outside the interaction layer i.e.
∼ O(ǫ−1).

3.2. Diffusio-osmotic slip on an active particle

As in §2.3, we now apply the above results to an axi-symmetric Janus sphere. Since
the shear in the thin interaction layer is generally high (i.e. Uch/λ

∗
I ∼ 102s−1) and
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Figure 12. (a) The dashed black line represents the Newtonian slip velocity. The solid green
line represents the variation of total slip velocity for a shear thinning fluid along the polar angle

for ψ̂(ξ) = −e−ξ and Cuλ = 100. (b) Variation of non-Newtonian contribution to the swimming
velocity (arising from the surface slip) with Cuλ, for three different surface coverage (θc) and

ψ̂(ξ) = −e−ξ. Solid ( ) and dashed lines ( ) correspond to θc = π/2 and θc = π/4
or 3π/4, respectively. Inset showing the variation in non-dimensional viscosity µ with Cuλ at
y = 0 and θ = θc = π/2. (c) Variation of non-Newtonian contribution to the swimming velocity
(arising from the bulk stresses) with CuB . The convergence was obtained by accounting for first
15 modes. (d) Comparison between the two non-Newtonian components of swimming velocity
for Cuλ = 102. Other parameters: χ = 0.1, n = 0.25, ζ = 16.

relaxation time scales of the biological fluids are ∼ 1s (Zare et al. 2019), large Carreau
numbers are possible (Cuλ ∼ 102). Contrary to the second-order fluid, M1 for Carreau
fluid depends both on the magnitude of interaction (Φ0) as well as the concentration
gradient (determined by the activity transition parameter ζ). Since the concentration
field varies in tangential direction, M1 varies tangentially. Thus, we analyze the effect of
Φ0 and ζ on M1 for θ = θc = π/2 in fig.11. For both short-range exponential and long-
range van der Waals interactions, M1 is a weak function of ζ. M1 for Carreau fluid is of
different signs for attractive (Φ0 < 0) and repulsive interactions (Φ0 > 0), as opposed to
the case of second-order fluid (fig.4b).

Using (2.24), (2.28), (3.10), and (3.12), we numerically evaluate the slip for shear-
thinning fluid (n = 0.25) and depict its variation along the surface of Janus particle in
fig. 12 (a). For large Carreau numbers (Cuλ ∼ 102) and attractive interactions, we find a
marginal increase in the total slip velocity. For repulsive interactions, the enhancement
in slip velocity is qualitatively similar (see Appendix A). The modification in slip (in
both attractive and repulsive cases) is maximum at the transition of activity, depicting
a local symmetry about θc.
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3.3. Swimming velocity

We now evaluate the swimming velocity using the reciprocal theorem (Stone & Samuel
1996; Khair et al. 2012):

U =
−1

4π

∫

Sp

(u0 + χu1)|r=1 · ez dS −
1

6π
χ

∫

Vf

µ1 (γ0)A0 : ∇u
tdV. (3.13)

As in §2.4, the first integral contains the Newtonian component Uλ0
(given by eq.2.31)

and non-Newtonian component Uλ1
:

Uλ1
=
χ

2

∫ π

0

M1(θ)cθ(1, θ) sin
2 θdθ. (3.14)

Substituting (3.12) in (3.13) and integrating numerically, we find that the contribution
from Uλ1

modestly affects the swimming of a Janus particle. This is shown in figure 12(b)
for three different surface coverages. The positive sign of the ratio shows that Uλ1

adds to
the contribution arising from the Newtonian slip (Uλ0

). As Cuλ increases, the viscosity in
the interaction layer decreases, which results in a faster diffusio-osmotic flow. However,
this enhancement reaches a plateau as the viscosity reduction stagnates at high Cuλ (see
inset in fig.12b). For repulsive interactions, this enhancement in swimming velocity (Uλ1

