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Abstract

Attention models are widely used in Vision-language (V-L) tasks to perform the
visual-textual correlation. Humans perform such a correlation with a strong lin-
guistic understanding of the visual world. However, even the best performing
attention model in V-L tasks lacks such a high-level linguistic understanding,
thus creating a semantic gap between the modalities. In this paper, we propose
an attention mechanism - Linguistically-aware Attention (LAT) - that leverages
object attributes obtained from generic object detectors along with pre-trained
language models to reduce this semantic gap. LAT represents visual and tex-
tual modalities in a common linguistically-rich space, thus providing linguistic
awareness to the attention process. We apply and demonstrate the effectiveness
of LAT in three V-L tasks: Counting-VQA, VQA, and Image captioning. In
Counting-VQA, we propose a novel counting-specific VQA model to predict an
intuitive count and achieve state-of-the-art results on five datasets. In VQA and
Captioning, we show the generic nature and effectiveness of LAT by adapting
it into various baselines and consistently improving their performance.

1. Introduction

Multi-modal problems involving Computer Vision and Natural Language
Processing is an important area inviting a lot of attention from the AI com-
munity. Addressing such problems in the current technological world is quite
significant wherein a human user can easily interact with a machine such as a
chat-box or a robot in a human-friendly manner and thus bridge the gap be-
tween human and machine interpretations of the world. To achieve this goal,
the models require scene and language understanding capabilities and a joint
understanding of the two. Hence, such problems are a good metric for testing
whether computers are reaching a human-level understanding of the world.

Visual Question Answering (VQA) and Image Captioning are two well known
yet challenging problems in the Vision-Language (V-L) domain. VQA is the task
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of answering a question from the image [1], whereas captioning needs to describe
the content of an image as a short natural language sentence [2]. Further,
counting questions in VQA has also been recognized as a separate problem
in the community as “Counting-VQA” and has been studied using specialized
VQA models [3, 4, 5] as general-purpose VQA models fail to perform well on
such questions. In this paper, we address these three V-L problems.

The most successful and widely adopted approach for the V-L problems is the
encoder-decoder approach [1, 2, 6]. In such an approach, the visual and textual
modalities are converted to feature vectors in the encoding stage, and the desired
outputs are predicted from them in the decoding stage. Early approaches use
CNNs over the whole image to encode the image and RNNs (LSTM or GRU)
over the sequence of word-level features to encode the text (question or caption).
Then, these encoded vectors are projected to some learned common space to
conduct further reasoning [7, 8, 1]. One downside of this feature extraction is
that the whole-image CNN features may contribute noise to the model since all
the image regions may not be equally important in the context, and there may
be clutter in the background that will also get encoded.

To overcome this limitation, attention mechanisms have been proposed [9]
to facilitate fine-grain visual and/or textual processing. Attention models have
enabled the system to better focus on the relevant image regions [9, 10, 11],
text words, or both [11] and imparted significant improvements to the field.
Some early approaches perform the attention over equally-sized image grids [10].
However, such methods lack the whole-object-level information during attention.
Recently, Anderson et al. [6] proposed object-level attention by considering the
image as a set of object proposals obtained from pre-trained generic object
detectors. They demonstrate the transfer learning possibilities from the object-
detection research to V-L tasks, and the extracted object-level CNN features
are generic and easy to use. Since then, object-level CNN features became
the chosen image representation in many recent state-of-the-art V-L models for
various tasks [11, 12, 4].

However, representing the image as a set of object-level CNN features and the
text as a set of word-embedding vectors has a limitation that the two modalities
are in two different spaces. Such a semantic-gap between the modalities inhibits
the performance of the V-L tasks. Humans perform visual-textual mapping with
a strong linguistic understanding of the visual data, and this suggests that V-L
systems should do the same to improve performance. For instance, consider the
VQA problem in Fig 1 to answer the question:“What kind of animal is sitting
next to the person?”. For humans, it is quite easy to interpret the linguistic
relationship of the “cat” in the image with the “animal” in the question since we
have a strong linguistic understanding of the relationship between the two words.
However, it is difficult for the existing object-level attention mechanisms to draw
such a linguistic relationship since there is no explicit object-level linguistic
information available for the mapping (Fig 1(a)). As a result, the correlation
has to be done between two different spaces (visual and textual). We conjecture
that the existence of such a semantic gap between the two modalities leads to
sub-optimal attention modeling.
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Figure 1: Existing object-level attention vs. Linguistically-aware attention (Ours): We provide
linguistic awareness to the attention by representing both the Image (via object class labels)
and Text (via words) in a common pre-trained word embedding space. Hence, the linguistically
related objects and words will get similar representations. Best viewed in color.

One possible way to reduce this semantic gap is to represent the modalities
in a common space, i.e., representing the text in the visual space or the Image in
the textual space. Representing the text in the visual space is a more challeng-
ing problem because of the huge dimensionality of the visual space. An easier
method is the reverse, i.e., representing the image in the textual space. To this
end, object attributes (class labels) have been used to represent the image in the
textual space. Most of the prior work on object attributes uses detectors trained
specifically on a word vocabulary extracted from specific datasets of the respec-
tive tasks [7, 13]. However, creating a dataset-specific attribute vocabulary for
each task and dataset is not practically feasible, and it restricts the models
from real-world application scenarios. Due to these engineering complexities,
the usage of object-attributes in V-L tasks has not gained much popularity.

In this paper, we study the use of object attributes obtained from general-
purpose object detectors such as YOLO [14] and Faster-RCNN [15] to reduce the
semantic-gap in V-L problems. Although such pre-trained object detectors are
easy to use and are robust, one downside is that they can only predict the object
classes that they are trained on; conversely, for some unknown class objects, they
predict a similar known class only. For instance, for a Counting-VQA problem
“How many sedans are there?”, given an image with sedan cars, the object
detector may predict the class “car” if it is unaware of the class “sedan.” Hence,
the Counting-VQA model cannot relate the word “sedan” in the question to the
word “car” in the image unless it is provided with some external knowledge-
base or a training set with a lot of such samples. To overcome this problem,
we propose to leverage the same pre-trained word embedding networks used for
the question words to represent the object attributes as well. Note that such
word-embedding vectors are inherently linguistically-rich since they are trained
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using a large text corpus and are created in a way that semantically related
words will get similar vector representations. Hence, even if the object detector
is unaware of some classes, the use of pre-trained word embeddings ensures
that the known class will get a representation similar to the original class. As
a result, the word “sedan” and image “car” will have similar representations.
In this way, we can utilize the recent progress in the object-detection and the
language modeling research into the V-L problems to reduce the semantic gap
between the modalities.

