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Abstract 

This paper proposes a fully coupled multi-scale finite element model for the mechanical description of a new 

composite material inspired in wood cell-walls. The constitutive response of the composite is described by means of a 

representative volume element (RVE) in which the fibre is represented as a periodic alternation of rigid and soft 

portions of material. Furthermore, at a lower scale the overall constitutive behavior of the fibre is modelled as a single 

material defined by a second RVE. Numerical tests demonstrate substantial gains in terms of resistance to failure, 

toughness and in the control of the overall flexibility/stiffness balance in the material. 
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1. Introduction 

Wood microstructure can be understood as the result of an optimisation process developed by nature 

over millions of years. One of its main features is its hierarchical nature distributed across multiple spatial 

scales. This important feature has been widely investigated over the last few years by means of multi-

scale finite element models in the context of elastic response [1-4], and recently in the context of 

irreversible behavior [5], bringing substantial progress to the understanding of this material.  

In an attempt to exploit further the structural and mechanical concepts involved in wood cells, our main 

objective in this paper is to investigate the mechanical response of a new wood-inspired composite by 

means of a finite element-based computational multi-scale approach. Based on the wood cell-wall 

composite, the material response is described by means of a Representative Volume Element (RVE) 

composed of a biphasic fibre embedded in a soft matrix. Furthermore, at a lower scale the fibre is 

* Corresponding author. Tel.: + 44 (0) 1792 513177; fax: + 44 (0) 1792 295157. 

E-mail address: e.i.saavedra-flores@swansea.ac.uk 

doi:10.1016/j.proeng.2011.04.595

Procedia Engineering 10 (2011) 3616–3621

1877-7058 © 2011 Published by Elsevier Ltd. 

Selection and peer-review under responsibility of ICM11

Open access under CC BY-NC-ND license.

© 2011 Published by Elsevier Ltd. 
Selection and  peer-review under responsibility of ICM11 

Open access under CC BY-NC-ND license.



Saavedra Flores E. I. et al. / Procedia Engineering 10 (2011) 3616–3621 3617

represented as a periodic alternation of rigid and soft portions, whose overall constitutive behaviour is 

modelled as a single material defined at each Gauss-point by means of a second RVE. This bio-inspired 

strategy is suggested by the strong influence of the proportion of volume fractions of crystalline and 

amorphous celluloses on the overall mechanical behaviour of wood cells. 

It is important to emphasise that the same periodic multi-scale framework has been adopted originally 

in [5] to investigate the wood cell-wall mechanics. In this paper however, we adopt this framework to 

study this new composite material.  

The paper is organised as follows. Section 2 presents a brief review of wood cell-wall mechanics. The 

finite element-based multi-scale model of a wood-inspired composite and some numerical results are 

presented in Section 3. Finally, Section 4 summarises the main conclusions. 

2. Wood cell-wall mechanics 

The walls of wood cells contain three major chemical constituents: cellulose, hemicellulose and lignin. 

These constituents form a spatial arrangement called microfibril which can be represented as a periodic 

unit building block of rectangular cross-section with infinite length (see Figure 1(a)). 

Cellulose, hemicellulose and lignin constitute approximately 30%, 30-35% and 35-40%, respectively, 

of the total volume of wood substance. The cellulose is a long polymer composed of glucose units which 

is organised into periodic crystalline and amorphous regions along its length and called crystalline-

amorphous cellulose core as shown in Figure 1(b). This periodic arrangement is further covered with an 

outer surface made up of amorphous cellulose [6]. The (volumetric) degree of crystallinity is defined as 

the ratio between the volume of crystalline cellulose and the total volume of cellulose. Hemicellulose is a 

polymer with little strength built up of sugar units. Its structure is partially random with mechanical 

properties highly sensitive to moisture changes. Lignin is an amorphous polymer whose purpose is to 

cement the individual cells together and to provide shear strength. It is the most hydrophobic component 

in the cell-wall, with relatively stable mechanical properties under moisture changes.  The specific 

orientation of microfibrils with respect to the longitudinal cell axis is called the microfibril angle (MFA) 

and is one of the most important parameters controlling the balance between stiffness and flexibility in 

trees.

(a)      (b) 

Fig. 1. (a) Representation of microfibril and basic constituents; (b) Representation of cellulose with its crystalline and amorphous 

fractions.  
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3. Multi-scale finite element model for a new wood-inspired composite  

In this section we explore the design of a prototype wood-inspired composite when some of the 

structural and mechanical concepts involved in wood cells are exploited further. Based on the 

characteristics present in wood cell-walls, we suggest a bio-inspired strategy to increase the resistance to 

failure, toughness and to control the balance between stiffness and flexibility in a new composite.  

