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Abstract.

Recently it was shown that the inclusion of higher signal harmonics in the inspiral

signals of binary supermassive black holes (SMBH) leads to dramatic improvements

in parameter estimation with the Laser Interferometer Space Antenna (LISA). In

particular, the angular resolution becomes good enough to identify the host galaxy

or galaxy cluster, in which case the redshift can be determined by electromagnetic

means. The gravitational wave signal also provides the luminosity distance with high

accuracy, and the relationship between this and the redshift depends sensitively on

the cosmological parameters, such as the equation-of-state parameter w = pDE/ρDE

of dark energy. Using binary SMBH events at z < 1 with appropriate masses and

orientations, one would be able to constrain w to within a few percent. We show that,

if the measured sky location is folded into the error analysis, the uncertainty on w goes

down by an additional factor of 2-3, leaving weak lensing as the only limiting factor in

using LISA as a dark energy probe.

PACS numbers: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

1. Introduction

An important problem in present-day cosmology is the nature of dark energy (for a

review, see, e.g., [1]). Assuming a homogeneous and isotropic Universe, dark energy

can be characterized by a parameter w(z) = pDE(z)/ρDE(z), where pDE and ρDE are the

pressure and density, respectively. A constant value of w = −1 would correspond to

a positive cosmological constant in the Einstein equations, but other possibilities are

by no means excluded by current constraints on w. From the five year WMAP data
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combined with supernovae measurements as well as baryon acoustic oscillations in the

galaxy distribution, one has −1.11 < w < −0.86 at the 95% confidence level [2].

As argued in [3, 4], by treating binary supermassive black holes (SMBH) as

“standard sirens”, LISA could play an important role in investigating the physical origin

of dark energy. However, these works assumed the so-called restricted post-Newtonian

waveform (RWF) for quasi-circular, adiabatic inspiral, which only contains the dominant

harmonic at twice the orbital frequency and no corrections to the amplitude. The

full waveform (FWF) also includes other harmonics, each having post-Newtonian (PN)

corrections to their amplitudes, which, when taken into account, have a significant effect

on parameter estimation, as shown in [5, 6] in the context of both LISA and ground-

based detectors. More recently, the implications of adding the merger and ringdown

phases of the binary SMBH coalescence for angular resolution of LISA were examined

[7].

The estimation of the luminosity distance and sky location with LISA was

recently studied with inspiral waveforms at high order in amplitude [8, 9, 10], and

the improvements were found to be dramatic. In particular, unlike what has been

suggested based on the results of using RWF, for a wide range of systems LISA will have

sufficient angular resolution to identify the host galaxy or galaxy cluster. Following an

idea by Schutz [11], one could then use SMBH coalescences to constrain cosmological

parameters. Knowing the host one can measure the redshift at which the inspiral event

occured, and the gravitational-wave signal itself gives the luminosity distance with high

precision. The relationship between the two depends very sensitively on the Hubble

constant, H0, the normalized matter and dark energy densities, ΩM and ΩDE, and the

dark energy equation-of-state parameter w. Assuming that the first three are known

with high accuracy (and indeed, w is currently the worst constrained [2]), it was found

that binary SMBH merger events at z < 1 could allow us to constrain w to within a

few percent, if w is constant in time [8]. (Possible time dependence of w will also have

to be investigated in the future.) Event rates within that redshift range are uncertain,

although one of the SMBH formation models predicts a rate as large as ∼ 10 yr−1 (see

[12] for an overview). LISA may be able to constrain w at the same level as dedicated

dark energy probes, but foregoing the lower rungs of the cosmic distance ladder.

A priori, a signal would be matched-filtered against a bank of templates in which

the two sky position angles are free variables. Due to LISA’s noise, the templates that

match best will have position parameters that differ slightly from the true values. Using,

e.g., the Fisher matrix formalism, one can arrive at an error box in the sky containing

the host cluster of the merger event. If the host can be identified by electromagnetic

means, the sky position will be known with negligible error. One would then revisit the

LISA data and try to match the signal using only template waveforms that correspond to

the measured sky location. The error analysis would also be redone, this time excluding

the sky position variables, thus reducing the dimensionality of the parameter space.