We term the pre-trained word embedding vectors of object attributes as
Linguistically-aware image features and leverage them in the attention mod-
eling: the Linguistically-aware Attention (LAT). A visual comparison of
LAT with existing object-level attention is shown in Fig 1. In particular, LAT
(Fig 1(b)) represents the objects not only in the CNN space but also in the
word-embedding space via the object class labels. The words of the text are
also represented in the same word embedding space. As a result, semantically
similar objects and words have similar representations (In Fig 1(b), the “cat”
lies close to the word “animal” in the common word-embedding space), thus
making the mapping easy and linguistically robust. Since LAT uses generic
object detectors (as opposed to task-specific detectors), it is generic and easy
to use for various V-L tasks. In this paper, we show the effectiveness of LAT in
three V-L tasks:

• Counting-VQA: We propose a novel model that consists of a semantic-
level co-attention (consists of LAT) and a low-rank tensor regression-based
count predictor (for the first time to the best of our knowledge). Our model
achieves state-of-the-art results on five counting specific VQA datasets.

• VQA: In this task, we show the generic nature of LAT by adapting it to re-
cent best performing VQA models: UpDn [6], MUREL [16] and BAN [11].
In all the models, LAT consistently improves the accuracy.

• Captioning: For this task, we adapt LAT into the best performing object-
level attention-based model [6]. Here also, LAT improves the performance.

We believe that linguistically-aware image features can be used as standard
features like the object-level CNN features for a variety of V-L tasks as our
approach is simple and can be adapted to a variety of V-L tasks. Thus, the
paper is well suited for this special issue, as it focuses on methods to reduce the
semantic-gap in multi-modal problems; our work is best suitable for the same.

2. Related works

Visual question answering (VQA): VQA is the task of answering a question
related to an image [1]. The encoder-decoder approach is the most popular
scheme in which the image and the question are encoded in the encoding stage
via a pre-trained CNN [1] and RNN (LSTM or GRU) [1, 6] respectively. The
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decoder further fuses them using any standard fusion strategy, such as element-
wise multiplication/sum, concatenation, or bi-linear operations [17, 18] and then
performs a classification to one of the answers in a pre-defined set of answers.
Following [6], the usage of CNN features from the objects in the encoder has
become popular, and many recent works are built upon such a framework. For
example, [11] uses bi-linear techniques to model the co-attention between the
objects and the question words, [19] proposed a graph convolutional network-
based approach to encode the image by incorporating the relationships among
objects, [16] exploited a rich vector representation between the question and the
objects to model pair-wise object relations explicitly, [13] finds a summarized
vector representation for each modality and aggregates it with the object and
word information to obtain a better-encoded vector to predict the answer. Some
approaches, such as LXMERT [20] and ViLBERT [21], use Transformer-based
co-attention on top of the object-level CNN and question word features.
Counting-VQA: In VQA, the questions are categorized into three: yes/no,
number (answer is in the form of a number) and others (all the types other
than the above two) [1]. A majority of the number category questions are of
counting type, wherein the system has to enumerate the objects in the image
satisfying certain criteria in the question (e.g., How many zebras are there? ).
While excellent results have been obtained for non-counting questions [6], the
significant progress in the field in recent years has not reflected in the accuracy
achieved for the counting questions so far. This restricts the current VQA
models from being applicable in practical scenarios.

The under-performance of general VQA models on counting questions led
many researchers to look into this problem separately as Counting-VQA. For
instance, [5] and [4] considered counting as a classification problem similar to
the general VQA problem. Specifically, [5] constructed a graph of objects and
removed edges via several heuristics to estimate the number of objects that
match the question. Similarly, [4] proposed a model that predicts the count by
modeling the relationship between the objects and the background regions in
the image. [22] came up with a dedicated generic counting model that counts
the occurrences of all the object categories present in the image. Further, they
enumerated the question-specific objects by finding the closest object categories
to the first noun of the question. [3] proposed a model that can predict an
intuitive count as the answer by extending the VQA model from [6].
Image captioning: The task here is to generate a short description of an
image automatically. Image captioning models need the capability to under-
stand an image in terms of its constituents (the objects present in the image,
their attributes, the relationships between them, etc.) and to generate a proper
English sentence that reflects this understanding. Many of the existing works
are based on LSTMs or GRUs [2, 6]. A recent trend is to use object-level CNN
features [6], and many complex frameworks have been reported in this direc-
tion. For instance, [23] and [24] integrated spatial object relationships via graph
convolutional networks and LSTMs and scene graph architectures, respectively.
Another recent work[25] employed Conditional Generative Adversarial Nets to
boost the captioning performance. A recent work [12] proposed a complex at-
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tention mechanism that extends the object-level attention mechanism by adding
another attention on top of it and achieved better results.

Most of the best performing models for the above tasks use CNN features
of the objects & word-embeddings of the text and learn the correlation dur-
ing training. However, such an approach lacks a rich linguistic-level mapping
between the modalities and may have an impaired ability to model a strong
correlation. We address this limitation by bridging the semantic gap via a
simple but empirically powerful linguistically-aware approach for the attention
mechanism.

