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Abstract1

Genome-scale metabolic models are widely constructed and studied for understanding various design prin-2

ciples underlying metabolism, predominantly redundancy. Metabolic networks are highly redundant and3

it is possible to minimise the metabolic networks into smaller networks that retain the functionality of the4

original network. Here, we establish a newmethod,MINREACT that systematically removes reactions from5

a given network to identify minimal reactome(s). We show that our method identifies smaller minimal6

reactomes than existing methods and also scales well to larger metabolic networks. Notably, our method7

exploits known aspects of network structure and redundancy to identify multiple minimal metabolic net-8

works. We illustrate the utility of MINREACT by identifying multiple minimal networks for 74 organisms9

from the BiGG database. We show that these multiple minimal reactomes arise due to the presence of10

compensatory reactions/pathways. We further employed MINREACT for a case study to identify the min-11

imal reactomes of different organisms in both glucose and xylose minimal environments. Identification of12

minimal reactomes of these different organisms elucidate that they exhibit varying levels of redundancy. A13

comparison of the minimal reactomes on glucose and xylose illustrate that the differences in the reactions14

required to sustain growth on either medium. Overall, our algorithm provides a rapid and reliable way to15

identify minimal subsets of reactions that are essential for survival, in a systematic manner.16

Author summary17

An organism’s metabolism is routinely modelled by a metabolic network, which consists of all the enzyme-18

catalysed reactions that occur in the organism. These reactions are numerous, majorly due to the presence19

of redundant reactions that perform compensatory functions. Also, not all the reactions are functional in20

all environments and are unique to the environmental conditions. So, it is possible to minimise such large21

metabolic networks into smaller functional networks. Such minimal networks help in easier dissection of22

the capabilities of the network and also further our understanding of the various redundancies and other23

design principles occurring in these networks. Here, we have developed a new algorithm for identification24

of such minimal networks, that is efficient and superior to existing algorithms. We show the utility of our25

algorithm in identifying such minimal sets of reactions for many known metabolic networks. We have26

also shown a case study, using our algorithm to identify such minimal networks for different organisms in27

varied nutrient conditions.28

1 Introduction29

Genome-scale metabolic models (GSMMs) [1, 2] have been reconstructed for organisms from different30

forms of life over the last two decades [3]. GSMMs provide a wide range of insights into the metabolic31
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capabilities of organisms, and have been exploited for a variety of applications [4–6]. GSMMs essentially32

comprise all known stoichiometrically balanced enzyme-catalysed metabolic reactions in an organism [1],33

along with other details such as the corresponding gene–protein–reaction associations. Numerous studies34

have been carried out to understand various organisational and design principles in metabolic networks [7–35

12]. Analysis of such design principles provides insights into various defining characteristics of metabolic36

networks, such as redundancy [10]. Metabolic networks exhibit remarkable redundancy in a wide variety37

of environments due to the existence of isozymes as well as alternate parallel pathways [10,13]. Besides, not38

all reactions in a metabolic network are functional under all conditions [14]; many reactions are active and39

functional only under specific nutrient conditions. Thus, it is interesting to study sets of reactions that can40

independently support growth under one or more conditions. To identify these sets of reactions, which41

can be viewed as minimal reactomes, a number of methods have been developed.42

The earliest method, proposed by Burgard et al uses a simple MILP formulation that minimises the43

number of active reactions in the network [15]. Subsequently, graph-theoretic [16–18] and constraint-44

based approaches [19–21] have been developed to identify minimal metabolic networks. Some of the45

methods developed so far do not guarantee to identify the minimal metabolic network, rather reduce46

networks by removing undesired reactions. Some methods arrive at smaller networks by solving extensive47

MILP problems that increases the time complexity. The existing methods also do not consider known48

aspects of network structure and redundancy.49

In this paper, we formulate a new approach to identify minimal reactomes, which leverages the net-50

work structure, particularly the redundancy between different reactions. Specifically, our approach exploits51

the reaction classes identified by parsimonious flux balance analysis (pFBA) [22] to prune the reactome,52

by removing ‘unnecessary’ reactions. We compare our approach with previous methods published and53

show that our approach is time efficient in the case of large networks compared to the recent method54

MinNW [21]. We also find that our method identifies smaller sets of reactions, i. e. smaller minimal reac-55

tomes, as compared to the earlier methods. Further, as an illustration of our approach, we identify multiple56

minimal reactomes in yeast, and illustrate the differences between the different reactomes that can support57

growth in the same medium. We then went ahead to identify the minimal reactomes of 70+ organisms58

and analysed the reactions in their minimal reactomes. Overall, our algorithm provides a new approach to59

efficiently and rapidly identify minimal metabolic networks from GSMMs.60

2 Methods61

2.1 Flux Balance Analysis62

Flux balance analysis (FBA) [23,24] is a constraint-based approach for predicting the metabolic capabilities63

of organisms, using GSMMs. The method predicts the growth phenotypes of metabolic networks in a64