Since in the gravitational-wave signal, the luminosity distance DL is strongly correlated

with sky position, the error on DL will be further reduced, leading to an even tighter
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constraint on w. This will be the focus of the present study. As we will show, in those

cases where identification of the host cluster is possible, weak lensing will be the only

limiting factor in the determination of w.

2. Waveform models, noise curve, and parameter estimation

To date, the highest-order waveforms available are 3.0PN in amplitude and 3.5PN in

phase [13, 14], and these are the ones we will use here. For a noise curve we take that

of the latest Mock LISA Data Challenge (MLDC) [15]. We will study errors for lower

cut-off frequencies fs = 10−4 Hz and fs = 10−5 Hz.

Since the systems we will consider only have power at frequencies f . 5×10−3 Hz,

it is reasonable to model LISA as a combination of two interferometers having two arms

each; these are usually referred to as detectors I and II. We use the stationary phase

approximation (SPA) to the Fourier transform of the waveform. (As a minor caveat, we

note that windowing effects start affecting the accuracy of SPA at 3.5PN in amplitude

[16].) The full signal up to 3.0PN in amplitude as seen in each of the two detectors is a

superposition of eight harmonics of the orbital frequency, taking the general form [17]

h̃I,II(f) =

√
3

2

2Mν

DL

8
∑

k=1

6
∑

n=0

AI,II
(k,n/2)(t(fk)) x

n
2
+1(t(fk)) e

−iφI,II
(k,n/2)

(t(fk))

2
√

kḞ (t(fk))

× exp [i ψf,k(t(fk))] , (1)

where fk ≡ f/k, an overdot denotes derivative with respect to time, and ψf,k(t(fk)) is

given by

ψf,k(t(fk)) = 2πf t(fk)− kΨ(t(fk))− k φD(t(fk))− π/4. (2)

Quantities in Eqs. (1) and (2) with the argument t(fk) denote their values at the time

when the instantaneous orbital frequency F (t) sweeps past the value f/k and x(t)

is the PN parameter given by x(t) = (2πMF (t))2/3. AI,II
(k,n/2)(t) and φI,II

(k,n/2)(t) are the

polarization amplitudes and phases of the kth harmonic at n/2th PN order in amplitude.

Ψ(t) is the orbital phase of the binary and φD(t) is a time-dependent term representing

Doppler modulation. For more details on all of these quantities, see [8] and references

therein.

The restricted waveform (RWF) corresponds to retaining the term with k = 2 and

n = 0 in Eq. (1) and neglecting all others. The RWF has the dominant harmonic at

twice the orbital frequency but no other harmonics, nor PN corrections to the amplitude

of the dominant one. It does, however, include the post-Newtonian expansion of the

phase to all known orders, i.e., up to 3.5PN.

Each harmonic in h̃I,II(f) is taken to be zero outside a certain frequency range.

The upper cut-off frequencies are dictated by the last stable orbit (LSO), beyond which

the PN approximation breaks down. For simplicity we assume that this occurs when

the orbital frequency F (t) reaches FLSO = 1/(63/22πM) – the orbital frequency at LSO

of a test particle in Schwarzschild geometry in c = G = 1 units. Consequently, in the
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frequency domain, the contribution to h̃I,II(f) from the kth harmonic is set to zero for

frequencies above kFLSO. In determining the lower cut-off frequencies we assume that

the source is observed for at most one year, and the kth harmonic is truncated below a

frequency kFin, where Fin is the value of the orbital frequency one year before LSO is

reached [17]. Thus, we take the lower cut-off frequency of the kth harmonic to be the

maximum of kFin and the detector’s lower cut-off frequency fs.

Following earlier work [18, 19, 20, 21, 22] we employ the Fisher matrix approach

[23] to the problem of parameter estimation. The waveforms depend on nine parameters

which are chosen to be

p ≡ (lnM, δ, tC, φC, µL, φL, µS, φS, lnDL) , (3)

where δ ≡ (m2 −m1)/M , with m1 ≤ m2 the individual component masses. tC and φC

are, respectively, the time and orbital phase at coalescence. Below we will consistently

set the values of tC and φC to zero, but both parameters are included as coordinates

on the space of signals in computing the Fisher matrix. µS = cos θS and φS determine

the source position in the sky while µL = cos θL and φL determine the orientation of

the binary’s orbit with respect to a nonrotating detector at the solar system barycenter.