Methods using object attributes to reduce the semantic gap: In
this section, we focus on the prior works in V-L tasks that leverage attributes
from the image. In [7], the authors, trained an attribute prediction network
based on a dataset-specific attribute-vocabulary that predicts a global attribute
vector for the entire image that is sent to the captioning or VQA model along
with the whole-image CNN feature. One limitation of this approach is that
it can only utilize the limited linguistic information available in the captions
or questions while training. To overcome this, [8] proposed to use an exter-
nal knowledge-base to bring rich linguistic information to the model. However,
both of these approaches are sub-optimal in using the object attribute informa-
tion and impractical in the situations demanding object-specific reasoning, e.g.,
Counting-VQA, since they use global image-level features. Additionally, such
approaches represent textual words (question or caption) and the attribute vec-
tor in two different learnable spaces. Hence, while conceptually, the modalities
are in the same space (textual), there is a big gap at the implementation level.
In [26], the authors use a similar attribute prediction network as in [7, 8], and
represent both the question words and attributes in a common learnable space
for VQA. This approach solves the problem of representing both the modalities
in a common space, but it only leverages the limited linguistic knowledge from
the train set question-answer pairs. In [27], the authors propose an attention
mechanism for VQA that extracts keywords from the question and matches
them with the attributes to find the relevant objects (using a manually selected
threshold). However, this shows inferior performance in the cases that require
object visual information since it ignores the visual information of the object
during the attention.

Most of the above approaches require the creation of a task- and dataset-
specific attribute vocabulary that is practically not feasible. Also, they can
use only limited linguistic information from the train set since they use one-
hot vectors to represent the attributes and words. In contrast, our approach is
more generic and easy to use. We use object attributes obtained from generic
object detectors along with language models to reduce the semantic gap be-
tween the modalities. The advantage of such an approach is that it does not
require any dataset-specific word vocabulary as in [7, 8, 26] and can be used
as a generic task- and model-agnostic feature. Further, since the attributes
and words are represented by pre-trained word embedding vectors, they are
inherently linguistically-aware, and the model can utilize such rich linguistic
information without the need for an additional knowledge base.
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3. Linguistically-aware image and text feature extraction

In this section, we describe the proposed method to extract linguistically-
aware features from a given image and text (see Fig 2). We build upon [6] that
visualizes the image as a collection of object proposals. To realize this represen-
tation format, we use a pre-trained object detector such as Faster-RCNN [15],
YOLO [14], etc. The visual feature extraction of these detected objects is further
carried out via a pre-trained CNN (ResNet-101 [28]) and this process generates
the set of “object-visual features” V = {v1, v2, .., vm}; vi ∈ R

dv, where m is the
number of object regions.

In order to establish the relationship of the object-visual features (CNN
features with no linguistic information) with a semantically meaningful space,
we propose to additionally represent the objects in textual space using their class
labels (attributes) and extract the “linguistically-aware image features” with
pre-trained word-to-vector networks. The pre-trained word-to-vector networks
such as Glove [29] and Bert [30] are inexpensive and rich in making linguistic
correlations (since they are already trained on a large textual corpus such as
Common Crawl and Wikipedia2014). The “linguistically-aware image features”
provide rich object-level linguistic information to the model without training
on any additional expensive textual corpus. Formally, we represent the set of
“linguistically-aware image features” as L = {l1, l2, .., lm}; li ∈ R

dw , where m

is the number of object regions. Similarly, we employ the same pre-trained
word-to-vector representation to extract the set of word-level features from the
text (i.e., caption or question) as well: Q = {q1, q2, .., qn}; qj ∈ R

dw , where n

is the length of the sequence. The advantage of using the same word-to-vector
representation for extracting both L and Q is that both of them get represented
in the same learned space. Such a space is built using a large text corpus and
is trained such that semantically similar words have similar representations.
Thus, semantically similar “objects” and “words” will also lie close to each
other in their representation space. Hence, the mapping between the “image”
and “text” will be easier and linguistically robust, and a better correlation
(attention) is achieved. In this paper, we name the attention that utilizes the
linguistically-aware features L and Q as Linguistically-aware Attention (LAT).
In the following section, we show its application in various V-L tasks and models.
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4. Application in Vision-language tasks

This section shows the applicability of the linguistically-aware attention
(LAT) in several V-L tasks: Counting-VQA, VQA, and Captioning. In Counting-
VQA, we propose a novel counting-specific VQA model based on a co-attention
mechanism and tensor regression. For VQA, we choose three best performing
models, such as UpDn [6], MUREL [16], and BAN [11], into which we incorpo-
rate LAT. In captioning, we choose the best performing object-level attention
model (UpDn) from [6] as the baseline and incorporate LAT.

4.1. Counting-VQA model

The general VQA models underperform on counting questions, mainly due
to: (1) their inefficiency to handle multiple objects at a time, as they are orig-
inally tuned for a single object only, and (2) treating the task as a classifica-
tion problem (classify the image and question to an answer in a predefined set
of answers), that impairs the ordinal structure inherently existing in counting
questions. In light of these observations, we address Counting-VQA as a sep-
arate problem with a different objective function rather than the generic VQA
problem. We treat it as a regression problem and propose a novel Counting-
VQA model that is able to predict an intuitive count as the answer. Such an
approach is not yet reported in the literature, and our work marks the first of
its kind.

The proposed model is shown in Fig 3. We follow an encoder-decoder ap-
proach, where the encoder encodes the image and question, and the decoder
fuses them to predict the count. The input to the model is the set of features
V , L, and Q (described in Sec. 3) and B, i.e., object bounding box features.
Each entry in B corresponds to a 5D-vector consisting of the normalized bound-
ing box center coordinates, height, width, and area, respectively. There are two
main components in the proposed model: (i) a semantic-level dense co-attention
in the encoder and (ii) a low-rank bi-linear count predictor in the decoder.
(i) Semantic dense co-attention: In counting questions, certain words

(e.g., nouns and adjectives) are more important than others since such questions
aim to enumerate certain objects. Hence, to make an object-specific question en-
coding, in addition to the object attention, we also need to attend to the question
to focus on the object-relevant words. Inspired by this observation, we propose a
co-attention mechanism (attention on both objects and question words) that we
term as “Semantic dense co-attention” since it operates at the semantic-level
and finds the importance of each object and word in a co-operative manner.
The co-attention module takes the concatenated object visual and box features
O = V ‖B along with L and Q and creates a score matrix S of size m × n.
Formally, it is defined as:

