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Abstract

Bismuth substituted lutetium iron garnet (BLIG) films exhibit larger Faraday rotation, and have a higher Curie temperature than

yttrium iron garnet. We have observed magnetic stripe domains and measured domain widths of 1.4 µm using Fourier domain

polarization microscopy, Faraday rotation experiments yield a coercive field of 5 Oe. These characterizations form the basis of

micromagnetic simulations that allow us to estimate and compare spin wave excitations in BLIG films. We observed that these

films support thermal magnons with a precessional frequency of 7 GHz with a line width of 400 MHz. Further, we studied

the dependence of precessional frequency on the externally applied magnetic field. Brillouin light scattering experiments and

precession frequencies predicted by simulations show similar trend with increasing field.

Keywords: Magnetization dynamics, multi domain micro-magnetic simulations, Brillouin light scattering, spin waves, Faraday

rotation

1. Introduction

Spin waves also known as magnons, have been extensively

explored in the past decade for a variety of magnetic devices

like multiplexers, logic gates, waveguides and resonators [1–

5]. There have been recent experimental demonstrations of

magnetic domain walls as re-configurable nano sized magnonic

waveguides [6]. The preferred choices of ferromagnetic mate-

rials for these devices are permalloy and CoFeB. Another class

of popular materials include insulating ferrimagnetic materials,

or ferrites, like yttrium iron garnet (YIG) and bismuth substi-

tuted lutetium iron garnet (BLIG). We know that the spin wave

decay length in permalloy is 3 orders shorter than that of fer-

rites. BLIG ((LuBi)3Fe5O12) also exhibits a higher Faraday ro-

tation, at a higher Curie temperature, than YIG. This makes

BLIG films better candidates for use in magneto-optic devices

[7].

Ferrite films can be used for novel applications such as

magneto-optic Q switching [8]. They have been used in a wide

variety of other applications [9] and are also being considered

for demonstrating logic devices such as majority gates with fast

clocking frequencies [10].

In this work, we characterize an optically transparent BLIG

film of thickness 7.9 µm, epitaxially grown over a gadolinium

gallium garnet (GGG) substrate [7], [11]. We first measure the

magneto-static and magneto-optic properties of these films, us-

ing external magnetic fields. We then use the parameters ex-
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tracted from the static analysis in the micromagnetic simula-

tions to study the dynamic properties of the thermally excited

spin waves. Finally, we use Brillouin light scattering (BLS)

experiments to corroborate the predictions of micromagnetic

simulations. For measurement of Faraday rotation and coer-

civity, we designed and used the Magneto optic Faraday effect

(MOFE) experiment discussed in section 2. In section 3, we

characterize striped domain patterns observed using a transmis-

sion mode polarization microscope (PM). Degaussing the film,

by applying alternate positive and negative decreasing mag-

netic fields, produces orderly striped domain patterns. When

observed in the Fourier plane of the microscope, these orderly

domains show a diffraction pattern similar to a 1D grating.

In section 4, we extract the properties of BLIG from the pre-

vious static measurements and simulate the multiple stripe do-

mains using the micromagnetic solver MuMax3 [12]. We allow

the simulations to relax to a ground state where the film has a

domain width, which is decided by the initial magnetization.

To the best of our knowledge, dynamic micromagnetic simula-

tions of magnetic oscillations in stripe domain structures have

not been reported elsewhere.

We begin with a theoretical estimate of parameters like

magnon frequency and domain wall frequency. We then in-

clude thermal fluctuations and external magnetic fields to the

static multi domain simulation model for the dynamic analysis.

Brillouin light scattering (BLS) measurements, at room temper-

ature, confirm our estimated increase in magnon frequency with

an increase in external magnetic field, as discussed in section 5.

