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SUMMARY

This study focusses on crack identification in beams from vibration measurements using principles of
dynamic state estimation. The finite element method is used to model the beam with cracked beam
elements that account for the presence of an edge crack under near-tip elasto-plastic conditions.
The crack size and its location are treated as the variables that are identified using a particle
filter algorithm. A parametric study is first carried out with synthetic measurements to numerically
analyse the performance of the algorithm. Subsequently, using measurements acquired from physical
experiments involving a cantilever beam subjected to arbitrary excitations, the proposed algorithm
is used to identify the size and location of crack-like defects. The proposed method do not require
measurements of the undamaged beam; hence, can be used for crack identification in beams for which
no earlier measurements are available. Copyright c© 2000 John Wiley & Sons, Ltd.

key words: Dynamic state estimation; crack; particle filter; Bayesian; health monitoring; vibra-

tions; beam

1. Introduction

Identification of crack like defects in beams from ambient vibration measurements is a cost
effective method that is commonly used in structural health monitoring applications prone to
damage from repetitive loadings [1]. Crack like defects in vibrating beams alter the stiffness
and damping properties locally, which in turn, changes the macroscopic beam response
characteristics; see [2] for a review. These changes are manifested in terms of the modal
parameters, such as, the structure natural frequencies, mode shapes, modal damping ratios
etc. Techniques available in the literature, for crack identification from vibration measurements
are therefore primarily modal based approaches. The underlying principle of these methods
lie in relating the changes in the modal characteristics to location and severity of cracks. This
can be addressed as a forward problem or as an inverse problem [3]. In the forward approach,
investigations have been carried out to study the changes that result due to the presence of
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cracks at known locations [4–7]. In the inverse approach, the location and the size of the cracks
are estimated by relating the crack parameters with the changes in the modal characteristics,
in conjunction with optimization techniques; see for example [8–19]. Typically, these methods
focus on developing equations that relate the unknown parameters, such as, crack size, crack
locations, local flexibility coefficients etc., with changes in the structure natural frequencies,
mode shapes and modal damping ratios. This usually leads to a system of overdetermined
equations and estimates of the crack sizes and their locations are obtained by application of
techniques, such as, rank-ordering methods, regularization and error minimization methods,
least square approaches etc. Studies on using the changes in the antiresonance peaks in the
frequency response functions have also been carried out to locate cracks [20–22]. Alternative
methods that use modal parameters for crack detection include optimization approaches in
conjunction with perturbation methods [23] and wavelet analysis [24, 25].

Time domain based studies using iterative approaches for locating and estimating the
severity of damage from vibration measurements have been discussed in [26–30]. These studies
typically introduce the damage into the numerical model either through an unknown variable or
a function with unknown parameters. Subsequently, these unknown quantities are estimated
through an iterative procedure applied on available response measurements. Unlike modal
analysis based methods which are primarily applicable to linear systems, these methods are
applicable in nonlinear systems [28, 29] as well as when measurements are noisy [30, 31].
However, inverse methods using deterministic models lack robustness due to the unknown and
unavoidable errors that enter the analysis due to the inevitable inaccuracies in mathematical
modelling and data acquisition. These errors enter the inverse analysis in the form of noise
which need to be appropriately taken into account.

The robustness of inverse methods can be improved by explicit modeling of the uncertainties
(i.e., noise) using a probabilistic approach. This has led to adopting Bayesian filtering
frameworks in the damage detection algorithms. The focus in these methods is not on
identifying the exact location and sizes of the damage, but on defining their corresponding
probability density functions (pdf)s and estimating their most probable values, conditioned
on the available measurements. A set of variables are defined for the system and/or damage
parameters to be identified; these are modeled as random variables with an assumed pdf.
A vector of realizations for these random variables is simulated in the computer having the
specified probabilistic properties. Corresponding to each realization for the system parameters,
a mathematical model is used to predict the structure response for a particular time instant.
Using Bayesian theories, the distributions of the unknown parameters in the mathematical
model are subsequently updated by comparing the predictions with the actual measurement at
that time instant. The updated pdf of the parameters are used to resample realizations for the
next response measurement instant. This procedure is carried out recursively till convergence
is achieved in the prediction of the system parameters. Closed form analytical expressions have
been developed when the system equations are linear, the noise in the system are modeled as
Gaussian variables and the parameters to be estimated constitute the state vector, leading to
the well known Kalman filter [32]. When the parameters to be identified do not belong to the
state vector, the equations for the parameters being identified become nonlinear which rule
out the direct application of the Kalman filter. This has led to the development of Kalman
filter based algorithms for damage detection [33–36] which rely on linearizing the equations in
conjunction with the traditional form of Kalman filtering techniques. The robustness of these
variants of the Kalman filter are, however, limited and depend on the extent of the nonlinearity
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associated with the model and the measurement equations and the assumed distribution of
the unknowns associated with the system.
The advent of cheap computing facilities in recent times has led to the focus on the