S[i, j] = WT
a (tanh(Wv(oi) ◦ li ◦ qj)) + ba (1)

where S[i, j] represents the semantic-level correlation score between the ith

object and jth question word, ◦ represents element-wise multiplication, oi, li
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are the ith object visual and box feature (oi ∈ O) and object textual feature
respectively, qj is the jth question word embedding, Wv corresponds to the
weights of a two layer network that projects oi ∈ R

dv+5 to the dw-D space and
Wa ∈ R

dw and ba ∈ R are other learnable parameters. Then, normalize S using
the softmax operation along the columns and rows to get the object attention
and question word attention weight vectors, µ ∈ R

m and ν ∈ Rn respectively:

µ = softmax
(

n−1
∑

j=0

S[:, j]
)

ν = softmax
(

m−1
∑

i=0

S[i, :]
)

(2)

The values in µ and ν represent the relevance of the corresponding object and
question word in the context, respectively. Given µ and ν, the encoder further
encodes the image and question to fixed-sized feature vectors f and q, respec-
tively. The encoded image f ∈ R

d is obtained as:

f =

m−1
∑

i=0

µi ∗ (W
T
s vi) (3)

where Ws ∈ R
dv×d is a learnable matrix to project the object visual features

(vi ∈ R
dv ) to d-D space and ∗ represents multiplication. The encoded question

q ∈ R
d is obtained by passing the weighted question word embeddings (νj ∗ qj)

to a Bi-LSTM and then taking the concatenated forward and backward LSTM’s
outputs. The features f and q are the inputs to the counting-specific decoder
that is described next.

(ii) Low-rank bi-linear count predictor: The decoder learns “how
to count” from the features f and q by considering counting as a low-rank
tensor regression problem. The key advantage of low-rank tensor regression over
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traditional linear regression is that it can model the higher-order interactions
between the input modalities with a lesser number of parameters [31].

The count predictor first fuses f and q by the Tensor product (outer product)
that results in the fused feature tensor X ∈ R

d×d. Then, X is passed to the
Count regressor module where the count c is to be predicted. Mathematically,
the above steps are defined as follows (Eq. (4) to Eq. (6)):

c = round(〈X,Wr〉+ br)

〈X,Wr〉 =

d−1
∑

i=0

d−1
∑

j=0

X[i, j] ∗Wr[i, j]

X = f ⊗ q (4)

where ⊗ is the tensor product, 〈·, ·〉 is the generalized inner product [31], and
∗ is the multiplication operation. The regression weight tensor Wr ∈ R

d×d

and the bias term br ∈ R needs to be learned. Since the dimensionality of Wr

increases with an increase in the feature dimension d, which leads to a huge
number of parameters to learn, we decompose Wr using the low-rank Tucker
decomposition. Given rank k, the Tucker decomposition decomposes Wr into a
core tensor Tc ∈ R

k×k and factor matrices {Wq,Wf} ∈ R
d×k as:

Wr ≈ WqTcW
T
f (5)

Applying Eq. (5) to Eq. (4) gives the final representation of our count predictor
as in Eq. (6), where Tc ∈ R

k×k, {Wq,Wf} ∈ R
d×k and br ∈ R are learnable

parameters. Since the output of the regression step is a real number, we take the
rounded integer value to get the count (rounding is applied only during testing):

c = round(〈X, (WqTcW
T
f )〉+ br) (6)

4.2. Incorporating LAT into various VQA models

In VQA, we study the effect of LAT on three recent best performing models:
UpDn [6], MUREL [16], and BAN [11]. All of these models are based on the
object-level CNN representations proposed in [6]. In the following, we explain
the changes applied to the baseline models in order to use LAT.

4.2.1. Incorporating LAT into the UpDn baseline:

This model (UpDn) is purely based on the object-level visual attention pro-
posed in [6]. We use LAT in the visual attention part of the baseline model.
The model with LAT is shown in Fig 4. As in the baseline [6], the question
is encoded by sending the word-level features (Q) to a GRU resulting in the
question context vector q ∈ R

d. The image is encoded using the linguistically-
aware visual attention mechanism. We use the gated tanh non-linear function
fga : x ∈ R

p → y ∈ R
r as in [6] in our visual attention, as it shows better

performance for this problem than traditional ReLU . It is defined as:

y = tanh(Wx+ b) ◦ sigmoid(W ′x+ b′) (7)
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where {W,W ′} ∈ R
r×p and {b, b′} ∈ R

r are learnable parameters.
Linguistically-aware visual attention: We follow a similar attention

formulation as in the baseline [6] to make a fair comparison. In addition to the
object-visual features V and the question context vector q, we incorporate the
features L and Q to provide linguistic-awareness. The visual attention module
outputs a vector γ ∈ R

m, that represents the relevance of each of the m objects
in the context. Formally, our visual attention mechanism is described as:

γ = softmax(s)

si = WT
v fv([vi, q]) +

n
∑

j=1

(WT
l fl(li ◦ qj) + bl) (8)

where s ∈ R
m is the score vector with si ∈ R is the score for the ith object,

γ ∈ R
m is the attention weight vector, fl : R

dw → R
dw, fv : Rdv → R

dw are
gated tanh functions as described in Eq. (7), and {Wl,Wv} ∈ R

dw , bl ∈ R
dw ,

are learnable parameters. The encoder uses the attention weight vector γ and
encodes the image by taking the weighted sum of the object visual features V

as described in Eq. (3) (using γi instead of µi), resulting in the encoded image
f ∈ R

d.
As in the baseline [6], the decoder D(f, q) = sigmoid(WT

o (f ◦ q)) fuses
f and q by element-wise multiplication and predicts the answer scores by a
fully connected layer (FC) with the sigmoid function, where Wo ∈ R

d×do is a
learnable parameter, and do is answer vocabulary size.

4.2.2. Incorporating LAT into the MUREL baseline:

MUREL [16] is a non-attention based model. The question word features
(Q) are given to a GRU, and the final hidden state vector is taken as the encoded
question q. Then, the object-visual features V along with q are passed to the
“MUREL cell”. Inside this cell, each of the object-visual features (vi ∈ V )
are bi-linearly fused with q resulting in the feature vector si corresponding to
vi. A global max-pooling operation is performed over the si features, and the
resulting vector is considered the encoded image s. Then the encoded image s

and question q are bi-linearly fused to predict the answer.
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Figure 5: MUREL VQA model with LAT. The dotted box represents our addition.