given nutrient condition by assuming that the network is at steady state. FBA identifies an optimal flux65

distribution for a metabolic network by solving a linear programming problem, maximising/minimising66

a given objective function, typically the growth rate of the cell. The formulation of FBA is as below:67

max c
T
v s.t. Sv = 0 (1)

where c depicts the objective function, v is the vector of fluxes of all the reactions in the network and S,68

the stoichiometric matrix of dimensionsm×r, depicts the stoichiometry of allmmetabolites in r reactions69

present in the network.70

2.2 pFBA71

pFBA [22] is a variant of FBA. In addition to the regular FBA constraints, pFBA additionally minimises72

the sum of fluxes through the entire network, while also preserving the objective, such as maximal biomass73

production. Further, while minimising the sum of fluxes in the network, the method also classifies genes74

and reactions into different classes, optimising the user-defined objective. The reactions are classified as75

follows:76

Blocked reactions that cannot carry a flux under the given nutrient conditions77
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Zero-flux reactions that carry only a zero flux under the given nutrient conditions78

Essential reactions that are absolutely necessary for growth and cannot be deleted from the network79

pFBA optima reactions that contribute to the optimal solution while minimising the flux of the reactions80

in the network81

Enzymatically Less Efficient (ELE) reactions that are typically longer alternative pathways for a given82

metabolic conversion, and consequently have more enzymes83

Metabolically Less Efficient (MLE) reactions that drive flux away from the cellular objective (func-84

tion), thus lowering the metabolic efficiency85

2.3 The MINREACT algorithm86

Every metabolic network has hundreds of essential reactions—however, just these essential reactions can-87

not comprise a minimal reactome. There are typically many more reactions, which are not singly essential,88

by virtue of the presence of alternative/compensatory reactions in the reactome. These reactions, therefore,89

comprise higher order synthetic lethals, such as double or triple lethals. Synthetic lethals are sets of reactions,90

which cannot all be simultaneously removed from the network without abolishing growth. Therefore, a91

minimal reactome will include all the singly essential reactions (‘single lethals’) and also multiple reactions92

from higher order lethals. In the minimal reactome, though, every remaining reaction must be singly93

lethal, as the alternative reactions have already been discarded from the (minimal) metabolic network. Re-94

actions in a minimal metabolic network should thus ideally be chosen in a way that the total number of95

reactions in the network is minimised. This mathematically translates to performing a zero-norm min-96

imisation of the flux vector, which is essentially the same as the original formulation by Burgard [15].97

However, this is difficult to solve accurately, given that it is a NP-hard problem, and typically one of many98

possible solutions is arbitrarily obtained, on solving the problem using heuristics. These solutions are not99

minimal, as we will illustrate, and it is often possible to find more minimal networks.100

On the other hand, our approach for identifying minimal reactomes,MINREACT, exploits the reaction101

classes of pFBA [22], to identify minimal reactomes by exploiting network structure. A closer look at the102

classes of reactions identified using pFBA reveals that the MLE reactions, if present, reduce the objective103

flux. Obviously, the blocked reactions can be excluded from the network, as they will never carry a flux.104

Further, the reactions that do not carry any flux in the pFBA solution (‘zero-flux reactions’) can also be105

discarded from the network, without affecting network flux.106

Ideally, the pFBA optima reactions constitute the essential reactions and other reactions necessary to107

support growth. However, due the presence of redundancies in the large metabolic networks and the108

existence of alternating pathways, there exist multiple groups of reactions that can yield maximal growth.109

Taking this into account, we framed our approach for identifying minimal metabolic networks. The110

approach used in MINREACT is depicted in Figure 1. Our approach to identify the minimal reactome is111

divided into three major steps as follows:112

1. pFBA: The metabolic network given as input is optimised using FBA to identify the maximal113

biomass growth. The sum of fluxes of all the reactions in the metabolic network is minimised while114

the lower bound of the biomass reaction is set to the maximal biomass growth. Further, the reaction115

classes of the network are identified using the optimised solution. The reaction classes thus identified116

by pFBA are as illustrated in §2.2.117

2. Pruning: The blocked reactions, zero-flux reactions and MLE reactions are removed from the net-118

work. The blocked reactions and zero-flux reactions do not contribute to the network’s biomass119

under the given nutrient condition. MLE reactions drive flux away from the biomass; thus, removal120

of MLE reactions should facilitate maximal biomass.121

3. Optimisation: Themethod iterates over the list of pFBA optimal reactions, deleting one reaction at a122

time and then performing a non-convex approximation for minimisation of the number of reactions123

in the network. This is done using FBA available in the COBRA toolbox v2.0 [25]. We then identify124
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Jnz , the set of reactions having non-zero fluxes [26] obtained in the optimised solution. This process125

is iterated for every pFBA optima reaction, resulting in multiple sets of Jnz ’s. These multiple Jnz ’s are126

the different sets of reactions that are independently sufficient for producing maximal growth under127

the given nutrient condition. Note that these multiple sets may vary in size (number of reactions)128