In order to endow this composite with similar mechanisms of deformation found in the wood cell, we 

establish a one-to-one correspondence between each of the constituents present in wood and those existing 

in the new composite, and therefore the role performed by each of the cell-wall constituents is replicated 

in the new wood-inspired material. Thus, the reinforcing fibre of the new composite is assumed to be 

made up of two phases. The first phase is considered to be a very rigid elastic material (in the wood cell-

wall composite, the stiff crystalline cellulose fibre), called here RF (Rigid portion of the Fibre). The 

second phase of the fibre is assumed to have a softer elasto-plastic response (the softer amorphous 

cellulose fraction in wood cell-wall), called SF (Softer fraction of the Fibre). Furthermore, the matrix is 

assumed to be formed by two phases, a very soft portion (in wood, the hemicellulose) called SM (Softer 

phase in the Matrix) and a relatively more rigid fraction (lignin in the cell-wall), called here RM (more 

Rigid fraction in the Matrix). Refer to Figure 2 for further details. 

Fig. 2. Schematic representation of the wood-inspired composite and its constituents. 

In order to mimic wood, we design this prototype with the same features found in wood. That is to say, 

we keep the same volume fractions of basic constituents. This means that we adopt a 30% volume 

fraction for the whole fibre, including RF and SF; and 32.5 and 37.5% for the two phases in the matrix, 

SM and RM, respectively. Similarly, we choose 52% for the percentage of volume of RF with respect to 

the entire volume of fibre (degree of crystallinity in the cellulose). 

In this study, we adopt Alumina as the rigid elastic fraction of fibre, RF. Its mechanical properties are 

obtained from [7] and correspond to an isotropic material with Young's modulus E=379 GPa and 

Poisson's ratio =0.25. Its tensile failure strain is 0.4%. To keep the same ratio present in the wood cell-

wall composite, between the Young's modulus of the crystalline cellulose, E=134 GPa, and its amorphous 

counterpart, E=10.42 GPa, we proceed to define the Young's modulus of the softer fraction of fibre SF

with a value E=29.4715 GPa, resulting in the same ratio 379/29.4715=134/10.42 = 12.86. In order to 

endow this new composite with similar mechanisms of deformation found in the wood cell, we adopt the 

value of Poisson's ratio  =0.23 and failure strain f=0.03838 (onset of plastic yielding) of the amorphous 
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cellulose fraction for the softer fraction of fibre SF in the new composite. With the above Young's 

modulus E=29.4715 GPa and failure strain f =0.03838, we calculate a yield stress y=1.131 GPa for SF.

For the definition of the mechanical properties of the matrix with its two phases, SM and RM, we 

follow the same considerations explained above. In addition, we adopt the same viscosity-related 

properties found in the hemicellulose and lignin for the softer and more rigid phases in the matrix, SM and 

RM, respectively (we refer to [5] for further details about the mechanical properties of the wood 

constituents). The resulting material constants for SM and RM along with those determined for RF and SF

are summarised in Table 1. 

Table 1. Summary of the mechanical properties adopted in the constituents of the present wood-inspired composite. The units for

the Young’s modulus E and yield stress y are GPa. The units for the viscosity-related parameters p and m are GPa s. Mechanical 

properties of Alumina are obtained from [7].

Constituents E p m y

RF (Alumina -- Rigid fraction of Fibre) 379 0.25 - - - 

SF (Softer fraction of Fibre) 29.4715 0.23 - - 1,131 

SM (Softer fraction in Matrix) 0.1131 0.2 8.5 3.1 5.37e-2 

RM (more Rigid fraction in Matrix) 4.4122 0.3 20.0 6.5 5.37e-2 

The mechanical response of the composite is defined by a single material whose constitutive 

description is obtained by the computational homogenisation of the RVE 1 (microfibril scale), shown in 

Figure 2. Furthermore, at a lower scale the fibre is represented as a periodic alternation of rigid and soft 

portions, whose overall constitutive behaviour is modelled as a single material defined at each Gauss-

point by means of the RVE 2 (refer to Figure 2).  

We remark that the same multi-scale framework has been adopted in [5] to investigate the dissipative 

behavior of wood cell-walls. However, in this paper we adopt this framework to study this new composite 

material. Therefore, the finite element meshes for RVE 1 and 2 are obtained from [5]. 

The end strain state to be prescribed incrementally on the corresponding RVE 1 is calculated under the 

same assumptions made in [5, 8]. If the initial orientation of the fibre with respect to the y-direction 

(stretching axis) is 45o, then the in-plane Poisson's ratio can be estimated [5] as =[cot(45o)]2=1. 

Therefore, if the strain component applied in y-direction is 0.20, then the final strain state can be 

expressed as ={-0.2,0.2,0,0,0,0}T, in standard engineering strain array format. 

