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Abstract

The curvature sensitive localization of proteins on membranes is vi-
tal for many cell biological processes. Coarse-grained models are rou-
tinely employed to study the curvature sensing phenomena and mem-
brane morphology at the length scale of few micrometers. Two prevalent
phenomenological models exist for modeling experimental observations of
curvature sensing, (1) the spontaneous curvature model and (2) the cur-
vature mismatch model, which differ in their treatment of the change in
elastic energy due to the binding of proteins on the membrane. In this
work, the prediction of sensing and generation behaviour, by these two
models, are investigated using analytical calculations as well as Dynamic
Triangulation Monte Carlo simulations of quasi-spherical vesicles. While
the spontaneous curvature model yields a monotonically decreasing sens-
ing curve as a function of vesicle radius, the curvature mismatch model re-
sults in a non-monotonic sensing curve. We highlight the main differences
in the interpretation of the protein-related parameters in the two models.
We further propose that the spontaneous curvature model is appropri-
ate for modeling peripheral proteins employing the hydrophobic insertion
mechanism, with minimal modification of membrane rigidity, while the
curvature mismatch model is appropriate for modeling curvature gener-
ation using scaffolding mechanism where there is significant stiffening of
the membrane due to protein binding.

1 Introduction

Protein mediated regulation of membrane curvature occurs during many cellu-
lar processes such as cargo trafficking, cell motility, cell growth, and division
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[1, 2, 3, 4]. Recently, several classes of proteins capable of curvature generation
have been identified [5, 6, 7]. Dynamin and proteins with the crescent-shaped
Bin Amphiphysin Rvs (BAR) domain were found to generate curvature by the
scaffolding mechanism [8]. On the other hand, epsin protein with an N-terminal
helix generates curvature using the hydrophobic insertion mechanism [9, 10].
These curvature generating proteins are also capable of sensing membrane cur-
vature [11]. Curvature sensing refers to the ability of proteins to bind onto
membranes depending on the local curvature. Recent experiments have re-
ported that membrane curvature gives a cue to localization of proteins in bac-
teria and viruses [12, 13, 14, 15]. This phenomenon is believed to be exploited
by cells during the process of budding and fission. For example, in the clathrin-
mediated membrane fission, the narrow neck between the clathrin-bound bud
and the parent membrane preferentially recruits the dynamin proteins responsi-
ble for membrane scission. Thus, it is important to understand these processes
of curvature sensing and generation to gain insight into many of the cellular
processes.

Biophysical experimental setups such as Single Liposome Curvature (SLiC)
assays and tethers pulled from giant unilamellar vesicles (GUVs) have been
extensively used to quantify curvature sensing [16, 17]. These two methods
are schematically illustrated in Fig. 1. Considering their small throughput, in
vivo alternatives have also been used [18]. In the tether pulling experiments, a
narrow membrane tube of few tens of nanometer radius is pulled from a GUV
of a few microns radius. Curvature sensitive proteins are introduced to these
two membrane surfaces with very different curvatures. The relative binding
fraction of proteins on the two surfaces is then measured based on the intensity
of fluorescently tagged proteins. On the other hand, in SLiC assays, proteins are
introduced in a medium containing liposomes of different radii [9]. Similar to the
case of tether pulling experiments, the intensity of fluorescently tagged proteins
is utilized to estimate the binding fraction of proteins on liposome surfaces.

Several quantitative analytical models have also been proposed to study the
phenomena of curvature sensing [19, 20, 21]. Currently, there exist two thermo-
dynamic models for curvature sensing/generation — the spontaneous curvature
model and the curvature mismatch model. The two models differ in their treat-
ment of the membrane elastic energy due to the deformation induced by proteins.
Although both the models have been shown to fit various experimental data, it
is not clear which among the two models is most suitable to study the curva-
ture sensing/generation behavior of a particular protein. In the present work,
we describe the two models and compare the results obtained using analytical
calculations as well as monte carlo simulations.

The article is organized as follows. Section 2 introduces the two thermody-
namic models and presents analytical results. In sec. 3, we discuss the sens-
ing/generation behaviour of the two models studied using MC simulations. The
article ends with a few concluding remarks in sec. 4
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Figure 1: Preferential binding of proteins to highly curved membrane surfaces.
Schematic of typical biophysical experimental setups used to study curvature
sensing phenomena.