2. Hysteresis measurements

The MOFE set-up shown in Fig. 1, consists of a He-Ne laser

(λ = 633 nm) with an average power of 2.5 mW, a polarizer
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and an analyzer, and a power meter with a measurement range

of 50 nW - 50 mW. We use a pair of electromagnets with a

maximum magnetic field of ±600 Oe to provide the external

magnetic field. The procedure to obtain the Faraday rotation

Fig. 1. MOFE experimental setup to measure Faraday rotation

(θF) from the film as a function of the applied magnetic field
(

Happ

)

is as follows:

• We first obtain the change in transmitted optical power

(Ptr) as a function of analyzer angle (θan). This will fol-

low Malus’ law

Ptr = P0 cos2 (θan + φ) , (1)

The values of P0 and φ account for any misalignment and

absorption that occur in the setup. The variation in trans-

mitted power is shown in Fig. 2.

Fig. 2. Transmitted optical power as a function of rotation of analyzer angle.

The dashed line shows a fit to (1).

• We then measure the variation of Ptr with an applied mag-

netic field and map this to a variation in Faraday rotation

angle using (1). This variation is shown as the hysteresis

loop in Fig. 3.

The film shows low coercivity of ∼ 5 Oe, which indicates that

the magnetization lies in the plane of the film. The film also

shows a low remanence of 15 % of Ms which is consistent with

soft magnetic materials.

Fig. 3. Hysteresis loop of the film obtained by Faraday rotation.

3. Domain imaging using polarization microscopy (PM)

We use polarization microscopy to observe the spatial ori-

entation of the magnetic domains in these ferrite films. The

setup consists of a transmission mode optical microscope with

two linear polarizers in a cross axis polarizer-analyzer config-

uration. The light from a tungsten halogen lamp, after passing

through the polarizer is incident on the sample and collected

using a 20x objective. The analyzer, which is in a cross axis

configuration placed after the objective in the optical path, di-

minishes the direct transmission and obtains the dark field im-

ages which is captured by a CCD camera. In Fig. 4 the images

obtained show stripes of alternating intensity patterns attributed

to domains of opposite in-plane magnetization, resulting from

a differential Faraday effect.

We observed uniformly magnetized domains along the in-

plane easy axes. With the film thickness in microns, domains

should be separated by straight parallel Bloch walls. In the ab-

sence of any externally applied field, and when the film is de-

magnetized, we observed that the total volumes of the two sets

of domains were equal, and the walls were equally spaced. The

spacing of the walls is governed by a host of competing fac-

tors. The exchange and anisotropy energies of the walls favour

wide domains while the dipolar energy of the domains favours

closely spaced walls. The spacing of the walls is a compromise

between these effects to achieve minimum energy state [13].

This was evident on the application of a magnetic field to the

demagnetized films in a direction parallel to the domains. With

an increase in magnetic field, each domain experiences a torque

that tends to turn it in the direction of the applied field. As a re-

sult, the exchange energy increases and domains grow wider,

finally becoming single domain at ≈100 Oe.

We can infer the average domain width from PM images us-

ing a Fourier spectrum of the scan along the black dotted line in

Fig. 4(a). The Fourier spectrum of the scan in Fig. 4(b), shows a

single peak giving us a period of domain λDW = 2.8 µm. Since

one period in Fig. 4(a) consists of oppositely aligned domains,

this gives us a domain width of δ = 1.4 µm.

The Fourier domain image of the sample, as shown in

Fig. 5(a) is viewed by placing a concave lens in the optical

path of the microscope after the analyzer. The multiple spots

correspond to diffraction orders from the magneto-optical grat-
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Fig. 4. (a) Domain images of the sample obtained by polarization microscopy.

Red and white regions correspond to alternating domain patterns. (b) Fourier

transform along the black dotted line in (a). The peak corresponds to a domain

period of 2.8 µm and a domain width of 1.4 µm.

Fig. 5. (a) Fourier plane image of the domain images obtained by inserting a

lens in the ray path in the microscope. The different spots correspond to diffrac-

tion orders due to a magneto-optical grating formed by the domains. (b) The

’fork’ domain patterns obtained in the film indicate a change in the alignment

of the magnetization.

ing formed by the alternating domains which are similar to the

diffraction patterns obtained from bi-periodic stripe domains

[14]. We observed a rotation of the diffraction orders on chang-

ing the direction of magnetic field which has been discussed

elsewhere [15]. We also observe ’fork’ domain patterns shown

in Fig. 5(b) in our films, which mark regions where the align-

ment of the domains changes significantly. These alignment

changes may happen due to a variety of reasons such as struc-

tural deformities or local stray field variations. The analysis of

these fork domains and their application is an ongoing work.