and also may not be distinct. Therefore, we further prune these multiple Jnz ’s to finally retain only129

the set/s that has/have the least number of reactions.130

 pFBA

Metabolic network

- Set the lb of biomass 

reaction to maximum 

biomass yield

- Minimise the sum of 

fluxes of all reactions 

in the network

- Identify the reaction 

classes

Minimal Metabolic network

Remove one reaction 

from pFBA optima 

reactions Remove from the 

network

- Zero-flux reactions

- Blocked reactions

- MLE reactions 
Perform zero-norm 

approximation 

with objective of

maximal biomass 
Pruning

Iterate for 

every pFBA 

optima 

reaction

Optimisation

Figure 1: MINREACT approach for identifying the minimal reactome. The left-most panel shows a
sample metabolic network, where every circle represents a metabolite. The arrows represent reactions
that occur, labelled with the reaction IDs; The right-most panel shows the reactions and metabolites high-
lighted that constitutes the minimal reactome.

The algorithm also takes as input a tolerance parameter value, which is the flux threshold below which131

a reaction is regarded as deleted (default being 0). Another parameter is the growth-rate cut-off value that132

indicates the minimum percentage of the wild-type growth that the resulting minimal metabolic network133

should retain. The default value for the growth-rate cut-off is 100%. Themethod also additionally provides134

other features, which can be useful in different scenarios. For instance, the method can take in as input135

specific reactions to be retained in any givenminimal reactome. This confers added advantage of preserving136

functionalities while identifying the set of reactions in the minimal reactome. Algorithm 1 describes the137

formulation of MINREACT to identify minimal reactome.138

2.4 Comparison of different methods for identifying minimal reactome139

Several methods employ a constraint-based approach for identifying minimal reactomes such as, Bur-140

gard’s [15], FASTCORE [19], NetworkReducer [20] and MinNW [21]. We went ahead to compare141

our approach with Burgard’s, since we employ a similar technique of minimising the number of reac-142

tions in the metabolic network, and also with MinNW, as the method was proven to be better than the143

other methods [21]. Due to lack of implementation codes, the extended method by Burgard could not be144

compared.145

The formulation of Burgard’s initial method [15] of minimising the number of active reactions in146

the network was simulated for our comparison. MinNW method [21] was performed with the codes147

available in literature. The parameters used for executing the MinNW method were BigM = 1, fast = 1,148

use_F2C2 = 1. The other sets of parameters resulted in a slower performance than the parameters considered149

above.150

All the models available in BiGG database [27] were used for the comparison. The models from BiGG151

were simulated in the nutrient conditions that existed in the BiGG database. Out of the 83 organisms152

available in BiGG,MINREACT and Burgard’s method could identify minimal reactomes for 76 organisms,153

while using MinNWwe could identify minimal reactomes for 74 organisms. Together, we could identify154

the minimal reactome for 74 models by all the three methods.155

All methods were implemented for models to produce atleast 99.9% of the maximal wild-type biomass156

growth. The tolerance level for considering a reaction to be active was set to 10
−7 × wild-type biomass157
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Algorithm 1 - MINREACT: to identify minimal metabolic networks

Inputs:
Model: SBML model of the organism

Optional inputs:
grRateCutoff: Minimum percentage of wild-type growth the resulting network should retain (default = 1.0,
i. e. 100%)
tol: Minimum flux a reaction should possess to be considered active (default = 0)
retainList: List of reactions to be preserved

Outputs:
Jmin: An array of minimal reactome(s) of the organism

Algorithm:
Perform FBA to obtain the maximal biomass growth of wild-type vbio,WT

Set the lower bound of biomass reaction to grRateCutoff ∗ vbio,WT

Perform pFBA to identify reaction classes: blockedrxns, zeroF luxrxns, MLErxns, pFBAOptrxns

Remove blockedrxns, zeroF luxrxns, MLErxns from the model
Remove any reactions in RetainList from pFBAOptrxns

for each reaction i ∈ pFBAOptrxns

Set the lower bound of pFBAOptrxns,i to 0
Set the upper bound of pFBAOptrxns,i to 0
Perform FBA and identify zero-norm approximation solution vi

Identify set of reactions Jnz , such that |v| > tol

Set lower bound of all reactions /∈ Jnz to 0
Set upper bound of all reactions /∈ Jnz to 0
Perform FBA to identify l1 − norm solution vmin and the biomass growth vbio,min

if vbio,min ≥ grRateCutoff ×vbio,WT then

Add Jnz to Jnz,all

endif

Reset upper and lower bounds of all reactions
endfor

/* Jnz,all now contains different sets of reactions that support growth, of possibly different sizes */
Find |Jmin| as the minimum of the cardinality of all reactomes in Jnz,all

Identify Jmin as the set of unique reactomes from Jnz,all with size equal to |Jmin|