)
is qualitatively similar (see Appendix A); shear thinning enhances the swimming velocity,
irrespective of the interaction between solute molecules and the particle.
The second integral (UB) accounts for the bulk stresses arising from viscosity varia-

tions. The modification due to bulk non-Newtonian stresses is quantified in fig.12(c) for
three different surface coverages†. The negative sign of UB/Uλ0

denotes that the bulk
stresses always reduce the swimming velocity, for all surface coverages (also reported by
Datt et al. (2017) for step activity). The non-monotonic behavior is consistent with
the fact that a viscosity, following Carreau model, reduces to a Newtonian fluid of
a lower viscosity (µ∗

∞) as CuB → ∞. As a result, the bulk non-Newtonian stresses
are maximum at intermediate CuB and vanish at high CuB (Khair et al. 2012; Datt
et al. 2015, 2017). Fig.12(d) compares the contribution from the two non-Newtonian
components to swimming velocity i.e. UB and Uλ1

. We take Cuλ = 102, as shear rate in
the interaction layer is generally high. This yields CuB = (ǫ)102. Thus, in fig.12(d), we
compare the two components, keeping ǫ as an independent variable. Since the current
analysis is valid for asymptotically thin interaction layers, we vary ǫ from 10−4 to 10−2.
Physically, Cuλ/CuB = ǫ−1 corresponds to the disparity in shear rates in the inner and
outer regions. For ǫ ∼ 10−4, the shear rate inside the interaction layer is very high and
thus the contribution from Uλ1

dominates that from UB . As ǫ increases (i.e. thickness
of interaction layer), the shear in the interaction layer decreases, which increases the
magnitude of UB/Uλ1

. This continues until UB reaches a plateau.‡
The contribution from both non-Newtonian components is modest in magnitude. In

context of electrophoresis, Khair et al. (2012) also reported a similar enhancement and
trends in a shear-thinning medium. Analogous to their study, our result (3.10) also reveals
that the shear-thinning modification of the slip does not add a size dependency to the
motion induced due to self-diffusiophoresis. On the other hand, the modification due to
bulk non-Newtonian stresses adds a size dependency (it enters through the bulk Carreau
number).

† We follow the approach of Blake (1971); Datt et al. (2017) to find UB for smooth activity.
The details of implementation and reproduced results (for step activity) are provided in the
supplementary material.

‡ The above results are for ζ = 16. Appendix A shows the effect ζ on the swimming velocity.
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4. Conclusions

The results of the current study reveal the effects of fluid rheology on the diffusio-
osmotic slip over an active surface and its consequence on the mobility of a Janus
particle. Using matched asymptotic expansions in conjunction with perturbation the-
ory, we derived the modification to slip velocity for a second-order fluid. Our result
(eq.2.19), for an axisymmetrically active Janus particle, shows that the polymeric stress
significantly alters the slip velocity, and is valid for low to moderate advective effects. The
proportionality to second tangential gradients results in a sharp reversal of the surface
slip, triggered by large gradient in polymeric stress across the discontinuity of surface
activity. This explains the generation of extensional flow across a step change in activity
observed by Natale et al. (2017). An examination of characteristic scales reveals that the
localized reversal of slip velocity is a result of mathematical inconsistency: a consequence
of employing the activity as a step function, which can be overcome by choosing a smooth
(sigmoidal) function. The results reveal that the polymer elasticity tends to generate local
elongational flows across the transition of surface activity. We also explored the effects
of attractive and repulsive interaction between the solute molecules and Janus particle.
Using the reciprocal theorem, we found that the modification in the slip has an effect on
the swimming velocity which is comparable to that arising from bulk viscoelastic stresses
(Datt et al. 2017).

We further applied the framework to a generalized weakly shear-thinning fluid and
obtained the modification to slip velocity (eq.3.10). Employing a Carreau-fluid model, we
showed that the shear-thinning effects marginally increase the slip velocity, provided the
time scale associated with the shear in the interaction layer is asymptotically smaller than
the fluid relaxation time. Using the reciprocal theorem, we showed an enhancement in
the swimming velocity due to modification in slip. For an asymptotically thin interaction
layer, this enhancement dominates the retardation caused by the bulk non-Newtonian
stress.