4. Multi domain simulations

The film, shown in Fig. 6(a), has the same shape and thick-

ness as that of the BLIG film with the in-plane dimensions

scaled to ensure that the simulation does not become computa-

tionally prohibitive. We use a GPU accelerated micromagnetic

package MuMax3 to simulate the multi domain state. The cell

size chosen for the simulation is 50 × 50 × 50 nm3, that is

higher than the exchange length of BLIG (13 nm) but is suf-

ficient to resolve the magnetization dynamics of the structure.

A further reduction in cell edges, to 45 nm, did not affect the

magnon frequency. We consider the parameters of BLIG to be:

saturation magnetization (Ms) as 1.27 × 105 A/m [7], uniaxial

anisotropy constant (K) as 5.9 × 103 J/m3 [16], exchange con-

stant (A) as 4 × 10−12 J/m, [17].

At the beginning of the simulation, the magnetization in the

system is set in a stripe domain state and then allowed to relax.

In the relaxed ground state, shown in Fig. 6(b), we observe that

Fig. 6. (a) A schematic of the structure under study. The thickness was kept

at 7.9 µm. (b) The ground state of the film showing multiple domains along

the width of the sample. The edges show flux closure domain states which are

visible in the zoomed inset figure.

the striped domain state is still preserved and that flux closure

magnetization states appear close to the edges. This is due to

higher demagnetization fields close to these edges. We measure

a domain width δsim = 1.4 µm, approximately the same as that

reported in section 3. We also repeated the simulations with a

different initial conditions to obtain domain widths of 0.45 µm.

5. Dynamic analysis of BLIG films

Dipolar magnons are observed to have wavelengths between

several microns and millimeters [18] while the localized ther-

mal exchange magnons have wavelengths in nanometers. The

frequency of these exchange magnons depends very strongly

on the local magnetization. Thermally induced magnetization

gradients were studied using BLS measurements of the local

frequency [19]. The orientation of the magnetization in each

domain, and the domain size, are determined by the balance

between crystal anisotropy, magnetoelastic energy, domain wall

energy and magnetostatic energy.

5.1. Frequency of oscillation of magnons

A magnetic sample when incident with a laser beam of power

10 - 20 mW has negligible local heating and this cannot affect

the magnetization dynamics. However, the incident photons are

inelastically scattered due to thermal magnons which exist even

at room temperature. Light scattering from thermal magnons in

YIG have been observed earlier using visible laser light [20].

The wavevector of these magnons, in a backscattering ge-

ometry, is given by, km = 4πn/λ0, where n is the refractive

index of the material at the wavelength λ0 of the incident light.

For calculations, we used n = 2.44 at λ0 = 532 nm, (used in

experiments later) [21]. We calculated the wavevector of the

magnons, km = 57 µm−1 and the corresponding wavelength

λm = 110 nm, which indicates that these are thermal exchange
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magnons. The dispersion relation of these magnons in the ex-

change limit is given by [22],

ω2
MAG = ω0(ω0 + ωM) (2)

where,

ω0 = γµ0(H0 + Hani + Hdemag + Hexch) and

ωM = γµ0Ms

H0, Hani, Hdemag and Hexch are the applied magnetic field,

anisotropy field, demagnetization field and exchange field re-

spectively. In the absence of an external magnetic field, i.e.,

H0 = 0, we obtain the magnon frequency of 8.4 GHz.

5.2. Frequency of oscillation of domain walls

At room temperature, domain walls can also oscillate due

to the thermal energy (ETh = 77.6 meV). The nature of these

oscillations is determined by an effective mass density of the

wall and a restoring force generated by an externally applied

field and demagnetization fields. The domain wall mass density

is a property of the structure of the moving domain wall. The

domain wall resonance frequency is given by [23]

ωDWR =

√

ΓµoM2
s A

mχin

(3)

where, Γ = 4
3

for parallel Bloch walls, m is Bohr magneton,

and the initial susceptibility χin = 4.25. Using these values, we

obtain ωDWR = 46 MHz, which is approximately an order less

than the thermal magnon frequency.