5
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growth. The models were simulated preserving the ATP maintenance in the network. All the computa-158

tions were performed on a workstation with Intel® Core™ i7-2600 processors, CPU of 3.40GHz with 4159

cores.160

3 Results161

In this section, we detail the performance of ourMINREACT algorithm, and how it compares with existing162

methods. Next, we show how our method identifies multiple minimal reactomes for a given metabolic163

model. Finally, as a case study, we identified minimal reactomes of different organisms in both glucose164

and xylose minimal media.165

3.1 MINREACT identifies smaller reactomes compared to other methods166

We here compare the performance of MINREACT with the method of Burgard [15] and MinNW [21].167

Table 1 shows the number of reactions in the minimal reactome as well as the time taken to compute the168

minimal reactomes for different models from the BiGG database. Select models from BiGG have been169

reported here, with the aim to depict models from different kingdoms of life and with varied sizes of the170

metabolic network. The results for the remaining organisms from BiGG are detailed in Supplementary171

file S1.172

Organism nrxn nmet Burgard method MinNW MINREACT

|Jmin| Time (s) |Jmin| Time (s) |Jmin| Time (s)

Helicobacter pylori 554 485 313 0.120 314 3.85 313 13.09

Synechocystis sp. PCC 6803 863 795 527 0.146 525 8.09 526 18.12

Mycobacterium tuberculosis 1025 825 416 0.201 429 11.80 414 20.68

Saccharomyces cerevisiae 1577 1226 302 0.269 304 49.73 299 26.53

Salmonella enterica 2545 1802 483 0.434 500 153.16 483 60.02

Shigella boydii 2591 1910 440 0.455 445 93.67 438 63.97

Escherichia coli str. K-12 2712 1877 432 0.509 447 170.00 430 70.14

Cricetulus griseus 6663 4456 306 2.097 362 89124.63 264 613.27

Table 1: Comparison of MINREACT with Burgard’s method and MinNW. The table shows the com-
parative performance of the three methods for different organisms. nrxn denotes the total number of
reactions in the metabolic network; nmet denotes the number of metabolites in the metabolic network.
The number of reactions in the minimal reactome, |Jmin|, and the time taken to perform the simulations
(in seconds) are tabulated for all three methods. The least number of reactions in the minimal reactome
among the three methods are highlighted in bold.

The number of reactions in the minimal reactome identified by our method was almost always lesser173

than the method suggested by Burgard, although the simulation is faster than our method as shown in174

Table 1. For example, in Mycobacterium tuberculosis, our method could identify minimal reactome with175

414 reactions, while that identified from Burgard’s method contains 416 reactions. In the case of Cricetulus176

griseus, MINREACT could reduce the metabolic network of 6663 reactions to 264 reactions in comparison177

to Burgard’s, which identified 306 reactions.178

In comparison with MinNW too, we found that in most cases, MINREACT identified significantly179

smaller networks. For example, the minimal reactome of Mycobacterium tuberculosis found by MinNW180

consists of 414 reactions while MinNW identified 429 reactions. Similarly for Cricetulus griseus, MinNW181

identified 362 reactions while MINREACT could find a minimal reactome of size 264 reactions. In the case182

of Synechocystis sp. PCC 6803, MinNW method identifies 525 reactions, which is lesser when compared183

to MINREACT that identifies 526 reactions.184

We compared all three methods for the smallest minimal reactome identified for all the BiGG models.185

Of the 74 models under study, for 61 organisms, MINREACT could identify smaller minimal reactomes186
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while MinNW identified smaller minimal reactomes for 7 organisms. For 3 organisms, MinReact and187

Burgard’s identified the same number of reactions in the minimal reactomes. MinReact and MinNW188

identified the smallest minimal reactomes for 3 other organisms.189

We also calculated the difference in the minimal reactome sizes identified by the different methods.190

Supplementary file S1 shows that the mean difference in the size of minimal reactome between MINRE-191

ACT and Burgard’s method was -2.74 (ranging from 0 to -42) indicating that on an average MINREACT192

identifies minimal reactomes with nearly three reactions lesser than Burgard’s. Similarly, we found that193

on comparison with MinNW,MINREACT identifies on an average minimal reactomes that are 10 reactions194

less on average (mean difference of -10.32 with values ranging from 22 to -103).195

On comparing the time taken byMINREACTwithMinNW,we found that for smaller models, MinNW196

was faster thanMINREACT. However, as the number of reactions in the model increases, the time taken by197

MinNW increases drastically. This is further depicted in the Figure 2 that compares the time taken by the198

methods MinNW andMINREACT with the increase in the number of reactions in the metabolic network.199

The figure illustrates the time taken by both methods for identifying the minimal reactomes of the models200

in the BiGG database.201
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Figure 2: Comparison of time taken byMINREACT andMinNWalgorithms. The time taken to com-
pute minimal reactomes for the BiGG models under study for both MINREACT and MinNW are plotted,
with increasing number of reactions in the metabolic network. One outlier point, for the largest network
containing 6663 reactions, where MinNW took 89124 seconds and MINREACT took 613 seconds, was
excluded from the plot.