Following Ref. [18], we have fixed the initial position and orientation of LISA by setting

the constants φ0 and α0 defined there to zero at the time of coalescence.

Note that our waveforms do not include spin, which would be somewhat awkward

when using the stationary phase approximation. In principle we could have assumed

static spins as in [9]. This can lead to much larger uncertainties than in the non-

spinning case [24], yet at least for RWF, genuinely dynamical spins are known to greatly

improve parameter estimation [25, 26]. We expect further improvement when combining

harmonics and spin, albeit not necessarily a large one, since the two tend to break the

same degeneracies. In any case, if spins are left out of the Fisher matrix altogether,

errors are likely to be closer to the “true” ones than when static spins are included.

As usual, the Fisher matrix Γ for LISA as a whole is simply Γ = ΓI + ΓII, where

ΓI,II are the Fisher matrices computed from the waveforms h̃I,II(f). The parameters

used will be the ones listed in Eq. (3), so that a priori, Γ is a 9 × 9 matrix. The errors

in the estimation of µS and φS obtained in this way will be converted to a solid angle

∆ΩS centered around the actual source direction. Following the notation of [22],

∆ΩS = 2π
√

(∆µS ∆φS)2 − 〈δµS δφS〉2, (4)

where the second term is the covariance between µS and φS.

If the sky location of the host galaxy or cluster is known, then one can redo the

error analysis with a 7 × 7 Fisher matrix Γ′ in which the variables (µS, φS) are not taken

into account. The construction of this smaller Fisher matrix is completely analogous to

that of Γ.

In what follows, whenever it is necessary to consider a specific cosmological model

we will assume a spatially flat, homogeneous and isotropic Universe with the Hubble

constant H0 = 75 kms−1Mpc−1, dark energy equation-of-state parameter w = −1,
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matter density ΩM = 0.27, and dark energy density ΩDE = 0.73, with ΩTotal =

ΩM + ΩDE = 1. Below we will refer to this as our “fiducial” model.

3. Determination of the dark energy equation-of-state parameter

The relationship DL(z) between luminosity distance and redshift depends very

sensitively on the values of H0, ΩM, ΩDM, and w. Assuming a flat FLRW Universe

and a time-independent w (as we shall do throughout this paper),

DL(z) = (1 + z)

∫ z

0

dz′

H0 [ΩM(1 + z′)3 + ΩDE(1 + z′)3(1+w)]
1/2
. (5)

Suppose a gravitational wave signal from a binary SMBH inspiral event is detected.

Then from the signal itself, DL can be determined, but not the redshift z. However,

because of both amplitude and phase modulation in the waveform due to LISA’s motion

around the Sun and the time dependence of its orientation, it will be possible to obtain

a box in the sky which contains the host. If the number of galaxy clusters within this

error box is not too large then the host cluster of the event can be identified, and the

redshift can be obtained with negligible error by conventional electromagnetic means‡.
Given a binary SMBH merger event, one can estimate how many galaxy clusters

within the sky error box ∆ΩS need to be taken into account as potential hosts. Note

that we can not use the volume error box fixed by both ∆ΩS and ∆DL: We want to

estimate w through the relationship between luminosity distance and redshift, so that

the two need to be obtained independently. We will proceed as follows. Using the

“fiducial” cosmological model described at the end of the previous section, we associate

a fiducial redshift value z0 with the value of DL measured from the inspiral signal. The

comoving volume inside the cone spanned by ∆ΩS and stretching up to the redshift z0
is given by:

VC =

∫ z0

0

dz′
∆ΩS

H0

D2
L(z

′)

(1 + z′)2
1

√

ΩM(1 + z′)3 + ΩDE(1 + z′)3(1+w)
. (6)

Multiplying VC by the number density of clusters we obtain an estimate for Nclusters, the

number of clusters that need to be considered as potential hosts of the inspiral event. At

high redshifts the cluster density is not known very well; following Ref. [27] we will take

it to be ∼ 2× 10−5h3Mpc−3, where h is the value of the Hubble constant at the current

era in units of 100 km s−1Mpc−1 (i.e., h = 0.75 for our fiducial cosmological model).