2 Models for curvature sensing

The curvature sensing ability of proteins is a consequence of the interaction
between the proteins and the membrane. Although the specific interactions
between membrane patches and protein domains are quite complicated, their
effects can be understood in terms of a few coarse-grained interaction param-
eters. At mesoscopic length scales, several quantitative analytical models have
been proposed to study the phenomena of curvature sensing. Below we describe
and compare two models, which are most often used.

2.1 Spontaneous Curvature Model

Spontaneous Curvature (SC) model assumes that the only effect of the bound
protein, on the elastic energy, is to induce a preferred local curvature of the
membrane. This model has been employed previously to study sorting of am-
phiphysin in tube pulling assays [22] as well as in modeling of lipopolysaccharide-
binding on synthetic lipid vesicles [23]. In this model, the energy of the mem-
brane surface is given by the spontaneous curvature form of the Helfrich free
energy [24],

H = /dAg (2H — Cy)?, (1)

where & is the bending rigidity and C is the membrane spontaneous curvature.
The integral is over the entire area of the membrane surface. The spontaneous
curvature is usually assumed to be linearly dependent on the protein area frac-
tion ¢ [25, 26],

CO = Cp¢7 (2)

where C), is the intrinsic curvature of the protein. In essence, this model assumes
that the protein sets a preferred local curvature on the membrane depending on
its bound density.

We consider the vesicle as a triangulated surface with N, vertices. A dis-
cretized Hamiltonian for this surface can be written as,

N, N,
HSC = 5 ;(2Hz - Cp¢z) Az M;@, (3)

where H; and ¢; are respectively the mean curvature and the protein-bound
state at vertex 7. The concentration of proteins in bulk is taken into account
indirectly through the binding affinity parameter u. The parameter p is the free
energy of the proteins in the reservoir for binding onto the membrane surface. It
depends on the interaction energy between the membrane and the protein and
also the concentration of the protein in the bulk (cpuy) through the relation,
Cbulk (4)

p = po +log —
Co
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Figure 2: Protein binding on a non-deformable spherical vesicle studied using
the spontaneous curvature model and the curvature mismatch model. Adsorp-
tion isotherms of proteins with different C, on vesicle of size R = 21 in (a)
the SC model and (c) the CM model. Curvature sensing curves for proteins of
various C), values at 1 = —4 for (b) the SC model and (d) the CM model.



where pg and cg are, respectively, the standard state protein chemical potential
and concentration [27].

For small bound fractions, the proteins do not significantly affect the mem-
brane curvature if they are homogeneously distributed over the surface. There-
fore, we can simplify the expression for free energy by assuming a perfectly
spherical surface with each vertex having the same curvature (2H). For such a
uniformly spherical surface, the mean curvature at each vertex is simply the in-
verse of the vesicle radius, ie. H; = H = 1/R. The variable ¢; takes value one in
vertices with a bound protein and zero in others. In this model, protein-bound
vertices will have minimum energy when the local curvature matches with pro-
tein intrinsic curvature. Further, if the area at each vertex A; is same, say a, we
can write an effective free energy per-vertex as a function of the protein bound
fraction p = N, /N, as

Fsclp) = 5 |2H)* (1= p) + (2H = C,)° p| — o
+ kgT [plog(p) + (1 — p)log(1 = p)], (5)

where, N, = Zfil ¢;, is the total number of vertices occupied by the protein
field. The first term is obtained as a result of separating the sums for vertices
with and without proteins in Eq. (3). The last term in Eq. (5) represents the
mixing free energy of proteins on the discretized surface. Note that such a mixing
free energy is due to the exclusion interaction of proteins on the discretized
surface. The protein bound fraction in equilibrium is obtained by minimizing
the effective free energy wrt p as

1

Ka

Bn—"552 (Cp—aH)

Peq =

- 5 (6)
1+e

When C), = 0, the above equation takes the form of standard Langmuir isotherm.
For non-zero C), values, the Langmuir isotherm is recovered by defining an ef-
fective chemical potential,

P kaCyp
Wo=n-—

(Cp —4H). (7)

The adsorption isotherms for different C), for the SC model is shown in Fig. 2a.
The isotherms for non-zero spontaneous curvatures are shifted Langmuir isotherms
as predicted by Eq. (6). Experiments have reported that the adsorption of some
proteins on vesicles follows the Langmuir isotherm [9]. The preferential binding
of proteins to vesicles of various sizes is characterized using a curvature sens-
ing curve, wherein the bound fraction of protein is plotted against the vesicle
size at a particular binding affinity. The curvature sensing curve at p = —4 is
shown in Fig. 2b. When C}, = 0, the protein bound fraction does not depend
on the vesicle radius as there is no coupling between the mean curvature H
and the protein bound fraction ¢ in Eq. (1). Therefore, within the SC model,
Cp = 0 corresponds to the case where membrane curvature is insensitive to that



of protein. For non-zero Cp, the bound fraction increases with decreasing vesicle
radius; approaching the maximum of 1 as R — 0 (or H — oo in Eq. (6)). Note
that, in the SC model, the protein bound fraction monotonically decreases with
increasing vesicle size.