5.3. Dynamic simulation

Having calculated the theoretical values for ωMAG and ωDWR,

we simulate the magnetization dynamics in the film, where we

introduce thermal fluctuations due to room temperature. Mu-

max3 simulates finite temperature via a fluctuating thermal field

[24], which is applied over the film and the system is allowed to

relax. The simulation is run for 20 ns which was enough for the

dynamics to reach steady state. At room temperature, we ob-

serve deviations in the magnetization of the film from its ground

state as shown in Fig. 7. The domain walls between the stripe

domains remain intact in almost the entire cross section of the

film. Also, the highest fluctuations are observed in the flux clo-

sure domains near the edges, which form a periodic pattern. We

then vary the magnetic fields applied along the easy axis and

observe their effect on the precession frequency of magnons in

the BLIG film.

5.4. Brillouin light scattering spectroscopy (BLS)

The inelastic scattering of photons by elementary excitations

has proved to be a powerful tool for the study of magnetiza-

tion dynamics [25], [26], [27]. Photons scattered with higher

(lower) energy than that of the incident one constitute anti-

Stokes (Stokes) component of BLS. Our BLS spectrometer con-

sists of a tandem Fabry-Perot interferometer and a laser source

of wavelength 532 nm and average power 400 mW. To prevent

Fig. 7. Room temperature driven fluctuations in the film showing small

changes in the striped domain state. Large variations occur close to the edges

in the flux closure domains.

Fig. 8. : BLS spectra for varying magnetic fields showing the Stokes and anti-

Stokes components.

any local heating by the laser, the incident optical power on the

film is brought down to 50 mW across a spot of size 30 - 40 µm

using external optics. We observe the BLS scattering peak for

a zero applied magnetic field at approximately 7 GHz which is

of the order of the theoretically calculated value for the oscilla-

tions of thermal magnons in Fig. 8. We then vary the magnetic

field and observe its effect on the thermal magnon spectra. The

obtained spectra in the figure shows two sets of peaks corre-

sponding to the Stokes and the anti-Stokes components. The

frequency range of our BLS spectrometer has a lower limit of 1

GHz. As this is much above the theoretically calculated ωDWR,

we could not record domain wall oscillations. The linewidth of

the Brillouin peaks is of the order of 400 MHz which is indica-

tive of the low damping present in these materials.

5.5. Comparison of simulation and experimental studies

The oscillation frequencies predicted by the simulations for

varying domain widths (δsim) of 1.4 µm and 0.45 µm and those

observed experimentally in BLS for different applied magnetic

fields are compared in Fig. 9. At zero applied field, when

we allow the multi domain simulations to relax with a δsim

of 1.4 µm the oscillation frequencies differ from the observed

experimental values by almost 25%. The deviation with ex-

periments reduces to less than 2% when we use domains with
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δsim ∼ 0.45 µm. The source of mismatch between simulation

and experiment could be our use of nominal values for mate-

rial parameters (Ms, K and A) and film thickness in our simu-

lations. For the present purpose, it is instructive to note that

the quadratic increase in magnon frequency, for either domain

width, matches the experimental observations.

Fig. 9. Variation of the thermal magnon frequency with applied field obtained

from the simulations and BLS experiments.

6. Summary

In this work, we have demonstrated how to estimate the pa-

rameters of a given magnetic film. For the purpose of obtain-

ing MH curves, we developed an MOFE magnetometer, as an

alternative to the conventionally used vibrating sample magne-

tometer. Polarization microscopy studies allowed us to extract

domain widths and observe domain patterns for varying mag-

netic fields.

We know that for any magnetic film, the initial state is multi

domain and must be accounted for in simulations. We prove

and experimentally validate with BLS, the ability of MuMax3

for multi domain simulations. These results help improve our

understanding and aid us in building functional devices using

any magnetic film. It is possible to obtain a good match be-

tween simulations and experiments with a good knowledge of

the material parameters of the film.
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