We adapt LAT into the MUREL model, as shown in Fig. 5. Instead of the
global max-pooling operation in the original model, we have applied weighted
average pooling. The weights are defined by the “Linguistically-aware visual
attention” weight vector γ, formulated in Eq. (8).

4.2.3. Incorporating LAT into the BAN baseline:

The BAN [11] is based on bi-linear co-attention between the object-visual
and question word features (V and Q). The question word features are passed
through a GRU, and all the hidden state vectors are taken. These are denoted
by Q̂ ∈ Rn×d, where n is the number of words, and d is the size of the GRU
hidden state. Then, both Q̂ and V are given to the bi-linear attention network
(BAN) to get the combined vector fv ∈ RC . Formally, it is denoted as fv =
BAN(Q̂, V ;A1), where A1 is the bi-linear attention map between Q̂ and V . The
fv is further passed to a Multi-layer Perceptron (MLP) to predict the answer.

We have incorporated LAT into the BAN model by adding co-attention
maps between the linguistically-aware image features L, and the question word
features Q. An overview of the BAN model with LAT is shown in Fig. 6. In
another perspective, this addition can be considered as a bi-linear linguistically-
aware co-attention since it is between the linguistically-aware features L and Q.
Formally, the above operations are described as:

fo = fv + fl = BAN(Q̂, V ;A1) +BAN(Q,L;A2) (9)

where fv is the bi-linear joint representation as in the original model [11], fl is
from the LAT adaptation, and fo is the final joint representation which is then
passed to the MLP to predict the answer probabilities.

4.3. Incorporating LAT into the UpDn captioning model

Similar to the baseline, we follow the LSTM based encoder-decoder ap-
proach. We use the notation ht = LSTM(xt, ht−1) for an LSTM cell, where
xt is the input at time t, and ht−1 and ht are the previous and current cell
outputs, respectively. We incorporate LAT into the baseline model [6], as de-
scribed below. For ease of explanation, we consider the details of the LSTM
cell at time t (see Fig. 7). It consists of three layers: (1) An input layer, (2) an
attention layer, and (3) an output layer. The first two layers together constitute
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Figure 6: BAN VQA model with LAT. The dotted box represents our addition.

the encoder, where the current caption word, the previously generated caption
context vector, and object visual and linguistic information are aggregated to
fixed-sized context vectors. The output layer is the decoder, that predicts the
next caption word probabilities from the encoded vectors.

Input layer: This layer consists of two LSTM cells viz., V-LSTM and L-
LSTM. The V-LSTM is analogous to the Top-Down Attention LSTM in the
baseline model [6]. It takes the average object-visual features V̄ = 1

m

∑

i vi,
current caption word feature qt and the context vector for the caption generated
so far ho

t−1 and outputs the object-visual context vector hv
t ∈ R

de . In addition
to this, we incorporate another LSTM cell called L-LSTM that takes the average
linguistically-aware image features L̄ = 1

m

∑

i li, current caption word feature
qt and the context vector for the caption generated so far ho

t−1 and outputs the
object-textual context vector hl

t ∈ R
de . Mathematically, the above operations

are described as:

hv
t = V-LSTM(xv

t , h
v
t−1) ; xv

t = [ho
t−1, V̄ , qt]

hl
t = L-LSTM(xl

t, h
l
t−1) ; xl

t = [ho
t−1, L̄, qt] (10)

Attention layer: This layer encodes the object visual and textual features
(V and L) into fixed-sized vectors using attention. It consists of two attention
modules, the object-visual attention “V-Attention” (analogous to the “Attend”
module in the baseline [6]) and the linguistically-aware attention “L-Attention”
(our contribution for LAT). The V-Attention and L-Attention modules output
the attention weights αt for V and βt for L respectively, at time t. Formally,
the two modules are defined as:

αt = softmax((tanh(VW v + (1hvT

t )W v
h )W

v
a ))

βt = softmax((tanh(LW l + (1hlT

t )W l
h)W

l
a)) (11)

where 1 is a column vector of length m consisting of all ones, V ∈ R
m×dv ,

L ∈ R
m×dw are the matrix representations of the input features V and L re-

spectively, {W v
a ,W

l
a} ∈ R

d, W v ∈ R
dv×d, W l ∈ R

dw×d and {W v
h ,W

l
h} ∈ R

de×d

are learnable parameters. Then the fixed sized object-visual encoding ovt ∈ R
dv

and object-textual encoding olt ∈ R
dw are obtained as in Eq. (12), where αt[i]
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Figure 7: UpDn captioning model LSTM cell with LAT, at time t: Dotted lines indicate
hidden states. The operations ‖,

∑
and Avg are the Concatenation, Weighted sum and

Average respectively. Dotted box represents our addition.

and βt[i] are the attention weights for the ith object-visual feature vi and object-
textual feature li at time t, respectively.

ovt =

m
∑

i=1

αt[i]vi olt =

m
∑

i=1

βt[i]li (12)

Output layer: This is the decoder that predicts the probability scores for
the next caption word having seen the partial caption generated so far. It con-
sists of the O-LSTM (analogus to the “Language LSTM” in the baseline [6]),
that takes xo

t = [ovt , o
l
t, h

v
t , h

l
t] and the previous cell hidden state vector ho

t−1 as
inputs and then outputs a vector ho

t ∈ R
do . It is further passed to a softmax

function to get the next word probabilities yt ∈ R
do (do: size of output vocab-

ulary).

5. Experimental Setup

Feature representations: In all the tasks and models, we use the features
provided by [6], i.e., the fixed size (m = 36) object-level ResNet-101 [28] features
extracted using Faster-RCNN [15] trained on Visual Genome [32], as the set of
object-visual features V (dv = 2048). Then, we extract the object attributes
corresponding to each of the m objects. In the Counting-VQA model, we also
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use YOLOv3 pre-trained on MSCOCO as the object detector and extract the
CNN features using ResNet-101. As the word-to-vector representation, we use
pre-trained Glove [29] (for Counting-VQA and VQA; dw = 300) and Bert [30]
(for Image captioning; dw = 1024). For various experiments, we have used other
features as well, which will be explained in the respective sections.
Datasets and Implementation details:
(i) Counting-VQA: We use the following counting-specific VQA datasets:
HowManyQA: This dataset [3] is the counting-specific union of two large
VQA datasets: Visual Genome [32] and VQAv2 [33]. It includes 83642 (train),
17714 (validation) and 5000 (test) question-answer pairs. TallyQA: This
dataset [4] consists of a large test set categorized into two: “simple” (22991
question-answer pairs) and “complex” (15598 question-answer pairs), where the
former contains basic object enumeration questions, and the latter requires more
reasoning. Count-QA (VQAv1) and Count-QA (COCO-QA): These
datasets [22] contain counting questions from VQAv1 [1] and COCO-QA [34]
with 1774 and 513 question-answer pairs respectively.