development of inverse methods, such as the particle filter based methods, which are more
robust irrespective of the nonlinearities and the non-Gaussianities associated with the system.
These methods rely on using Monte Carlo simulations and numerically integrating the
associated equations rather than seeking analytical approximations for the conditional pdf
of the unknown parameters. Thus, these methods place no restrictions on the form of
the equations or the distributions of the unknown parameters and noise. Here, the system
parameters to be identified are treated as the state variables and the measurements that are
used could from a combination of static and/or dynamic tests [37].
The focus of the present study is on the development of a particle filtering methodology, for

identifying crack like defects in structural systems from vibration measurements. The crux of
the proposed method lies in adopting a finite element framework for modeling the crack induced
damaged beam and formulating the inverse problem in terms of the damage variables only,
with all other state variables being treated as internal variables. Subsequently, the Bayesian
particle filtering is carried out in the reduced space spanned by the vector of unknown damage
parameters. The novel feature of the proposed method lies not only in quantifying the most
likely size of a predominant crack like defect from vibration measurements, but also to estimate
the most likely location of the crack. Unlike most existing studies, this is carried out without
the need for having measurements of the undamaged beam.

2. Problem Statement

A cantilever beam of length L, having a crack like defect of length a situated at a distance l
from the fixed end, is considered; see Fig. 1. The cross-section of the beam is assumed to be
rectangular having dimensions b × d. The crack like defect is assumed to be on the surface,

Figure 1: Schematic diagram of a cantilever beam with a crack.

is a through crack along the breadth of the beam and is assumed to remain always open.
The excitations are assumed to be through support motion in the numerical examples. The
vibration response at the tip of the beam is measured. The focus is therefore on identifying
from vibration measurements, (1) the location in the beam where there is a local reduction
in the stiffness properties, (2) the magnitude by which the stiffness decreases locally, and (3)
relating this stiffness change to the size of a crack, using particle filtering. The identification
strategy needs to address the above three-fold problem. As can be seen from the schematic
diagram in Fig. 1, this implies that two parameters need to be identified, (a) l - the location

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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of the fatigue crack, and (b) the size of the crack denoted by a.
The finite element (FE) discretised equations of motion for the beam are

Mÿ(t) +Cẏ(t) +Ky(t) = −M1ü(t), (1)

where, M, C and K are respectively, the mass, damping and stiffness matrices of dimensions
n× n, y(t), ẏ(t) and ÿ(t) are the vectors of nodal displacements, velocities and accelerations
of dimensions n×1, ü(t) is the nodal ground accelerations in the transverse direction only and
1 is the vector of participation factors, consisting of 1 corresponding to the transverse support
node and 0 at all the other nodes. Even though a cantilever beam is being considered in this
study, the methodology being presented here is not specific to cantilever beams only or when
the excitations are through support motions.

2.1. Modeling the Local Flexibility due to Cracks

The crux of the problem lies in using a FE model for the cracked beam, which captures
the effects of cracks without too complicated FE meshing. This can be achieved using the
FE cracked beam element developed in [38]. The element consists of three segments - (a) an
undamaged beam segment to the left of the crack, (b) a similar beam segment to the right
of the crack and (c) the crack. The left and the right segments in the crack are assumed to
be of equal length, L/2, where L is the length of the cracked beam element and the crack is
modeled by a massless rotational spring kθ having zero dimensions. The cracked beam element
is assumed to consist of two nodes, located at the extremities of the cracked beam, with each
node having a translational and a rotational degree-of-freedom. The stiffness of the rotational
spring, kθ, is modeled, such that, the local flexibility due to the crack is considered. The local
flexibility c is the inverse of the local stiffness kθ and is dependent on the crack size. Using
theories of elasto-plastic fracture mechanics, the local flexibility c can be related to the fatigue
crack size a [38]. Here, the effect of the plastic zone that appear in front of crack tips which
provide additional flexibilities in the material is considered; see Fig. 2 for a schematic diagram.
The radius of the plastic zone, rp, around the crack tip, is given as [39] rp = (KIp/σY )