At this point one might object that we should also take into account clusters with

a much higher redshift than our fiducial z0; after all, redshift is precisely what we want

to measure. As it turns out, this is not necessary to obtain a reasonable estimate of

Nclusters. As an example, consider a system at distance DL = 3 Gpc, which in our

fiducial cosmological model corresponds to z0 = 0.55. Suppose one wanted to consider a

potential host cluster at z = 0.6. Then in order to reconcile this slightly larger redshift

‡ Clusters may not be well-defined at red-shifts of interest to us; we use the number of clusters only

as a quantitative way of judging if the sky resolution is good enough for identifying the host.
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with the measuredDL, for the same values ofH0, ΩM, and ΩDE one would have to assume

w = −0.47, a value that is strongly excluded by WMAP and supernovae observations

[2]. Uncertainties in the other cosmological parameters would also have to be taken

into account, but in practice it would probably not be necessary to consider potential

hosts at redshifts that differ from the fiducial z0 by more than 20 percent. Our aim is

to get a rough estimate for Nclusters, and for that purpose, the method outlined above

will suffice.

If Nclusters comes out to be of order 1 then the host cluster can be identified

and a redshift value can be obtained. Finding the host may well be possible even if

Nclusters ≫ 1, since the SMBH merger event could be accompanied by a distinctive

electromagnetic counterpart, which might be found using large survey instruments

[28, 29]. Nevertheless, in this paper we (arbitrarily) chooseNclusters < 3 as a localizability

criterion.

We now turn to measuring w. If the host can be localized then the redshift z can

be determined with negligible error, and values for the cosmological parameters can be

obtained from DL and z through the relation (5). In practice this will require multiple

measurements, since what is measured directly is only DL. In a complete analysis one

would have to estimate uncertainties on the four parameters w, H0, ΩM, and ΩDE, and

their correlations, all at once from the LISA data itself, with input from gravitational-

wave observations of other LISA sources such as extreme mass ratio inspirals (EMRIs)

[30], or observations with ground-based gravitational-wave observatories like Advanced

LIGO or Einstein Telescope [31]. With Einstein Telescope it should be possible to

determine the four unknowns (w, H0, ΩM, and ΩDE) by fitting DL(z) to observed data

using large numbers of stellar mass inspiral events (which give DL) with electromagnetic

counterparts (which give z). The number of observable inspirals might be as large

as 500 yr−1, giving several thousands over a period of five years. We are , currently

evaluating the covariance matrix in the cosmological parameters associated with such

observations§.
In the present study we are only interested in getting a rough sense of the level of

accuracy we can expect in extracting w; consequently we neglect the uncertainties on

H0, ΩM, and ΩDE, and we assume that w does not depend on time. The error on w can

then be estimated as:

∆w = DL

∣

∣

∣

∣

∂DL

∂w

∣

∣

∣

∣

−1
∆DL

DL

. (7)

Since a priori one must assume that sky position is unknown, first, all of the

parameters in Eq. (3) need to be included in the error analysis. Indeed, before the host

cluster has been identified, the signal must be matched against a family of template

waveforms in which the sky position parameters (µS, φS) are free variables. However,

§ In principle we could also consider combining results from gravitational-wave observations with those

of expected conventional probes, but the great benefit of gravitational-wave astronomy for cosmology

will precisely be that cosmological parameters would be measurable while foregoing the lower rungs of

the cosmic distance ladder.
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once the host has been identified electromagnetically, the sky position will be known

with negligible error. One can then revisit the gravitational wave data and match the

signal against a smaller template family in which (µS, φS) are set to the measured values.

The set of unknown parameters now comprises only

p′ ≡ (lnM, δ, tC, φC, µL, φL, lnDL) . (8)

The errors on these can be estimated by constructing a 7 × 7 Fisher matrix Γ′ in the

usual way. But because luminosity distance is strongly correlated with sky position (see

Appendix B of Ref. [8]), we may expect the error ∆DL/DL computed from Γ′ to be

significantly smaller than the one obtained from the original Fisher matrix Γ. Since

∆DL/DL determines the error on w though Eq. (7), ∆w will be proportionally smaller.