3.1.1 MINREACT exploits network structure to identify minimal reactomes202

A closer look into the differences in the minimal reactomes by the two methods,MINREACT and MinNW203

revealed interesting insights. As an illustration, in the minimal reactome of Escherichia coli str. K-12,204

MinNW identified 447 reactions while MINREACT identified 430 reactions. On analysis of these different205

reactomes, we find that MINREACT selects one among the compensatory reactions in such a way that the206

number of reactions is minimised. For example, reaction ALATA_L has a compensatory role with both207

the reactions VALTA and VPAMTr as illustrated in Figure 3a. Among the compensatory reactions, one208

reaction needs to be present for the organism to survive. These compensatory reactions are also called209

synthetic double lethals, since simultaneous removal of both of them causes the death of the organism210

[8, 13]. Similarly, triple lethal reactions consist of three reactions, whose simultaneous deletion causes211

cell death. We further identified the number of double lethal and triple lethal reaction sets each of these212
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ALATA_L

VALTA

VPAMTr

4HTHRK

4HTHRA

E4PD

PERD

Reaction Number of 
double 
lethals

Number of 
triple lethals

ALATA_L 2 1

VALTA 2 1

VPAMTr 2 0

Reaction Number of 
double 
lethals

Number of 
triple lethals

E4PD 2 6

PERD 2 6

4HTHRK 3 5

4HTHRA 3 5

(a) (b)

Figure 3: Lethal reactions in E. coli. The figure represents select compensatory reactions in E. coli
iML1515 GSMM. The ovals represent the reactions and straight lines connect reactions if they exist as
a double lethal. The table below illustrates the number of double lethals and triple lethals that the reaction
occurs in. Panels (a) and (b) show different examples of compensatory reactions in the organism.

reactions occur, as found in the Figure 3a. In the above example, the reaction ALATA_L is present in213

the minimal reactome of MINREACT while is absent in the minimal reactome identified by MinNW, thus214

minimises the number of reactions by one. This is achieved as pFBA predicts ALATA_L as a pFBA optima215

reaction. Similarly, reactions E4PD and PERD perform compensatory roles with both 4HTHRK and216

4HTHRA, thus forming synthetic double lethals as depicted in Figure 3b. Theminimal reactome identified217

byMINREACT consists of reactions E4PD and PERD and we find that they are a part of many triple lethals218

(as shown in the figure).219

In any given minimal reactome, every reaction must be essential for maximal growth. That is, the220

removal of any of the reactions from a given minimal reactome, should result in a reduction in (or even loss221

of ) growth. To study this, we performed single reaction deletions from every minimal metabolic network222

identified by each of the three methods, and report these numbers in Supplementary File S1. We found223

that for almost all organisms, every reaction present in the minimal reactomes identified by MINREACT224

and Burgard’s are essential. However, not all the reactions present in the MinNW minimal reactomes225

were found to be essential. This illustrates that the minimal reactomes identified by MinNW are not truly226

minimal, and further reactions can be removed to identify a smaller minimal reactome. Thus, the above227

explains that MINREACT surpasses all other methods in terms of systematically choosing the reactions that228

should occur in the minimal reactome.229

3.2 MINREACT can identify multiple minimal reactomes for a given metabolic network230

Our approach used inMINREACT is iterative and thus enables us to identify multiple reactomes for a given231

metabolic network. These minimal reactomes have the same number of reactions but the reactions them-232

selves will vary. Figure 4 illustrates the number of distinct minimal reactomes that could be identified in233

the 77 BiGG models using MINREACT.234

Of the 77 organisms, we could identify more than one minimal reactome for 59 organisms. For as235

many as 27 organisms,MINREACT identified two minimal reactomes and 26 organisms had three minimal236

reactomes. We could identify 7 minimal reactomes for Escherichia coli ED1a, 8 minimal reactomes for237

Salmonella enterica and 12 different minimal reactomes for Saccharomyces cerevisiae S288C (iND750). As238

an illustration, we analysed the 12 minimal reactomes of Saccharomyces cerevisiae S288C iND750 model239

that constitutes of 278 reactions each. The metabolic network consists of 182 essential reactions, that the240

network cannot bypass, to grow in the nutrient condition composed of glucose, water, ammonia, oxygen,241

phosphate and sulphate. First, we find that across the 12 minimal reactomes, 266 reactions are common.242

That is, all the 12 minimal reactomes contain this set of 266 reactions. These 266 reactions comprise of243

the 182 reactions that are highly essential, and in addition contain other reactions necessary for supporting244
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Figure 4: Number ofminimal reactomes identified usingMINREACT. The figure illustrates the number
of minimal reactomes that could be identified by MINREACT in different models in BiGG database.

growth. On the other hand, the remaining 12 reactions (278 - 266) differ from one reactome to another.245

We identified how these 12minimal reactomes, each of size 278, vary by analysing the reactions present246

in them. We found the number of reactions that are common among all the pairs of 12 minimal reactomes.247