2/(2π),

Figure 2: Plastic zone around the crack tip

where, σY is the material yield strength and KIp is the elasto-plastic stress intensity factor
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given by

KIp = KI [1 + σ2
Mζ

2/(2πσ2
Y )]

0.5. (2)

Here, KI is the elastic stress intensity factor, σM is the applied stress due to bending moment,
M , and η is a correction function which incorporates the effects of the structure component
and the crack geometries. For a beam of rectangular cross-sections with breadth, b and depth,
d, the correction function is given as

ζ =

√

tan(κ)

κ

(

0.923 + 0.199[1− sin(κ)]4

cos(κ)

)

, (3)

where, κ = πa/2d and KI = 6M/bd2. The general expression for finding the local flexibility
due to a crack [40] is cij = ∂2/∂Fi∂Fj [

∫

A
Jc dA], where, Fi is the applied generalized force

at the i-th location, A is the area of the cross-section and assuming stress is generated due
to bending only, Jc is the strain energy density function given by Jc = K2

Ipi
/E. Assuming a

through crack and that plane stress conditions are applicable, it can be shown that

c =
72

Ebd2

∫ āk

0

ζ(ā)2 ādā+
216

Eπbd2

(

σM
σY

)2 ∫ āk

0

ζ(ā)4 ādā, (4)

where, ζ ≡ ζ(a) is as given in Eq. (3), a and ak denote the crack size, and ā = a/d and
āk = ak/d are the non-dimensionalized size of the crack, expressed as a ratio in terms of
the beam depth d. Thus, Eq.(4) provides a relationship between the crack size and the local
flexibility introduced in the beam due to the presence of a crack. It has been shown in [38]
that the stiffness matrix is of the form

K = EI

























12
L3

6
L3 − 12

L3

6
L2

4L2+6Lψ+3ψ2

L(L+ψ)2 − 6
L2

2L2+6Lψ+3ψ2

L(L+ψ)2

12
L3 − 6

L2

sym 4L2+6Lψ+3ψ2

L(L+ψ)2

























(5)

and the mass matrix is given by

M =
(ρAL

420

)

M1 +
(

ρJL
)

M2, (6)

M1 =



























156 L2(88L+123ψ)
4(L+ψ) 54 −L2(52L+87ψ)

4(L+ψ)

L3(64L2+191Lψ+148ψ2)
16(L+ψ)2 −L2(52L+87ψ)

4(L+ψ)
3L3(16L2+53Lψ+44ψ2)

16(L+ψ)2

156 −L2(88L+123ψ)
4(L+ψ)

sym L3(64L2+191Lψ+148ψ2)
16(L+ψ)2



























, (7)
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M2 =

























6
5L2

1
10L − 6

5L2

1
10L

L(8L2+21Lψ+18ψ2)
60(L+ψ)2 − 1

10L −L(8L2+21Lψ+18ψ2)
60(L+ψ)2

6
5L2 − 1

10L

sym L(8L2+21Lψ+18ψ2)
60(L+ψ)2

























. (8)

Here, ψ = EIc. In the absence of any crack, c = 0 and the resultant stiffness and the mass
matrices become identical to the Euler-Bernoulli beam matrices.