2.2 Curvature Mismatch Model

Curvature mismatch (CM) model supposes a) an energy penalty when there
is a difference in the local membrane and protein curvatures and b) curvature
stiffness of the membrane to depend on the local protein concentration. It has
successfully reproduced the preferential binding of I-BAR proteins to negatively
curved membranes [28], sorting of potassium channel KvAP [20], and sorting of
transmembrane proteins in live cell filopodia [18]. In the curvature mismatch
(CM) model, the Hamiltonian is of the form,

M= /dA (5 H) 4 5 0H -] (8)

Here the first term is the Helfrich energy for the membrane surface and the
second term is the curvature mismatch energy. The parameter %k decides the
strength of the mismatch penalty. In regions where there are no bound proteins,
¢ = 0, only the first term in Eq. (8) contributes to the energy. In this limit of no
bound protein, both spontaneous curvature model and the curvature mismatch
model have the same Hamiltonian.

In order to compare the CM model with the SC model discussed previously,
we derive the equilibrium protein bound fraction on a non-deformable vesicle.
The discretized form of the CM free energy model is given by,

N,
Hom = Z [g(?Hi)2 +

i=1

_ N,
SCH =G0 A= nY o )
i=1

In this model, protein bound vertices will have the same energy as that for the
unbound vertices, when the local curvature matches with the protein curvature.
As in Eq. (5), the effective free energy for the CM model in terms of the bound
fraction p is

fon(p) = - (2H)* + %(QH —Cp)’p—pp
+ kgT [plog(p) + (1 — p)log(1 — p)]. (10)

For simplicity, we assume that x = K in the rest of the discussion. The equi-
librium bound fraction obtained after minimizing the effective free energy with
respect to p is,

1
14 e Bl CH-C)?]’

Peq = (11)



Here again, the binding assumes the form of a shifted Langmuir isotherm. How-
ever, the effective binding affinity is different from that obtained for the SC
model. For the CM model, the effective binding affinity takes the form,

ra
Wo=p— o (2H - Cp)*. (12)

Here, the effective binding affinity is quadratic in the vesicle curvature, with an
additional term —2xH?a. This is unlike in the SC model, where the dependence
on curvature is linear.

For large vesicle radius (small H), we see no difference in the adsorption
isotherm obtained with the two models (see Fig. 2a and Fig. 2¢). The additional
quadratic term in the effective binding affinity of CM model becomes relevant
when the vesicle size is small (large H). Consequently, the curvature sensing
curves predicted using the two models differ significantly as seen in Fig. 2b and
Fig. 2d. While the SC model predicts a monotonic inverse relation between the
protein bound fraction and the vesicle radius, the CM model predicts a non-
monotonic dependence. Since, the additional term is negligible at small vesicle
curvatures (H < (), the predictions from the two models are similar for larger
vesicles.

One can ask the question — what is the size of the vesicle that shows maxi-
mum protein binding for proteins with fixed intrinsic curvature (C),) at a given
concentration (p)? We see that for the SC model, the protein bound fraction is
maximum as H — oo or in other words, for the smallest vesicle. On the other
hand, the CM model predicts that the maximum binding is when the vesicle ra-
dius is C; !, ie. H = C,/2. Essentially, the observed difference between the two
models can be attributed to the fact that, in the CM model, a bound protein,
in addition to inducing curvature, also adds to the membrane stiffness.

The analysis presented above is restricted to vesicles of fixed size and shape
or in other words, the shape of the vesicle is assumed to not change on protein
binding. The curvature generation by proteins is completely neglected because
analytical minimization of the free energy is complicated when we allow for
both the local mean curvature (H) and the protein bound state (¢) to vary.
Therefore, in the subsequent section, we use computer simulations to perform
this minimization where both curvature sensing and curvature generation by
proteins are accounted for.

3 Curvature sensing and generation

We employed dynamic triangulation monte carlo (DTMC) simulations with pro-
tein binding, in the grand canonical ensemble, as described in Ref. [27]. At any
instant of the simulation, vesicles are represented by a triangulated surface,
whereas proteins are represented by an occupation number defined at the ver-
tices on the triangulated surface. The simulations are carried out using both
the SC and CM models.