In Ref. [8], only the full Fisher matrix Γ was employed to estimate ∆DL/DL even in

cases where it was possible to identify the host cluster, so that the values for ∆w given

there are overestimates. Here we will take the extra step of recomputing ∆w from the

smaller Fisher matrix Γ′.

4. Results

Let us consider an example. Table 1 shows parameter estimation results for the restricted

and the full waveforms at 3.0PN in amplitude‖, comparing accuracies before and after a

knowledge of the sky position has been taken into account, for a lower cut-off frequency of

10−4 Hz. The physical component masses are (m1, m2) = (106, 107)M⊙, at a luminosity

distance DL = 3 Gpc (i.e., the observed masses are (1+z0)(10
6, 107)M⊙ where z0 = 0.55

in our fiducial model). Different choices are made for sky position and orientation of the

plane of the inspiral. The focus is onNclusters, which tells us how easy or difficult it would

be to localize the host, and on ∆w. Both for RWF and FWF, the 1-sigma uncertainties

in parameters are compared before and after knowledge of the sky position is folded in.

This affects ∆w through the value of ∆DL/DL.

What will be immediately apparent is the significant difference between errors from

the restricted waveform and the full waveform. For the chosen system and lower cut-off

frequency, with the RWF one cannot localize the host for any of the cases shown. The

large improvements in going from RWF to FWF are as expected from the 2.5PN results

of [8] as well as the 2.0PN simulations in [9]. The smaller sky error box in the case of

the full waveform leads to smaller values of Nclusters and makes it easier to localize the

source; the equally dramatic improvement in distance estimation makes for a smaller

error in w.

What is new here is the dependence of errors on whether or not the information

about the position of the source has been taken into account. As shown in [8] (see

Appendix B of that paper), sky position is strongly correlated with luminosity distance.

And indeed, we see improvements in ∆DL/DL – and hence ∆w – by factors of 2-3. We

‖ It is important to note that the MLDC noise curve used in this paper is different from (and more

conservative than) the one used in [8].
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µS ϕS µL ϕL Model SNR ∆ lnDL ∆ΩS Nclusters ∆w

rad rad (10−3) (10−6 sterad)

(m1, m2) = (106, 107)M⊙; fs = 10−4 Hz

0.3 5 0.8 2 RWF (before) 480 130 790 16 –

RWF (after) 480 –

3.0PN (before) 422 21 16 0.32 0.12

3.0PN (after) 422 9.7 0.055

−0.1 2 −0.2 4 RWF (before) 749 120 8600 170 –

RWF (after) 749 –

3.0PN (before) 643 12 38 0.78 0.068

3.0PN (after) 643 3.1 0.017

−0.8 1 0.5 3 RWF (before) 1771 37 33000 660 –

RWF (after) 1771 –

3.0PN (before) 1436 3.1 89 1.8 0.017

3.0PN (after) 1436 1.2 0.0068

−0.5 3 −0.6 −2 RWF (before) 1212 80 20000 410 –

RWF (after) 1212 –

3.0PN (before) 1007 3.3 39 0.80 0.019

3.0PN (after) 1007 1.8 0.010

0.9 2 −0.8 5 RWF (before) 2419 1200 11000 220 –

RWF (after) 2419 –

3.0PN (before) 1781 1.9 22 0.45 0.011

3.0PN (after) 1781 0.69 0.0039

−0.6 1 0.2 3 RWF (before) 1423 54 54000 1100 –

RWF (after) 1423 –

3.0PN (before) 1188 4.2 240 4.9 –

3.0PN (after) 1188 –

−0.1 3 −0.9 6 RWF (before) 1436 250 220000 4600 –

RWF (after) 1436 –

3.0PN (before 1215 12 3000 63 –

3.0PN (after) 1215 –

Table 1. Comparison of accuracy in LISA’s measurement of various parameters for a

lower cut-off frequency of 10−4 Hz, at 0PN and 3.0PN in amplitude for a binary with

intrinsic masses (106, 107)M⊙, for different sky positions and orientations of the orbital

plane. The distance is 3 Gpc, corresponding to a redshift z0 = 0.55 in our fiducial

cosmological model. Errors are shown both before and after taking into account the

knowledge of the position of the host cluster. Whenever a dash appears in the ∆w

column, it means that we deem the number of clusters in the sky error box to be

too large for host identification; in that case a redshift can not be obtained and w is

unmeasurable.
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have also considered different masses from the ones in Table 1, such as 5× (105, 106)M⊙

and 3× (106, 107)M⊙, and found this trend to persist.