It is quite clear that the equations involving the elasto-plastic model for the crack growth
are nonlinear. On the other hand, the governing equations of motion in Eq. (1) are assumed
to be linear. This apparent contradiction can be explained by the fact that the elasto-plastic
model takes into account the localized behaviour of the material near the crack tip and is more
accurate when relating the loss of local flexibilities to crack sizes. However, the effects of the
crack on the stress field at locations away from the crack tip are negligible. This is observed
from the macroscopic linear behaviour of the stress-strain curves obtained from experiments
and verified by numerical experiments on cracked specimens for loadings below a critical
threshold; see Fig.4 in [41]. The equations of motion in Eq. (1) represents the macroscopic
behaviour of the vibrating structure which are primarily governed by the macro-stress fields;
the localised effects due to micro-defects do not affect the macroscopic behaviour unless the
loading is significant or the cracks are assumed to propagate during the measurements. Thus,
under these assumptions, the use of linear equations of motion for modelling the macroscopic
behaviour is not inconsistent.

2.2. Parameter Identification

The beam is discretized using S cracked beam elements with cj associated with each element
being treated as the unknown parameters to be identified. Here, it is assumed that the FE
discretisation is carried out in a manner such that there exists only a single crack within an
element. This enables FE modelling using the cracked beam element discussed in the previous
section. For elements without a crack, the successful implementation of the identification
algorithm should lead to cj converging to zero. Collectively, these parameters are represented
through the S-dimensional vector θ. An approximation for the location of the crack can be
obtained from identifying the i-th elemental location corresponding to which ci 6= 0 and an
estimate of the size of the crack can be obtained from Eq. (4). Though the equations of motion
are linear, the beam response is a nonlinear function of θ. This rules out the direct use of the
Kalman filter algorithm. Instead, we develop a variant of the particle filter algorithm to obtain
estimates of θ from vibration measurements. This is discussed in the following sections.

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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3. Filtering

3.1. Dynamic state estimation

Estimates for the system parameters can be obtained from measurement data using the
principles of dynamic state estimation. This involves rewriting the governing equations in
the first order form and when recast into the discrete recursive format, is expressed as Zk+1 =
fk(Zk, θk), where, Zk denotes the 2n-dimensional state vector at time step t = tk for the system
when the FE model is discretized into n degrees of freedom, θk denotes the q-dimensional
vector of system parameters at tk and fk( · ) is the form of the functional relationship at tk
that relates Zk and Zk+1.Considering an augmented state vector Xk = [Zk θk]

T of dimension
2n+ q, where the superscript T denotes matrix transpose, the recursive relation between the
state vector can be rewritten as

Xk+1 = gk(Xk,wk). (9)

where, wk ∈ ℜm is a sequence of zero mean i.i.d. random variables representing the discretized
m-dimensional vector of white noise processes that take into account the modeling uncertainties
and gk( · ) is a nonlinear system transition function, such that, gk( · ) : ℜ2n+q × ℜm →
ℜ2n+q. Equation (9) is known as the model equation. Here, no assumptions have been
made on the noise wk being additive or multiplicative, or its pdf. The relationship between
the measurements and the state variables, can be mathematically expressed through the
measurement equation

Yk = hk(Xk,vk), (10)

where, Yk ∈ ℜp is a p-dimensional vector of measurements, vk ∈ ℜr is a r− dimensional
vector of a sequence of zero-mean, i.i.d. random variables and hk( · ) is a nonlinear function
that relates the measurements to the system state, such that, hk( · ) : ℜ2n+q × ℜr → ℜp.
Here, the sequence of i.i.d. random variables, vk, represent the discretized form of a vector of
white noise processes which take into account all the uncertainties associated in relating the
measurements Yk with the state Xk.
Filtering involves using Eqs. (9-10) to estimate Xk from available measurement data sets

Dk = {Y1,Y2, . . . ,Yk} using Bayesian principles [42]. Since both Xk and Yk are corrupted
by noise, complete characterization of Xk is possible only in terms of p(Xk|Dk) - the pdf of
Xk, conditioned on available measurements Dk. We denote p(Xk|Dk−1) as the a priori pdf -
the estimate of the pdf of state Xk based on measurements Dk−1, and p(Xk|Dk) to be the
posteriori pdf ofXk based on measurementsDk. Further, it is assumed that p(X1|D0) ≡ p(X1)
is known. This assumption is not restrictive as any errors in assuming p(X1) can be taken care
through the model noise in subsequent steps.
Assuming p(Xk−1|Dk−1) to be available at tk−1, the prediction equation can be expressed

as

p(Xk|Dk−1) =

∫

p(Xk|Xk−1)p(Xk−1|Dk−1) dXk−1. (11)