Of the 66 pairs, majority differ in three reactions. The least number of reactions shared between any two248

minimal networks was 272. We investigated the difference between two reactomes that varied maximally,249

with a variation in 6 reactions. One major difference was the two different ways 1-acyl-sn-glycerol 3-250

phosphate was formed. This metabolite can be produced from dihydroxyacetone phosphate in two steps via251

two alternating pathways. Either dihydroxyacetone phosphate is coverted to glyceraldehyde-3-phosphate252

and then to 1-acyl-sn-glycerol 3-phosphate or dihydroxyacetone phosphate can be converted to 1-acyl-253

glycerone 3-phosphate, that can produce 1-acyl-sn-glycerol 3-phosphate.254

Further, a maximumof 277 reactions were shared between very similar minimal reactomes, thus vary in255

only one reaction. A closer look into the reaction that was different between minimal reactomes pertained256

to double or higher order lethals in the organism. For example, reactions ADK3 and NDPK1 form double257

lethal in the organism and they are found in two different minimal reactomes that differ in only one258

reaction. Reactions G5SD and G5SD2 are a part of a triple lethal in the network and are found in different259

minimal reactomes of equal length. Similarly, we found that {AADSAD1, AADSAD2}, {PPND,PPND2}260

are double lethals present in different minimal reactomes differing in only one reaction.261

3.3 Minimal reactomes of different organisms in glucose and xlyose262

How different is the metabolic core of different organisms in the same nutrient condition? How different263

are minimal reactomes that occur in different environments? Can we identify reactomes that are most264

similar between two nutrient conditions? To address these questions, we identified the minimal reactomes265

of different organisms in glucose and xylose environment. Table 2 details the minimal reactome size using266

MINREACT for different organisms considered in both glucose and xylose minimal medium. The minimal267

reactome size varied for the different organisms and the percentage of reactions in the minimal reactome268

out of the total reactions present in them varied between 12–27% in both glucose and xylose. An inter-269

esting finding is that Bifidobacterium longum had the smallest minimal reactome compared to all the other270

organisms in both glucose and xylose. It is interesting that different organisms possess different numbers of271

minimal reactomes in the same nutrient conditions. This portrays the fact that organisms exhibit varying272

levels of redundancy, particularly for their bare minimum functions. Salmonella enterica had the maximum273

number of minimal reactomes in both glucose and xylose.274
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Organism |J |
On glucose On xylose Number of

|Jmin| nmin |Jmin| nmin reactions shared
Escherichia coli str. K-12 2583 438 2 438 1 429–430
Saccharomyces cerevisiae 1577 297 2 299 3 282–286
Klebsiella pneumoniae 2262 313 1 315 1 306
Bacillus subtilis 1250 333 2 335 2 327–331
Salmonella enterica 2545 483 8 485 7 477–480
Bacteroides eggerthii 2069 264 1 264 3 250–251
Bifidobacterium longum 1005 257 1 258 3 250–251
Citrobacter amalonaticus 1827 495 8 498 1 485–489
Enterobacter aerogenes 1840 500 3 502 1 489–492
Parabacteroides merdae 2474 328 2 330 3 314–321

Table 2: Comparison of minimal reactomes of different organisms on glucose and xylose. |J |,
total number of reactions in the metabolic network; |Jmin|, the number of non-zero reactions after
optimisation—corresponds to the number of reactions in the minimal reactome; nmin, number of min-
imal reactomes identified (of size |Jmin|). The number of reactions shared between all pairs of minimal
reactomes identified on glucose and xylose were found, and their range is shown in the last column.

We observed that there were 78 reactions common between all 10 minimal reactomes of different or-275

ganisms in glucose. In the xylose medium, the number of reactions common across different organisms was276

83. We found that reactions belonging to the phenylalanine metabolism and nucleotide interconversion277

were predominant among the pathways of the common reactions.278

We went ahead to analyse the multiple minimal reactomes of Salmonella enterica in glucose and xylose279

environments. In glucose, the number of minimal reactomes identified were 8, each with 483 reactions,280

while in xylose, the number of minimal reactomes identified were 7, each with 485 reactions. We analysed281

the similarity of the minimal reactomes in glucose and xylose by studying the reactions that occur in the282

different reactomes. We found that out of the 56 combinations, the maximum number of reactions shared283

between minimal reactomes of glucose and xylose was 480. The minimum number of reactions shared284

between all combinations of minimal reactomes in glucose and xylose is 477 reactions.285

We investigated the minimal reactomes that are maximally similar and found that they differ only in286

the reactions specific to their nutrient conditions, namely glucose and xylose. Reactions EX_glc_D_e,287

GLCptspp and GLCtex that are specific to conversion of glucose were present in the minimal reactome of288

glucose and absent in xylose. Similarly, reactions specific to xylose uptake, namely, EX_xyl_D_e, XYLI1,289

XYLK, XYLtex, XYLt2pp were present only in the minimal reactome of xylose. Hence, while minimising290

the number of reactions in the metabolic network, the core reactions necessary for the survival are retained291

and only nutrient specific reactions differ between minimal reactomes in different nutrient conditions.292