In the count regression step, we use the low-rank value k = 11. After all the
linear layers, we use Batch Normalization and ReLU. We train the model on
the HowManyQA dataset using Smooth L1 loss [35] and Adam optimizer with
learning rate = 0.0005 and batch size = 8.
(ii) VQA: We use the VQAv2 dataset [33] containing 1.1M questions with
11.1M answers for training and evaluating all the models. As the evaluation
metric, we use the standard VQA accuracy [1]. For ease of implementation,
we limit the question length to 14 and use all the answers occurring more than
eight times as the answer vocabulary as in [6, 11]. In all the models, we use a
similar training and optimization settings as in the respective models [6, 16, 11].
(iii) Image captioning: We use the “Karpathy splits” of MSCOCO captions
dataset [36] that contains 113K training images and 5K images in the validation
and test set each (five captions per image). We use the caption output vocabu-
lary of size do = 9487 as in [6]. We evaluate our model using the standard image
captioning evaluation metrics such as BLEU, METEOR, ROUGE-L, CIDEr,
and SPICE. We train our model using Cross-Entropy loss and CIDEr optimiza-
tion using the Adam optimizer with batch size=16 and learning rate=0.0005.

6. Results and Discussions

In this section, we show the results of various experiments that we carry out
using LAT on the Counting-VQA model (Sec. 6.1). In VQA and Captioning
(Sec. 6.2), we show the effect of LAT on various recent best performing models.

6.1. Counting-VQA

Comparison with state-of-the-art methods: The quantitative com-
parison of our model with existing approaches on the HowManyQA, TallyQA
(Simple and Complex), and Count-QA (VQAv1 and COCO-QA) datasets are
shown in Table 1. We show the cases of two types of image features (YOLOv3 [14]
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Model HowManyQA

detect [22] 3.66
MUTAN [18] 2.93
UpDn [6] 2.64
Counter [5] 2.59
IRLC [3] 2.47
RCN [4] 2.35

Ours

F-genome 1.62
YOLO 1.56

YOLO+BERT 1.52

TallyQA
Model Simple Complex

detect [22] 2.08 4.52
MUTAN [18] 1.51 1.59
Counter [5] 1.15 1.58
RCN [4] 1.13 1.43

Ours

F-genome N/A 1.02
WO VG 0.97 1.03
YOLO N/A 0.94

YOLO+BERT N/A 0.93

Model VQAv1 COCO-QA

MCB [17] 3.25 -
D-LSTM [37] 2.71 -
detect [22] 2.72 2.59
ens [22] 1.80 1.4

Ours (F-genome) 1.01 0.94
Ours (YOLO) 0.98 0.92

Ours(YOLO+BERT) 0.96 0.9

Table 1: Counting-VQA results on HowManyQA, Count-QA splits of VQAv1 and COCO-QA
and TallyQA simple and complex test sets. All are RMSE values. Lower is better.

and F-genome [6]) and language models (Glove [29] and BERT [30]). The F-
genome features are the same features as used in prior works, i.e., features
from [6]. The TallyQA-simple and the HowManyQA train set may contain
common questions from Visual Genome [32], hence to make a fair comparison,
we also show the results without using such questions (WO VG in Table 1). We
can see that our model outperforms all the existing models in all the datasets.

Comparing the performance among the image features, the YOLO features
work better than the F-genome features. To further analyze this, we performed
various experiments as detailed in Sec 6.1.2. In the language model side, BERT
outperformed Glove, as expected.

Qualitative results: In Fig 8, we show some qualitative results, where the
first pair involves a basic linguistic understanding to correlate “people” with the
object label “person”. The second pair is a more challenging scenario demanding
high-level linguistic awareness, wherein the model has to relate “sedan” to “car,”
rather than to “person” or “train.” From the qualitative results, we can see that
our model can focus on the relevant objects and question words and predict the
count accurately. From the failure cases (bottom row in Fig 8), we can see that
our model’s performance is tightly coupled with the object detector predictions.
To analyze the effect of the object-detector quality on the performance, we
perform an experiment as detailed in Sec. 6.1.2 (i).
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How many people
appear in the

picture GT: 3

How many people
appear in the

picture Pred: 3

How many sedans
are in the picture

GT: 1

How many sedans
are in the picture

Pred: 1

How many toilets
GT: 2

How many toilets
Pred: 3

How many birds are
in the photo

GT: 2

How many birds are
in the photo
Pred: 1

Figure 8: Counting-VQA results: Green box denotes high attention (µi ≥ 0.1) and red box
denotes low attention (µi < 0.1) on the objects. The color intensity in question words indicates
attention weights. The bottom row shows examples of failure cases. Best viewed in color.

Model HowManyQA TallyQA-complex

No co-attention 1.86 1.23
No L feature 1.80 1.20
No V and B features 1.67 1.10
No B feature 1.58 0.96
Linear regression 1.74 1.17

Full model 1.56 0.94

Table 2: Counting-VQA: Ablation study results (RMSE).

6.1.1. Ablation studies

To study our Counting-VQA model in detail, we perform the following ab-
lation studies, and the results are shown in Table 2. All of the following exper-
iments are carried out with the YOLOv3 and Glove features.

(i) No co-attention: In this test, we do not attend to the question words.
It is analogous to every word getting equal importance. The performance
decreases (from 1.56 to 1.86 in HowManyQA and 0.94 to 1.23 in TallyQA-
complex), since the model doesn’t focus on the object-relevant words such as
nouns and adjectives, and the irrelevant words contribute noise to the regres-
sor. This result validates our claim that counting benefits from semantic-level
co-attention.