Here, p(Xk|Xk−1) is the pdf of the state evolution and expressed as

p(Xk|Xk−1) =

∫

p(Xk|Xk−1,wk−1)p(wk−1|Xk−1) dwk−1. (12)

As wk is independent of the state, p(wk−1|Xk−1) ≡ p(wk−1). From Eq. (9), it follows
that if Xk−1 and wk−1 are known, then Xk can be expressed in terms of Xk−1 and wk−1

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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deterministically, and can be written as

p((Xk|Xk−1,wk−1) ≡ δ(Xk − gk−1(Xk−1,wk−1)), (13)

where, δ(·) is the Dirac-delta function. Substituting in Eq. (12), we get

p(Xk|Xk−1) =

∫

δ(Xk − gk−1(Xk−1,wk−1))p(wk−1) dwk−1. (14)

Once measurement Yk is available at time step k, the prediction can be updated using the
Bayesian relation

p(Xk|Dk) =
p(Yk|Xk)p(Xk|Dk−1)

p(Yk|Dk−1)
, (15)

where, the normalizing denominator is given by

p(Yk|Dk−1) =

∫

p(Yk|Xk)p(Xk|Dk−1) dXk, (16)

with, p(Xk|Dk−1) available from Eq. (11). The unknown term in Eq. (15) is p(Yk|Xk)and can
be expressed as

p(Yk|Xk) =

∫

δ(yk − hk(Xk,vk))p(vk) dvk. (17)

Here, p(Yk|Xk,vk) is represented as the Dirac-delta function because if Xk and vk is known,
then the measurement Yk is available deterministically from Eq. (10). Eqs. (11-17) constitute
the formal solution of the Bayesian recursive estimation problem. As estimating p(Xk|Dk) is
not easy, it is simpler to estimate the first two moments at each time step, given by

ak|k =

∫

Xk p(Xk|Dk) dXk, (18)

Σk|k =

∫

(Xk − ak|k)
T (Xk − ak|k) p(Xk|Dk) dXk. (19)

Here, ak|k is the mean and Σk|k is the variance and gives an indication of the error associated
with the predictions.
A crucial step in the filtering is the evaluation of the multi-dimensional integrals spanned

by the vector Xk; see Eqs. (11-19). Closed form expressions for these integrals are available
only if fk( · ) and hk( · ) are linear and the noise terms, wk and vk are Gaussian and additive,
leading to the well known Kalman filter. For the crack identification problem being considered
in this paper, fk( · ) and hk( · ) are nonlinear. Rather than using variants of the Kalman filter
which are based on linearization of the model and the measurement equations and hence are
prone to errors, this study uses Monte Carlo simulations for obtaining approximations for these
multi-dimensional integrals. These methods are typically referred to as particle filters. More
details of the particle filter used in this study is discussed next.

3.2. The Bootstrap Particle Filter

In this study, we use a variant of the bootstrap particle filter proposed in [42]. The method
of augmenting the state vector Zk with the system parameters θk increases the vector size
Xk = [Zk, θk] on which the filtering is to be carried out, which in turn, increases the

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
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computational costs. This problem was circumvented in [43] by rewriting the model and the
measurement equations only in terms of θk - the parameters that are to be identified; the
state variables Zk were considered to be internal variables. Adopting the same principles here
and assuming that (a) the vibration measurements are acquired for only short durations of
time, and (b) there is no growth in the crack size during this small time interval, the model
equations are expressed as

dθj
dt

= 0; θj(0) = θ0j , j = 1, . . . , n, (20)

where, j denotes the j-th parameter in the vector θ and θ0 is the vector of initial conditions.
Since Eq.(20) implies that the system parameters remain invariant, it is obvious that in the
discretized recursive format, θk+1 = θk. Adding a noise leads to the model equation being
written as

θk+1 = θk +wk. (21)

Here, wk ∈ ℜq denotes a sequence of i.i.d. random variables with density p(θ). It is further
assumed that θ0 are also uncertain and are modeled as a vector of random variables having a
pdf p(θ0). Noise wk is artificial and does not have any physical significance. The reasons for
adding wk will be explained later.
The measurement equation is expressed in terms of θk and is written as