Thus, using the above illustration, we could find minimal reactomes in different nutrient conditions and293

also identify those that vary minimally in the two nutrient conditions.294

4 Discussion295

Genome-scale metabolic networks have been studied to obtain various insights into the organisation of296

metabolic networks of diverse organisms. Many previous studies have uncovered interesting design prin-297

ciples of these networks, notably redundancy [8,10,12]. Given this redundancy, it is easy to imagine that298

metabolic networks contain far more reactions than are expressly necessary for growth in any given en-299

vironment. Thus, it is of interest to identify minimal sets of reactions, or minimal metabolic networks,300

which can support growth in any given environment.301

A few constraint-based methods have been developed in the past to construct minimal metabolic net-302

works from GSMMs [19–21]. The optimisation problems formulated for this purpose are difficult to solve,303

and notably have more than one minimum. Most algorithms identify only a single (arbitrary) minimal304

reactome for a given GSMM. In this study, we develop a simple method, that builds on the widely used305

parsimonious formulation for FBA, to identify multiple minimal reactomes in a given GSMM, in a system-306
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atic fashion. Our approach,MINREACT identifies the minimal metabolic networks within a given GSMM,307

for the production of biomass components, by eliminating unnecessary reactions delineated by pFBA, and308

assembles multiple minimal reactomes.309

We show thatMINREACT typically identifies minimal metabolic networks of smaller sizes than existing310

algorithms. Further, we show thatMINREACT scales better to larger metabolic networks, compared to ex-311

isting methods such as MinNW. Although the early method of Burgard [15] is faster thanMINREACT, our312

method often produces superior networks, identifying the most minimal pathways that should comprise a313

given GSMM. Importantly, we have a principled way of identifying minimal metabolic networks which314

exploits network structure and redundancy, identifying smaller networks. Notably, our iterative approach315

identifies multiple possible minimal reactomes of the same size, for a given GSMM.316

Minimal reactomes identified for varied organisms on the same nutrient condition are different in terms317

of the size and also on the number of minimal reactomes. This shows that organisms possess different318

ways of metabolising nutrients and also the varied levels of redundancy that exist. Further, analysing319

the minimal reactomes of an organism in different nutrient conditions can aid in identifying reaction320

sets that are minimal and yet can support growth in those nutrient conditions. This paves way to identify321

minimal set of reactions that can satisfy multiple functionalities. This is useful, say for example, in metabolic322

engineering applications, if we intend to identify a minimal set of reactions that can grow on two different323

nutrient conditions.324

Minimal metabolic networks help in identifying the core set of reactions that organisms should retain325

in a given nutrient condition. Complex analysis of large-scale networks, such as identification of EFMs326

also becomes easier with such minimal networks. Exploring the metabolic network space for interventions327

in metabolic engineering applications becomes easier with a smaller set of reactions preserving the desired328

functionality. Overall, our method MINREACT identifies metabolic networks efficiently and in a system-329

atic manner. The study of such minimal metabolic networks gives various insights into the versatility of330

metabolic networks, and also furthers our understanding of the underlying design principles.331
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documented. The number of essential reactions in the minimal reactomes identified are tabulated.336

Acknowledgements337

G.S. acknowledges the Initiative for Biological Systems Engineering (IBSE), IITMadras, India for the PhD338

Studentship.339

References340

[1] Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic reconstruc-341

tion. Nature Protocols. 2010;5(1):93–121. doi:10.1038/nprot.2009.203.342

[2] Oberhardt MA, Palsson BØ, Papin JA. Applications of genome-scale metabolic reconstructions.343

Molecular Systems Biology. 2009;5(1):320. doi:10.1038/msb.2009.77.344

[3] Terzer M, Maynard ND, Covert MW, Stelling J. Genome-scale metabolic networks. Wiley Inter-345

disciplinary Reviews: Systems Biology and Medicine. 2009;1(3):285–297. doi:10.1002/wsbm.37.346

[4] McCloskey D, Palsson BØ, Feist AM. Basic and applied uses of genome-scale metabolic network re-347

constructions ofEscherichia coli. Molecular Systems Biology. 2013;9(1):661. doi:10.1038/msb.2013.18.348

[5] Sigurdsson G, Fleming RMT, Heinken A, Thiele I. A Systems Biology Approach to Drug Targets in349

Pseudomonas aeruginosa Biofilm. PLoS ONE. 2012;7(4):e34337. doi:10.1371/journal.pone.0034337.350

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896084doi: bioRxiv preprint 



[6] Choi HS, Lee SY, Kim TY,Woo HM. In Silico Identification of Gene Amplification Targets for Im-351

provement of Lycopene Production. Applied and Environmental Microbiology. 2010;76(10):3097–352

3105. doi:10.1128/AEM.00115-10.353

[7] Sambamoorthy G, Sinha H, Raman K. Evolutionary design principles in metabolism. Proceedings354

of the Royal Society B: Biological Sciences. 2019;286(1898):20190098. doi:10.1098/rspb.2019.0098.355