In order to investigate the material response, we explore the influence of the volume fraction (Vf) of the 

constituent RF (with respect to the total volume of fibre) on the overall mechanical response of the new 

material. We compare the material response predicted for four different fractions: 0.45, 0.50, 0.55 and 

0.60. Furthermore, we analyse the traditional condition in which the fibre is considered to be made of one 

single elastic material (in other words, Vf=1.0). The adopted strain rate is 1.25e-3 s-1.

Figure 3 shows the stress-strain curves for the different volume fractions Vf considered. In the 

corresponding graph, we see that for volume fractions Vf between 0.45 and 0.60 the mechanical response 

is virtually independent of Vf for strains under 4-5%. From the numerical results, it can be concluded that 

up to this level of strain, the whole fibre remains almost inextensible. After 8-9% of strain, however, the 

dependence of the response on the volume fraction Vf varies. When these curves (Vf =0.45, 0.50, 0.55 and 

0.60) are compared to the condition Vf =1, the response becomes practically independent of Vf only for 

strains under 1.25%. 

The small influence of Vf on the overall mechanical response at lower strain levels is attributed to the 

large angle (near 45o) between the fibre and the stretching axis at this stage. Here, only a small portion of 
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the axial load is carried by the fibre. In addition, the main mechanism of deformation in the composite is 

shear, localised in the matrix, due to the relative displacements among fibres undergoing rigid body 

rotation and alignment in the stretching direction. Therefore, any increase of the stiffness in the fibre due 

to a rise in the volume fraction of the stiff portion RF will not affect significantly the overall mechanical 

response of the composite under low strain levels since the fibre will experience predominantly changes in 

its orientation rather than straining along its own axis. If the straining process continues, the angle 

between the fibre and the stretching axis will reduce considerably and the fibres will begin to take larger 

portions of axial loads and the corresponding alignment will result in fibre reorientation-induced 

stiffening, as shown in Figure 3. Consequently, for only moderate to large strains the choice of different 

volume fractions Vf in the fibre will lead to different levels of stiffness in the material. On the contrary, for 

smaller strains (possible during service conditions) the amount of rigid fraction in the fibre will have 

virtually no influence on the overall response of the material. 

Fig. 3. Stress-strain diagrams in the wood-inspired composite, obtained from the RVE with different volume fractions Vf (volume of 

RF with respect to the whole volume of fibre).  

Importantly, the curve shown in Figure 3 for Vf=1 has been truncated for a maximum strain of the 

(single material) fibre equal to 0.4% (the failure strain of Alumina [7]). Similarly, the remaining four 

curves for Vf between 0.45 and 0.60 have been truncated at failure. However, the mechanism of failure in 

this case is represented by the onset of plastic strain in the softer fraction of the fibre (SF) rather than 

failure in the rigid portion RF. This redistribution of the failure from the rigid constituent of the fibre to its 

softer counterpart allows the composite to increase substantially the strain to failure, from almost 9% (for 

the classical solution Vf =1) to 20% strain (Vf =0.45), without showing significant reduction in the 

maximum stress (just a drop from 0.285 to 0.25 GPa).  

In addition, a quick examination of this graph shows that the area under the curve for the particular 

case of Vf=0.45 almost duplicates the area under the curve corresponding to Vf=1, indicating an increase in 

the toughness of the material when almost half of the original (single material) elastic fibre is replaced 

with a softer fraction. 

It is important to note that in [8] it was shown how wood tissue and individual cells are able to undergo 

large deformations without apparent damage in the hemicellulose-lignin matrix. This process is 
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interpreted as a stick-slip mechanism at the molecular level of the matrix which results in a plastic 

response similar to crystallographic sliding in polycrystalline metals. Therefore, inspired in this feature, 

the proposed matrix in this composite does show plastic response but does not jeopardize the integrity of 

the entire unit. We also remark that the main mechanism of failure in the wood cell-wall under straining 

has been demonstrated to be the onset of inelastic yielding in the amorphous fraction of the cellulose fibre 

[5] which is consistent with the failure mechanism shown in this proposed wood-inspired composite 

material.   

4. Conclusions 

Fundamental concepts involved in wood cells mechanics have been exploited in order to design a new 

wood-inspired composite. A finite element-based computational multi-scale framework has been adopted 

to investigate the mechanical response of this new material. Numerical results have demonstrated 

substantial gains in terms of resistance to failure, toughness and in the control of the overall 

flexibility/stiffness balance in the material. We have shown here that the introduction of a very simple 

wood-inspired strategy allows the composite to increase substantially its strain to failure, from 9% (for the 

classical engineering solution considering a single material fibre) up to 20% strain (when almost half of 

the original elastic fibre is replaced with a softer fraction), without showing significant reduction in the 

maximum stress.  

The features presented above have been replicated from wood and represent a natural mechanism of 

adaptation to the development of large strains in trees. 
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