Our analysis does not take into account the effects of weak gravitational lensing

by the matter distribution between the source and LISA. Weak lensing will distort the

waveform and induce a systematic error in the estimation of DL, which for the distances

we are considering will be at the level of 3-5 percent [32]. On the other hand, it may be

possible to partially remove the effect of weak lensing by mapping the mass distribution

along the line of sight [33]. In any case, our results indicate that whenever the host

can be identified so that w can be measured, weak lensing will essentially be the only

limiting factor in the estimation of w, not the performance of LISA itself.

Depending on the time over which test masses in LISA can be kept in free fall,

it may be possible to have a lower cut-off frequency of 10−5 Hz. The improvement in

estimation of ∆ΩS would be quite substantial; for the first choice of angles in Table 1,

one would be able to localize the source even with the RWF. However, in those cases

where the host could be identified also with fs = 10−4 Hz, the improvement in ∆DL/DL

would be minor, so that the numbers for ∆w would not change very much. Weak lensing

will dominate the error on w irrespective of whether the lower cut-off frequency is set

to 10−5 Hz or 10−4 Hz.

5. Discussion

Binary supermassive black hole mergers are “standard sirens”. From the inspiral

gravitational wave signal, one can obtain the luminosity distanceDL with great accuracy,

as well as an estimate of the sky position. If the sky error box is small enough for the

host galaxy or cluster of the merger event to be located, then the redshift z can be

obtained by electromagnetic means. Using the delicate relationship between DL and z,

one can then infer the values of the cosmological parameters, in particular w.

As was already shown in [8], binary SMBH merger events at a redshift z < 1 could

be used to measure w to within a few percent, provided that one works with the full,

amplitude-corrected waveform as opposed to the restricted one, especially if the lower

cutoff in LISA’s sensitivity is rather sharp. Here we used the most up-to-date waveform

model (except for the effect of spin), which is of 3.0PN order in amplitude and 3.5PN

in phase, leading to eight harmonics [13]¶. The higher signal harmonics in the FWF

carry a great deal of additional information as compared to the RWF, so that errors on

all parameters are reduced by sizeable factors. In particular, the improvement in the

estimation of sky position makes it possible to identify the host in a large fraction of

cases [8, 9].

What had not been taken into account before is that once the exact sky location

¶ Recently our own computer code for parameter estimation with amplitude-corrected waveforms was

compared with that of two other groups who had independently developed similar code. When taking

into account minor differences in waveform approximants, as well as the different choices for LISA’s

sensitivity curve, excellent agreement was found [34].
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has been found in this way, one can repeat the analysis, this time only matched-filtering

the data against a family of templates for which sky location is fixed to be that of the

host. Since the sky position angles are strongly correlated with luminosity distance,

a smaller error on DL is obtained, and a tighter bound can be placed on w. In the

examples we gave, ∆w would improve by a factor of 2 or 3, down to less than a percent

in some cases. Weak lensing would then be the only limiting factor in measuring w, as

the error in DL it induces would dominate the uncertainty due to LISA’s instrumental

noise.

Obviously our investigation is of a preliminary nature. To arrive at an error on w we

neglected uncertainties on H0, ΩM, and ΩDE. In principle, all four parameters should be

estimated together, with priors from other observations with LISA and ground-based

instruments. These could be observations of several different binary SMBH inspiral

events, EMRIs [30], or stellar mass inspirals as seen in Advanced LIGO or Einstein

Telescope; this is currently under investigation. Additionally, we made the assumption

that w is constant, which need not be the case; here too there is scope for further work.

Finally, we only presented a limited number of examples. Large simulations are called

for in order to probe the parameter space in a comprehensive manner, the work of Trias

and Sintes [9] could be used for this purpose. That being said, our results already

strongly indicate that LISA could be used to measure w with the same accuracy as

conventional dark energy probes, but without having to rely on the lower rungs of the

cosmic distance ladder.
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