Another key implication of our results is that the modification in slip provides an
estimate of the hydrodynamic disturbance around an active particle for weak non-
Newtonian effects. This can be a significant contribution towards accurate modeling of
the interaction of two or more active particles in polymeric fluids (Rallabandi et al. 2019;
Stark 2018). Recently, Michelin et al. (2015); Michelin & Lauga (2019) have designed
‘phoretic pumps’ which can transport fluids without the need of applying pressure
difference across the channel. This can be helpful in transportation of biological fluids
through narrow channels. The flow in such systems occurs due to local concentration
gradients, arising either from geometric variation (Lisicki et al. 2016; Michelin et al.

2015) or variation in surface activity (Michelin & Lauga 2019). Since our results are
applicable to a general diffusio-osmotic slip, they should be useful to model the flow of
complex fluids through such pumps.

The current work and previous investigations corresponding to the active motion in
complex fluids (Datt et al. 2017; Natale et al. 2017) have assumed the diffusivity of solute
molecules to be constant. This might be reasonable in the limit of weak non-Newtonian
effects, but may lead to imprecise conclusions for fluid mediums exhibiting strong
non-Newtonian behavior, as the Stokes-Einstein equation fails in describing diffusion
in complex media. Recently, Makuch et al. (2020) devised a relationship between
translational and rotational diffusion coefficients which depends on the size of solute.
Such theoretical formulation can provide a database for precise description of diffusion
in various complex fluids. Such data can be employed in a theoretical framework similar
to that devised by Vrentas & Vrentas (2003) and Tiefenbruck & Leal (1980) who studied
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the effect of diffusion in non-Newtonian flows. Further research in this direction can
help in a better understanding of self-propulsion through the mediums which exhibit
significant deviations from the Newtonian behavior.
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Appendix A. Additional results for the shear-thinning fluid

Fig.13(a) shows the velocity field inside the thin interaction layer for Carreau fluid and
a sigmoidal activity transition (2.28). The contours bear close resemblance to that for
Newtonian fluids 8(a). Thus, we plot the difference between the two in fig.13(b). The local
viscosity reduction due to shear-thinning increases the velocity inside the inner region and
consequently the slip (as observed in fig.12(a)). This enhancement is symmetric about
θc.
Fig.14 shows the results for repulsive exponential interactions between the solute

molecules and active surface. Fig.14(a) depicts the slip velocity, which is qualitatively
reversed in comparison to that depicted for the attractive interactions (see fig. 12(a)). The
magnitude is lower in this case because the adsorption coefficient is reduced in repulsive
interactions (Anderson et al. 1982). Figure 14(b) shows that the enhancement caused by
UλI

is qualitatively similar to that observed in the case of attractive interactions. As the
ratio UB/Uλ0

is independent of mobility, its profile is identical to fig.12(c).
As in §2.4, we now analyze the effect of transition parameter (ζ) on the non-Newtonian

components of the swimming velocity. ζ determines the magnitude of shear inside the
interaction layer and slip velocity. Fig.15(a) shows that the transition parameter has a
small effect on the contribution due to slip modification. This is because, M1 has a weak
dependency on ζ (see fig.11), which endows Uλ1

to have a ζ dependency similar to that
of Uλ0

(c.f eq.3.14 & eq.2.31). Thus, the ratio (Uλ1
/Uλ0

) does not change substantially
with ζ. Fig.15(b) depicts that, at low to moderate CuB , the contribution due to bulk
stresses decreases significantly with decrease in ζ (as the shear rate |γ0| reduces). As
CuB increases, the bulk non-Newtonian stresses reduce because the flow approaches a
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(a) (b)

Figure 13. Tangential velocity contours inside the interaction layer for: (a)Newtonian fluid; (b)

a weakly shear-thinning fluid. The arrows depict the velocity field vector û
(0)
1 . Other parameters:

χ = 0.1, n = 1/4, ζ = 16, ψ̂(ξ) = −e−ξ.
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Figure 14. (a) The dashed line represents the Newtonian slip velocity. The solid line represents

the variation of total slip velocity along the polar angle for ψ̂(ξ) = +e−ξ and Cuλ = 100.
(b) Variation of swimming velocity (arising from the surface slip) with Cuλ, for three different
surface coverage (θc). Other parameters: χ = 0.1, n = 1/4, ζ = 16.
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Figure 15. Analysis of different components of swimming velocity for three different transition
parameters: ζ = 4 ( ), ζ = 8 ( ), ζ = 16 ( ). (a) Contribution from the slip

modification to the swimming velocity for different surface coverages and ψ̂(ξ) = −e−ξ. (b) Bulk
stress contribution to the swimming velocity for different surface coverages. (c) Comparison of
two non-Newtonian contributions to the swimming for Cuλ = 102. Other parameters: χ = 0.1,
n = 0.25, θc = π/2.

Newtonian state i.e. µ∗ → µ∗
∞. For a lower ζ, the shear (|γ0|) is reduced and thus,

the reduction in non-Newtonian stresses occurs at a higher CuB . As a result, the trend
reverses for CuB > 10 in fig.15(b): ζ = 4 is greater than ζ = 8, 16. Fig.15(c) compares
the two components over the range of interaction layer thickness.
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In this Supplementary Material we provide details of the derivation of slip velocity in
a second-order fluid.

S.1 Evaluation of O(De) solution in the inner region

The flow field at O(De) is governed by

∂û1
∂x̂

+
∂v̂1
∂ŷ

= 0, (S1a)

−
∂p̂1
∂x̂

+
∂2û1
∂ŷ2

+
∂Ŝxx 0

∂x̂
+
∂Ŝxy 0
∂ŷ

= 0, (S1b)

−
∂p̂1
∂ŷ

+
∂Ŝyy 0
∂ŷ

= 0. (S1c)

Here the subscripts on S denote the components of polymeric stress tensor. The compo-
nents of the polymeric stress tensor (S) are:

Ŝxx =

(

∂û

∂ŷ

)2

, Ŝyy = (1 + 2δ)

(

∂û

∂ŷ

)2

, (S2a)

Ŝxy = Ŝyx = 2δ

(

∂û

∂ŷ

∂û

∂x̂
+
v̂ ∂

2û
∂ŷ2 + û ∂2û

∂ŷ∂x̂

2

)

. (S2b)

Using the pressure decay condition: p̂→ 0 as ŷ → ∞ (Michelin & Lauga 2014, pg.579),
the solution to (S1c) yields p̂1 = Ŝyy 0 − J0(x̂)

2(1 + 2δ), where J0 is later shown to be
zero through matching. Substituting p̂1 in (S1b), we obtain

∂2û1
∂ŷ2

+ 2J0(x̂)J
′
0(x̂)(1 + 2δ) =

∂Ŝyy0
∂x̂

−

[

∂Ŝxx0
∂x̂

+
∂Ŝxy0
∂ŷ

]

, (S3a)

= 2(1 + 2δ)uyuyx −

[

2uyuyx + 2δ

(

uyyux + uyuyx +
vyuyy + vuyyy + uyuyx + uuyyx

2

)]

.

(S3b)

Here we have substituted (S2a) in (S3a) to obtain (S3b). The subscripts in above equation
(and the next) denote the derivative of u and v with respect to x or y. We also have
temporarily dropped the hat symbol and subscript 0 in the right hand side. The coloured
terms (blue) get canceled out and using the continuity equation (vy = −ux), we simplify
the equation as:

∂2û1

∂ŷ2
+ 2J0(x̂)J ′

0(x̂)(1 + 2δ) = 2δ
{

2uyuyx −
[

uyyux + uyuyx +
−uxuyy + vuyyy + uyuyx + uuyyx

2

]}

,

(S4a)

= 2δ

{

2uyuyx −
[

uyyux
2

+
3uyuyx

2
+
vuyyy + uuyyx

2

]}

, (S4b)

= 2δ
{uyuyx

2
−

[uyyux
2

+
vuyyy + uuyyx

2

]}

, (S4c)

= −δ {−uyuyx + uyyux + vuyyy + uuyyx} . (S4d)



2 A. Choudhary, T. Renganathan and S. Pushpavanam

Dropping the subscript notation (for derivative), we obtain the differential equation for
û1 as:

∂2û1
∂ŷ2

= −δ

{

−
∂û0
∂ŷ

∂2û0
∂ŷ∂x̂

+
∂û0
∂x̂

∂2û0
∂ŷ2

+ v̂0
∂3û0
∂ŷ3

+ û0
∂3û0
∂x̂∂ŷ2

}

− 2J0(x̂)J
′
0(x̂)(1 + 2δ).