[8] Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/reaction essentiality and synthetic356

lethality analysis. Molecular Systems Biology. 2009;5(301):1–17. doi:10.1038/msb.2009.56.357

[9] Soyer OS, Pfeiffer T. Evolution under Fluctuating Environments Explains Observed358

Robustness in Metabolic Networks. PLoS Computational Biology. 2010;6(8):e1000907.359

doi:10.1371/journal.pcbi.1000907.360

[10] Sambamoorthy G, Raman K. Understanding the evolution of functional redundancy in metabolic361

networks. In: Bioinformatics. vol. 34; 2018. p. i981–i987.362

[11] Kreimer A, Borenstein E, Gophna U, Ruppin E. The evolution of modularity in bacterial363

metabolic networks. Proceedings of the National Academy of Sciences. 2008;105(19):6976–6981.364

doi:10.1073/pnas.0712149105.365

[12] Wang Z, Zhang J. Abundant Indispensable Redundancies in Cellular Metabolic Networks. Genome366

Biology and Evolution. 2010;1:23–33. doi:10.1093/gbe/evp002.367

[13] Ghim CM, Goh KI, Kahng B. Lethality and synthetic lethality in the genome-wide368

metabolic network of Escherichia coli. Journal of Theoretical Biology. 2005;237(4):401–411.369

doi:10.1016/j.jtbi.2005.04.025.370

[14] Almaas E, Oltvai ZN, Barabási AL. The Activity Reaction Core and Plasticity of Metabolic Net-371

works. PLoS Computational Biology. 2005;1(7):0557–0563. doi:10.1371/journal.pcbi.0010068.eor.372

[15] Burgard AP, Vaidyaraman S, Maranas CD. Minimal Reaction Sets for Escherichia coli Metabolism373

under Different Growth Requirements and Uptake Environments. Biotechnology Progress.374

2001;17(5):791–797. doi:10.1021/bp0100880.375

[16] Jonnalagadda S, Balagurunathan B, Srinivasan R. Graph theory augmented math programming ap-376

proach to identifyminimal reaction sets inmetabolic networks. Computers &Chemical Engineering.377

2011;35(11):2366–2377. doi:10.1016/j.compchemeng.2011.05.006.378

[17] Jonnalagadda S, Srinivasan R. An efficient graph theory based method to identify every minimal379

reaction set in a metabolic network. BMC Systems Biology. 2014;8(1):28. doi:10.1186/1752-0509-380

8-28.381

[18] Ataman M, Hernandez Gardiol DF, Fengos G, Hatzimanikatis V. redGEM: Systematic reduction382

and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic383

models. PLOS Computational Biology. 2017;13(7):e1005444. doi:10.1371/journal.pcbi.1005444.384

[19] Vlassis N, Pacheco MP, Sauter T. Fast Reconstruction of Compact Context-Specific385

Metabolic Network Models. PLoS Computational Biology. 2014;10(1):e1003424.386

doi:10.1371/journal.pcbi.1003424.387

[20] Erdrich P, Steuer R, Klamt S. An algorithm for the reduction of genome-scale metabolic network388

models to meaningful core models. BMC Systems Biology. 2015;9(1):48. doi:10.1186/s12918-015-389

0191-x.390

[21] Röhl A, Bockmayr A. A mixed-integer linear programming approach to the reduction of genome-391

scale metabolic networks. BMC Bioinformatics. 2017;18(1):1–10. doi:10.1186/s12859-016-1412-z.392

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896084doi: bioRxiv preprint 



[22] Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from393

evolved E. coli are consistent with computed optimal growth from genome-scale models. Molecular394

Systems Biology. 2010;6(1):390. doi:10.1038/msb.2010.47.395

[23] Varma A, Palsson BO. Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use.396

Bio/Technology. 1994;12(10):994–998. doi:10.1038/nbt1094-994.397

[24] Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Current Opinion in Biotech-398

nology. 2003;14(5):491–496. doi:10.1016/j.copbio.2003.08.001.399

[25] Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction400

of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols.401

2011;6(9):1290–1307. doi:10.1038/nprot.2011.308.402

[26] Pratapa A, Balachandran S, Raman K. Fast-SL: An efficient algorithm to identify synthetic lethal sets403

in metabolic networks. Bioinformatics. 2015;31(20):3299–3305. doi:10.1093/bioinformatics/btv352.404

[27] King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG Models: A plat-405

form for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research.406

2016;44(D1):D515–D522. doi:10.1093/nar/gkv1049.407

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896084doi: bioRxiv preprint 


	Introduction
	Methods
	Flux Balance Analysis
	pFBA
	The MinReact algorithm
	Comparison of different methods for identifying minimal reactome

	Results
	MinReact identifies smaller reactomes compared to other methods
	MinReact exploits network structure to identify minimal reactomes

	MinReact can identify multiple minimal reactomes for a given metabolic network
	Minimal reactomes of different organisms in glucose and xlyose

	Discussion