The adsorption isotherm obtained using the SC model is shown in Fig. 3a.
At low p, we see that the protein bound fraction depends on the vesicle size at
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Figure 3: Analysis of protein binding on a deformable sphere modeled using the
spontaneous curvature (SC) model and the curvature mismatch (CM) model.
Adsorption isotherms for vesicles of various sizes at C), = 0.6 for (a) SC model
and (c¢) CM model. Curvature sensing curves for the SC model for different
protein spontaneous curvatures (b) at u = —4 for the SC model and (d) at
1 =0 for the CM model.



a fixed binding affinity. This is referred to as the curvature sensing regime. At
high values of i, the protein binding fraction is independent of vesicle size. This
is the curvature generation regime [27]. The adsorption curve for the CM model
with £ = 10 is shown in Fig. 3c. Although the adsorption isotherm appears to
be Langmuir-like at small binding affinities, it significantly deviates from the
Langmuir behavior at higher p values. For the SC model, curvature sensing
happens at low binding affinity, whereas for the CM model, curvature sensing
is more at higher binding affinities.

Curvature sensing is quantitatively measured using the equilibrium bound
fraction of proteins for different vesicle sizes at the same binding affinity. Curva-
ture sensing curve, from the SC model, monotonically increases with decreasing
radius (see Fig. 3b), which is qualitatively similar to the predictions with non-
deforming vesicles. At C, = 0, the bound fraction is independent of the vesicle
radius, ‘e. there is no curvature sensing. For non-zero Cj,, the bound fraction
is maximum in the limit of zero radius. On the other hand, in the curvature
sensing curve for the CM model, shown in Fig. 3d, proteins with C, = 0.0 is
also coupled to the membrane curvature and senses it with more binding on
larger vesicles. The simulation results show that, for C, # 0.0, protein binding
is maximum at a finite non-zero vesicle radius. When C), = 0.3, there is a clear
maximum at Ry ~ 7.0. We expect that such a maxima exists for other non-zero
C)p values, however they fall outside the range of vesicle radius studied in our
simulations. Here again, the curvature sensing curves are qualitatively similar
to the curves obtained using the analytical model.

4 Concluding remarks

The main differences in results from the two models can be summarized as
follows:

e SC model has a monotonic curvature sensing behavior, while the CM
model has a non-monotonic sensing curve.

e The SC model has a curvature sensing regime at low p and a curvature
generation regime at high u, whereas the CM model shows curvature sens-
ing for all u values explored here.

e the C), = 0 case does not sense curvature in the SC model, while in the
CM model, proteins show sensing behavior at all C, values.

The curvature sensing behavior is observed when the membrane is stiff. In
the case of deformable vesicles, the binding of proteins leads to a softening of
the membrane in both SC and CM models. In the CM model, there is also a
term that rescales the effective bending modulus of the membrane with protein
binding (see Eq. (9)). Thus, the softening is significantly higher for SC model
than the CM model. Consequently, for the same u, protein binding is always
higher for the SC model than the CM model. At high p in the SC model, the
membrane is soft enough to conform to any protein curvature and hence we
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do not see curvature sensitivity. On the other hand, for the CM model, the
membrane does not become soft enough to allow curvature generation even at
high p.

In the SC model, the coupling between protein density and membrane elas-
ticity is only through the parameter C,, (refer Eq. (3)), which serves as the source
for curvature generation and sensing. At low C), values, curvature sensing and
generation is weak due to the weak coupling. Such a model is probably adequate
for peripheral proteins that generate curvature through the hydrophobic inser-
tion mechanism, where the strength of the coupling and the curvature generated
are directly related. In the CM model, on the other hand, the parameter C,
has two contributions to the membrane elasticity. As in SC model, here too C),
serves as the coupling strength between the membrane curvature and protein
density. In addition, it couples the membrane stiffness to the protein concen-
tration through the % term in Eq. (9). Experimentally, such a scenario arises
when the dominant interaction with the membrane is coming from a laterally
extended region on the protein, say a region of charge leading to electrostatic
binding. A recent finite element analysis of curvature generation on a 3D lin-
ear elastic membrane has proposed that electrostatic interaction is essential for
curvature generation by BAR domains [29]. Thus, the CM model may be more
appropriate to model peripheral proteins that generate curvature using the scaf-
folding and other mechanisms such as oligomerization or steric repulsion or in
modeling transmembrane proteins.
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