(S5)
We will now substitute the O(De0) solution in the above equation. û0 and its derivatives,
and v̂0 (obtained from the continuity equation) are:

û0 = −I ′(x̂)

∫ ŷ

0

∫ ∞

t

F(s)dsdt + J0(x)ŷ, (S6a)

∂û0
∂ŷ

= −I ′(x̂)

∫ ∞

ŷ

F(s)ds + J0(x), (S6b)

∂2û0
∂ŷ2

= I ′(x̂)F(ŷ), (S6c)

v̂0 = −

∫ ŷ

0

∂û0
∂x̂

dy + C(x̂) = +I ′′(x̂)

∫ ŷ

0

∫ r

0

∫ ∞

t

F(s) dsdtdr −
J ′
0(x̂)ŷ

2

2
+ C(x̂). (S6d)

Using the no-penetration condition at the surface, we find that C(x̂) = 0.

Substituting (S6) in the bracket terms of (S5), we obtain the four terms {A+B + C +D}
as:

A = −

[(

−I ′(x̂)

∫ ∞

ŷ

F(s)ds + J0(x)

)(

−I ′′(x̂)

∫ ∞

ŷ

F(s)ds + J ′
0(x̂)

)]

, (S7a)

B =

(

−I ′′(x̂)

∫ ŷ

0

∫ ∞

t

F(s)dsdt + J ′
0(x)ŷ

)

(I ′(x̂)F(ŷ)) , (S7b)

C =

(

I ′′(x̂)

∫ ŷ

0

∫ r

0

∫ ∞

t

F(s) dsdtdr −
J ′
0(x̂)ŷ

2

2

)

(I ′(x̂)F ′(ŷ)) , (S7c)

D =

(

−I ′(x̂)

∫ ŷ

0

∫ ∞

t

F(s)dsdt + J0(x̂)ŷ

)

(I ′′(x̂)F(ŷ)) . (S7d)

These terms can be further simplified as

A = −

[

+I ′(x̂)I ′′(x̂)

(∫ ∞

ŷ

F(s)ds

)2

− J0(x̂)I
′′(x̂)

(∫ ∞

ŷ

F(s)ds

)

−I ′(x̂)J ′
0(x̂)

(∫ ∞

ŷ

F(s)ds

)

+ J0(x̂)J
′
0(x̂)

]

, (S8a)

B = −I ′(x̂)I ′′(x̂)F(ŷ)

(

∫ ŷ

0

∫ ∞

t

F(s)dsdt

)

+ I ′(x̂)J ′
0(x̂)ŷF(ŷ), (S8b)

C = I ′(x̂)I ′′(x̂)F ′(ŷ)

(

∫ ŷ

0

∫ r

0

∫ ∞

t

F(s)dsdtdr

)

− J ′
0(x̂)I

′(x̂)F ′(ŷ)
ŷ2

2
, (S8c)

D = −I ′(x̂)I ′′(x̂)F(ŷ)

(

∫ ŷ

0

∫ ∞

t

F(s)dsdt

)

+ J0(x̂)I
′′(x̂)ŷF(ŷ). (S8d)
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Substituting the above four terms in (S5) and simplifying we get:

∂2û1

∂y2
=− δI′(x̂)I′′(x̂)

{

−
(
∫

∞

ŷ

F(s) ds

)2

− 2F(ŷ)

(
∫ ŷ

0

∫

∞

t

F(s)dsdt

)

+F ′(ŷ)

(
∫ r

0

∫ ω

0

∫

∞

t

F(s)dsdtdω

)