(ii) Contribution of different features: To understand the contribution
of the features V , B and L in the “Semantic dense co-attention”, we perform the
following experiments: a) No L feature: Here, we remove the linguistically-
aware image features (L) from the co-attention stage. We observed a reduction
in the performance (from 1.56 to 1.80 in HowManyQA and 0.94 to 1.20 in
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TallyQA-complex). b) No V and B features: In this experiment, we keep
the L feature and remove the object-visual (V) and box (B) features from the
co-attention. Specifically, we remove the Wv(oi) term from Eq. (1). We observe
a small reduction in the performance (from 1.56 to 1.67 in HowManyQA and
0.94 to 1.10 in TallyQA-complex). c) No B feature: We also experiment
by removing only the object box features (B) from the co-attention (we used
Wv(vi) instead of Wv(oi) in Eq. (1)). We observed a reduction in performance
(1.56 to 1.58 in HowManyQA and 0.94 to 0.96 in TallyQA-complex).

From the above experiments (a,b, and c), we infer that the L features can
serve as a bridge between the modalities to make a better correlation. However,
some questions may require the appearance and relative position of the objects
(e.g., How many yellow bananas are near the glass?). In such cases, the object-
visual and box features are also required for better performance.

(iii) Linear regression: In this experiment, we fuse f and q by element-
wise multiplication and use linear regression to predict the count, instead of
the proposed count predictor. The performance decreases (1.56 to 1.74 in How-
ManyQA and 0.94 to 1.17 in TallyQA-complex). This result shows the ability
of our low-rank bi-linear count predictor to predict the count more accurately.

6.1.2. Other experiments on the Counting-VQA model

(i) Quality of the object detector: To understand the influence of the
object detector quality on counting performance, we experiment using the man-
ually annotated objects vs. object detector predictions. We use the Visual
Genome [32] question-answers (36100 pairs) from the HowManyQA train set
for this experiment. We then train two separate models with manually anno-
tated objects (from Visual Genome) and YOLOv3 predictions and compare the
performance on the HowManyQA test set (5000 question-answer pairs). We ob-
serve that the predicted objects achieve similar performances (RMSE: 1.85) as
in manual annotation (RMSE: 1.84), showing that the current object detectors
can predict and classify the object regions with sufficient accuracy, thanks to
the advancements in the object detection research.

(ii) Changing the object detector: To understand how the model per-
forms with features from various object-detectors, we experiment with two
more object-detectors apart from YOLOv3, i.e., the CenterNet [38] and Faster-
RCNN [15], both trained on MSCOCO dataset. Table 3 shows the results (Cen-
terNet and Faster-COCO). We observe a similar performance in all cases. We
infer that changing the object-detector does not affect the performance much.

(iii) Effect of the number of classes in the object detector: To
study how the model behaves upon adding more classes to the object detector,
we experiment with two variants of Faster-RCNN [15]; Faster-COCO: Trained
on MSCOCO (80 classes) and Faster-VG: Trained on Visual Genome (3000
classes). In both cases, we extract the objects in the same way as YOLOv3, i.e.,
with an object confidence threshold of 0.7. In both cases, we got a similar per-
formance as with YOLOv3 (see Table 3). We observe that the addition of classes
to the object detector did not contribute much to the performance. This is be-
cause Faster-COCO, even though trained on a lesser number of classes, predicts
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Features HowManyQA TallyQA-Complex

Faster-COCO 1.568 0.942
Faster-VG 1.562 0.937
F-genome 1.62 1.02
YOLOv3 1.560 0.94
CenterNet 1.57 0.949

Table 3: Counting-VQA: Performance (RMSE values) with features from various object-
detectors. Lower is better.

the unknown class objects to some semantically similar known classes, for e.g.,
“man” and “woman” are predicted as “person,” “jar” is predicted as “bottle,”
etc. Since they are semantically similar, the corresponding word embeddings
also behave the same, and the performance is not affected much.

(iv) Effect of the object confidence threshold on performance: An-
other observation from the above experiment is the effect of the object confidence
threshold in the object detector. This threshold denotes the minimum confi-
dence value needed to consider a region as an object. In Table 1, we observed
a small performance gap in the counting model with F-genome features [6] (ex-
tracted using Faster-RCNN trained on 1600 Visual Genome classes), but we did
not see such a gap with the Faster-COCO and Faster-VG features (see Table 3).
Since the F-genome features correspond to the top 36 object predictions and
may include objects with low confidence values (those may not be real objects),
such predictions with low object confidence values might have contributed noise
to the model. On the other hand, the other features (Faster-COCO, Faster-VG,
and YOLO) correspond to objects with high confidence (≥ 0.7) and hence the
noise from the object detection stage is comparatively less.

(v) Performance of Semantic-dense co-attention on adjectives in
the question: In practical scenarios, the objects may be described by more
than one word, i.e., not only its class labels but also some adjectives describing
their appearance (e.g., red car). Since the Semantic-dense co-attention works
at the word level and uses only the object class labels (nouns), we conducted
experiments for checking whether the model loses the adjective information in
the question. Specifically, we experimented by providing adjectives along with
the object’s class labels (i.e., “red car” instead of only “car”). We used the
object-detector from [6] for this, which provides an additional adjective along
with the class labels for each detected object. We observed a similar performance
(1.59 on HowManyQA and 0.99 on TallyQA-complex) as the original model
(using the same object-detector, i.e., 1.62 on HowManyQA and 1.02 on TallyQA-
complex, see F-genome in Table 1). From this experiment, we infer that the
Semantic-dense co-attention in the original model provides a sufficient score to
the object’s adjectives (e.g., “red” in “red car”) and does not lead to losing such
information from the encoded question. We ascribe this to the following: The
pre-trained word embeddings are created by training with a large text corpus.
Hence, the words that often appear together in the text, such as “adjectives
and nouns” (e.g., “red car,” “big bus,” “blue sea,” etc.), will get a relatively
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Model yes/no number others overall

UpDn [6] 80.3 42.87 55.8 63.2
UpDn+LAT (Glove) 80.52 43.53 59.14 64.96

UpDn+LAT (BERT) 80.6 44.69 60.15 65.09

MUREL [16] 80.75 46.72 58.25 65.20
MUREL+LAT(Glove) 80.81 46.85 61.42 66.24

MUREL+LAT(BERT) 80.92 46.95 62.1 66.84

BAN [11] 77.88 44.86 60.84 65.39
BAN+LAT(Glove) 79.67 48.27 62.16 67.45

BAN+LAT (BERT) 79.97 48.31 62.75 68.00

Table 4: VQA: Performance (VQA accuracy values on the VQAv2-val set) of LAT on various
baseline models. The language-model used in LAT are shown in brackets.