+

+

(

J0(x̂)

I′(x̂)
+

J ′

0(x̂)

I′′(x̂)

)(

ŷF(ŷ) +

∫

∞

ŷ

F(s)ds

)

−J0(x̂)

I′′(x̂)
F ′(ŷ)

ŷ2

2
−

J0(x̂)J ′

(0)(x̂)

I′(x̂)I′′(x̂)
+

2J0(x̂)J ′

0(x̂)(1 + 2δ)

δI′(x̂)I′′(x̂)

}

. (S9)

Integrating the above equation once, we obtain

∂û1

∂y
= C1 − δI′(x̂)I′′(x̂)

∫ ŷ

0

{

−
(
∫

∞

r

F(s) ds

)2

− 2F(r)

(
∫ r

0

∫

∞

t

F(s)dsdt

)

+F ′(r)

(
∫ r

0

∫ ω

0

∫

∞

t

F(s)dsdtdω

)

+

(

J0(x̂)

I′(x̂)
+

J ′

0(x̂)

I′′(x̂)

)(

rF(r) +

∫

∞

r

F(s)ds

)

−J0(x̂)

I′′(x̂)
F ′(r)

r2

2
−

J0(x̂)J ′

(0)(x̂)

I′(x̂)I′′(x̂)
+

2J0(x̂)J ′

0(x̂)(1 + 2δ)

δI′(x̂)I′′(x̂)

}

dr.

(S10)

As ŷ → ∞, ∂û1

∂y = J1(x̂) which is to be determined through matching. Simplifying the

above equation (replacing C1 = J1 + δI ′I ′′
∫∞

0
· · · dr), we get:

∂û1

∂y
= J1(x̂) + δI′(x̂)I′′(x̂)

∫

∞

ŷ

{

−
(
∫

∞

r

F(s)ds

)2

− 2F(r)

(
∫ r

0

∫

∞

t

F(s)dsdt

)

+F ′(r)

(
∫ r

0

∫ ω

0

∫

∞

t

F(s)dsdtdω

)

+

(

J0(x̂)

I′(x̂)
+

J ′

0(x̂)

I′′(x̂)

)(

rF(r) +

∫

∞

r

F(s)ds

)

− J0(x̂)

I′′(x̂)
F ′(r)

r2

2

−
J0(x̂)J ′

(0)(x̂)

I′(x̂)I′′(x̂)
+

2J0(x̂)J ′

0(x̂)(1 + 2δ)

δI′(x̂)I′′(x̂)

}

dr. (S11)

Integrating once more and using the no-slip condition (renders the constant C2 zero), we
get:

û1 = J1(x̂)ŷ − δI′(x̂)I′′(x̂)

∫ ŷ

0

dp

∫

∞

p

{

(
∫

∞

r

F(s) ds

)2

+ 2F(r)

(
∫ r

0

∫

∞

t

F(s)dsdt

)

−F ′(r)

(
∫ r

0

∫ ω

0

∫

∞

t

F(s)dsdtdω

)

−
(

J0(x̂)

I′(x̂)
+

J ′

0(x̂)

I′′(x̂)

)(

rF(r) +

∫

∞

r

F(s)ds

)

+
J0(x̂)

I′′(x̂)
F ′(r)

r2

2
+

J0(x̂)J ′

(0)(x̂)

I′(x̂)I′′(x̂)
− 2J0(x̂)J ′

0(x̂)(1 + 2δ)

δI′(x̂)I′′(x̂)

}

dr.

(S12)

Here F(r) = −1 + e−ψ̂(r) and F ′(r) = −ψ̂′(r)e−ψ̂(r).
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We now reduce the integrals (inside the bracket) by changing the order of integration:

2F(r)

(∫ r

0

∫ ∞

t

F(s)ds dt

)

dr = 2F(r)

(∫ r

0

sF(s)ds+ r

∫ ∞

r

F(s)ds

)

dr and

∫ r

0

∫ ω

0

∫ ∞

t

F(s)ds dt dω =

∫ r

0

(

r −
s

2

)

sF(s)ds +
r2

2

∫ ∞

r

F(s)ds. (S13)

Substituting the above simplification in (S12), we obtain

û1 = J1(x̂)ŷ − δI′(x̂)I′′(x̂)

∫ ŷ

0

dp

∫

∞

p

{

(
∫

∞

r

F(s) ds

)2

+ 2F(r)

(
∫ r

0

sF(s)ds+ r

∫

∞

r

F(s)ds

)

dr

+ ψ̂′(r)e−ψ̂(r)

(
∫ r

0

(

r − s

2

)

sF(s)ds +
r2

2

∫

∞

r

F(s)ds

)

−
(

J0(x̂)

I′(x̂)
+

J ′

0(x̂)

I′′(x̂)

)(

rF(r) +

∫

∞

r

F(s)ds

)

+
J0(x̂)

I′′(x̂)
F ′(r)

r2

2

+
J0(x̂)J ′

(0)(x̂)

I′(x̂)I′′(x̂)
− 2J0(x̂)J ′

0(x̂)(1 + 2δ)

δI′(x̂)I′′(x̂)

}

dr. (S14)

S.2 Matching inner and outer solutions

For any field variable f (representing concentration and velocity), the matching con-
dition at O(ǫ0) is

lim
y→0

(f
(0)
0 +Def

(0)
1 + · · · ) = lim

ŷ→∞
(f̂

(0)
0 +Def̂

(0)
1 + · · · ). (S15)

The matching condition for the concentration field (ĉ) yields: I = lim
y→0

c(0)(x, y) + C∞.

At O(1), the matching condition for velocity yields:

u
(0)
0

∣

∣

∣

y=0
= lim
ŷ→∞

û
(0)
0 .

We substitute (S6a) in the above equation, which yields

u
(0)
0

∣

∣

∣

y=0
= −

(

∂c

∂x

∣

∣

∣

∣

y=0

)

∫ ∞

0

∫ ∞

t

(

e−ψ̂(s) − 1
)

ds dt + lim
ŷ→∞

J0 ŷ. (S16)

For a bounded solution, J0 = 0. We thus obtain the solution reported previously in the
literature Derjaguin et al. (1947); Anderson et al. (1982); Michelin & Lauga (2014). At
O(De), we use (S14) and obtain

u
(0)
1

∣

∣

∣

y=0
= −δ

(

∂c

∂x

∣

∣

∣

∣

y=0

∂2c

∂x2

∣

∣

∣

∣

y=0

)

∫ ∞

0

dp

∫ ∞

p

G(r)dr + lim
ŷ→∞

J1 ŷ. (S17)

Here, G(r) =

{

(∫ ∞

r

F(s) ds

)2

+ 2F(r)

(∫ r

0

sF(s)ds+ r

∫ ∞

r

F(s)ds

)

+ ψ̂′(r) e−ψ̂(r)
(∫ r

0

(

r −
s

2

)

sF(s)ds+
r2

2

∫ ∞

r

F(s)ds

)}

. (S18)

Similar to the O(1) solution, we obtain J1 = 0.
2.1 Intermediate matching

The above results for velocity can also be obtained using intermediate matching Hinch
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(1991). In an arbitrary intermediate region (y ∼ ǫα, where 0 < α < 1), the matching
condition for both outer and inner region is

lim
ǫ→0

(u
(0)
0 +Deu

(0)
1 + · · · ) = lim

ǫ→0
(û

(0)
0 +Deû

(0)
1 + · · · ). (S19)

Using the Taylor series in the LHS of (S19), at O(1) the matching condition yields

lim
ǫ→0

u
(0)
0

∣

∣

∣

y=0
+ y





∂u
(0)
0

∂y

∣

∣

∣

∣

∣

y=0



+ · · · = lim
ǫ→0

û
(0)
0 . (S20)

We substitute (S6a) in the RHS of the above equation and obtain

lim
ǫ→0



u
(0)
0

∣

∣

∣

y=0
+ y





∂u
(0)
0

∂y

∣

∣

∣

∣

∣

y=0



+ · · ·



 = lim
ǫ→0

[

−

(

∂c

∂x

∣

∣

∣

∣

y=0

)

∫ ŷ

0

∫ ∞

t

F(s)dsdt + J0 ŷ

]

.