Model B@1 B@4 M R C S

UpDn [6] 79.8 36.3 27.7 56.9 120.1 21.4

UpDn+LAT 80.4 37.7 28.4 58.3 127.1 22.0

Table 5: Captioning: Performance of LAT on the UpDn baseline [6], on the Karpathy-split
test set in MSCOCO captions dataset. B@n,M,R,C and S represent BLEU@n, METEOR,
ROUGE-L,CIDEr, and SPICE, respectively.

similar vector representation than other words. This helps the “Semantic-dense
co-attention” to give a relatively good score to the adjectives as well.

(vi) Performance without pre-trained word embeddings: To ana-
lyze the performance without using the pre-trained language models, we exper-
imented with one-hot vector representations of object attributes and question
words. Specifically, we manually created a word vocabulary consists of all the
unique words in the dataset and created one-hot vectors correspond to the
words. Note that these vectors do not contain any linguistic information. We
experiment with the following cases on the HowManyQA dataset:

Object attributes and words are in different spaces: In this experiment, we
project both the object attributes and question words to two different learnable
spaces (the dimensionality of both spaces is kept the same). The performance
reduced from 1.56 to 1.74, as expected, since now both the modalities are in
two different spaces. In this case, even though both object attributes and words
are in textual space, the two learned spaces being different creates incongruity.

Object attributes and words are in a common learned space: In this experi-
ment, we project both object-attributes and question words to a common shared
learnable space. The results are better than the previous experiment (1.70 in-
stead of 1.74), but there is a notable reduction compared to the original model
(1.56 vs. 1.70). We believe this is because, with this setting, the modalities
are in the same space, but the mapping can only leverage the limited linguistic
information from the questions obtained while training. In the original model,
both the modalities are in a common linguistically-rich space, and the model
can make use of it.
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What color are the
beach chairs. GT: green

UpDn: blue +LAT: green

Are the lights on. GT: yes UpDn: no +LAT: yes
(a) VQA

UpDn: a piece of luggage
sitting on top of a table
+LAT: a close up of
a cell phone holder

UpDn: a group of people
sitting on a park bench
+LAT: a group of
people sitting on park
benches in a park

UpDn: a woman sitting
on the ground with a cell
phone
+LAT: a woman sitting on
a suitcase in the woods

(b) Captioning

Figure 9: VQA and Captioning: Qualitative comparisons between UpDn and UpDn+LAT.

6.2. VQA and Captioning

VQA: The quantitative result comparison of the baselines and the same
with LAT are shown in Table 4. We can see that the incorporation of LAT
consistently improves all the models. One noteworthy point is the significant
margin of improvement achieved in the “others” category in all the models.
Since the “others” category has a much wider range of answer distribution
(e.g., colors, animals, fruits, vehicles, etc.) than the other two splits (yes/no
and number), it requires a more fine-grained and linguistically-aware text-to-
image mapping. The impact of LAT is clearly significant in such cases. A
qualitative result comparison with the UpDn and UpDn+LAT is shown in Fig 9
(a). We can see that LAT helps the model to focus on the relevant objects more
precisely than the baseline.

Captioning: The quantitative comparison of the UpDn and UpDn+LAT
models are shown in Table 5. We can see that LAT shows improved results over
the baseline in all the metrics. The performance gains in the CIDEr (120.1 to
127.1) and SPICE (21.4 to 22.0) metric show that captions with the LAT are
semantically closer to the human-annotated captions than the baseline. Some
examples depicting LAT’s effectiveness in making more image-specific and lin-
guistically robust captions than the baseline are shown in Fig 9(b).
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7. Conclusion

In this paper, we proposed a simple yet empirically powerful “linguistically-
aware attention (LAT)” for reducing the semantic-gap in Vision-language (V-L)
tasks. The notion is to bring rich linguistic-awareness in the attention process
by representing both image and text in a common linguistically-rich space. To
facilitate the same, we utilize the object-class labels extracted from the image
and words from the text to bring both the modalities to a textual space, then
linguistically-aware features are extracted using pre-trained word-embedding
networks. We demonstrated the LAT’s impact on three V-L tasks: Counting-
VQA, VQA, and image captioning. In Counting-VQA, we proposed a novel
counting-specific VQA model consisting of a semantic-level co-attention mech-
anism and a count predictor that uses multi-linear algebra to predict the count
with a lesser number of parameters. Our counting model achieved state-of-the-
art results on five counting-specific VQA datasets. In VQA and image caption-
ing, we applied LAT into various baseline models and significantly improved
the results in all of them. We observed that the LAT improves the semantic
robustness of the baseline models. The LAT is generic and can be incorporated
into any other baseline model as well.

At a more generic level, we have explored the transfer learning possibilities
from the object-detection and language-modeling research to improve the per-
formance of various tasks in the V-L field. Based on our study, we conclude that
the object class labels obtained from the general-purpose object detectors along
with the language models can serve as a semantic bridge between the visual and
textual modalities in the V-L tasks. Such class label features are easy to extract
and can be used as a general-purpose standard feature along with the object-
level CNN feature for other V-L tasks as well. While this suggests several direc-
tions for future research, an immediate benefit may be obtained in tasks that
require fine-grained text-image mapping, such as Visual grounding, Text-based
image retrieval, and Semantic segmentation from natural language expressions.
Further, the idea of representing the modalities in a common linguistically-rich
space might apply to video-based V-L tasks as well, such as Video-captioning,
Video-question answering, and Action localization with language query. The
ideas may find use in correlating other modalities with others as well, such as
Speech, IR, Sonar, Radar etc.
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