(S21)
Rescaling y and ŷ in terms of the intermediate coordinate (ȳ): y = ȳ ǫα and ŷ = ȳ ǫ−α.

lim
ǫ→0



u
(0)
0

∣

∣

∣

y=0
+ ǫαȳ





∂u
(0)
0

∂y

∣

∣

∣

∣

∣

y=0



+ · · ·



 = lim
ǫ→0

[

−

(

∂c

∂x

∣

∣

∣

∣

y=0

)

∫ ȳǫ−α

0

∫ ∞

t

F(s)dsdt + J0 ȳǫ
−α

]

.

(S22)
Comparing the coefficients of ȳ, we obtain

J0 = ǫ2α





∂u
(0)
0

∂y

∣

∣

∣

∣

∣

y=0



 . (S23)

Since the velocity gradient at the surface (y = 0) is less than or equal to O(1), J0 can
be neglected at the leading order (as it is O(ǫ2α), where 0 < α < 1). In the limit ǫ → 0,
equation (S22) yields

lim
ǫ→0

u
(0)
0

∣

∣

∣

y=0
= −

(

∂c

∂x

∣

∣

∣

∣

y=0

)

∫ ∞

0

∫ ∞

t

F(s)dsdt. (S24)

S.3 Validation with literature

3.1 Concentration field and Newtonian slip velocity

The slip velocity and concentration field for different surface coverage is shown in fig. S1.
For step change in activity, our results agree well with that of Michelin & Lauga (2014)
(i.e. Newtonian fluid). To obtain these results, the Newtonian mobility coefficient M0 is
fixed to be -1 (as performed by Michelin & Lauga (2014)). It should be noted that M0

in the main text is −1.1465 (corresponding to Φ0 = −1).
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(a) (b)

Figure S1. (a) Surface concentration profile and (b) slip velocity profile for

cos θc = 0 and − 1/
√
3. The filled circles represent the results of Michelin & Lauga (2014).

3.2 UB for shear-thinning fluid

The velocity field around an axisymmetric squirmer was provided by Blake (1971), which
was later used by Datt et al. (2017) to find the bulk non-Newtonian effects on the
swimming of an axisymmetric Janus sphere. The radial component of the outer region
disturbance field is

ur = α1
P1

r3
+

∞
∑

m=2

(

1

rm+2
−

1

rm

)(

m+
1

2

)

αnPm, (S25)

and the tangential component is

uθ = α1
V1
2r3

+

∞
∑

m=2

[

m

2rm+2
−
(n

2
− 1
) 1

rn

](

m+
1

2

)

αmVm. (S26)

Here, Vm = [−2 sin θ/(m(m+ 1))]P 1
m(cos θ), P 1

m is an associated Legendre polynomial
of the first kind, αm = mKm/(2m+ 1), and Km is the mth spectral mode for the step
activity which is given by (2.26) in the main text. We convert the above field in Cartesian
coordinates and substitute it in the expression for UB :

UB = −
1

6π
χ

∫

Vf

µ1 (γ0)A0 : ∇u
tdV. (S27)

Here µ1 =
(

1 + Cu2B |γ0|
2
)

n−1

2 − 1 and |γ0| = (A0 : A0/2)
1/2

. We use inbuilt Gauss-
Kronrod rule in Mathematica 12 to numerically evaluate UB . Fig.S2 shows an agreement
with the results reported by Datt et al. (2017) for θc = π/2.

10−1 101
−2

−1.5

−1

−0.5

0
·10−2

CuB

UB
Uλ 0

Figure S2. Comparison of numerical calculation of UB ( ) with Datt et al. (2017) ( )
for χ = 0.1, θc = π/2, n = 0.25,m = 15.
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Michelin, Sébastien & Lauga, Eric 2014 Phoretic self-propulsion at finite péclet numbers.
Journal of Fluid Mechanics 747, 572–604.
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