Yk = hk(θk) + vk, (22)

where, hk( · ) is the function that relates the system parameters θk to the measurement vector
Yk, at time step tk. Here, vk is a sequence of i.i.d. random variables with pdf p(vk) that models
all sources of errors and uncertainties in modeling the relationship between the measurements,
Yk, and the system parameters θk. Here, vk represent both modelling and measurement errors.
Eqs. (21-22) together constitute the model and the measurement equations on which the

particle filter algorithm needs to be applied. In formulating the problem in this manner,
the model equation is linear while the measurement equation is nonlinear. Moreover, the
functional relationship hk( · ) is usually available only in an implicit form. However, this is
not a problem as the integrals in the Bayesian updating procedure are evaluated using Monte
Carlo simulations. The advantage in the proposed approach lies in being able to reduce the
dimension of the state vector being identified to the dimension of θ. This can be considerably
advantageous computationally as application of the particle filtering on a complex structural
system modeled using FEM and having thousands of nodes, may require filtering only on a
small dimension equal to the number of parameters to be identified.

3.3. The Algorithm

The steps involved in application of the bootstrap particle filter algorithm are as follows:

1. For k = 0, simulate N samples for θ0 from the assumed pdf p(θ0).
2. For k = 1, calculate the prior predictions for the state, in this case denoted by

θ
∗
k = θk−1, as the system parameters are assumed to be invariant for the duration

of the measurements.
3. Once the measurements at the k -th instant are available, the likelihood corresponding

to all the samples {θ∗
kj
}Nj=1 are evaluated as L(Yk|θ

∗
kj
) = Yk − hk(θ

∗
k).
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4. An approximation for p(Yk|θ
∗
kj
) is obtained by normalizing the likelihood function as

qj =
L(Yk|θ

∗
kj
)

∑N

j=1 L(Yk|θ
∗
kj
)
. (23)

5. The discrete probability mass function for the next iterate is defined as

P [θkj = θ
∗
k] = qj . (24)

6. From the discrete probability mass function in Eq. (24), a new set of N samples of θk
are generated which are the posterior estimates of θk.

7. The mean of the estimates are obtained as

θ̄k|k =
1

N

N
∑

j=1

θkj . (25)

The corresponding standard deviation of the estimate is calculated as

σ̄k|k =

√

√

√

√

1

N − 1

N
∑

j=1

(θkj − θ̄k|k)T (θkj − θ̄k|k). (26)

8. The above steps are repeated by setting k = k + 1. In this way, the filtering is carried
out for the entire available time history of measurements.

The above algorithm requires N evaluations of the structure analysis code at each time step.
Thus, if there are M measurements available, and a filtering is carried out at each of these
M measurement data points, the number of structure evaluations required is N ×M . Of all
the samples for θ∗

k, the ones which lead to response which are closest to the measured values
are likely to be nearer the actual parameters. Thus, one generates a vector of prior estimates
{θ∗

kj
}Nj=1 and evaluates the likelihood function L(Yk|θ

∗
kj
). Subsequently, the probability mass

function is defined as in Eq. (24). Next, samples are drawn from this mass function. Obviously,
of the N samples generated, more samples would be drawn corresponding to samples having
greater weights qi. Following the bootstrap procedure, in subsequent iterations the population
of samples would be limited to the samples that have been generated at k = 0. This leads
to the following difficulties: (a) after a few iterations, all the samples generated for θk+1

would be identical leading to a degenerate condition resulting in the breakdown of the filtering
procedure, and (b) the accuracy of the system parameter estimates would depend on the
closeness of the initial set of variables generated for θ0 to the actual system parameters. To
prevent such degeneracies, artificial noise wk is added to the posterior estimates, θk, at each
time step. This ensures that the samples that are generated from the probability mass function,
at each time step, are different from the original set of samples that were generated at k = 0.
Obviously, the accuracy of the algorithm would depend on the choice of p(wk). It is reasonable
to assume that wk is independent of time as well as θk and vk. Usually, a Gaussian model
for p(wk) can be assumed with zero mean and a small variance. The variance should be small
so that the population of samples generated from the probability mass function are “slightly”
different from the samples that have been identified as having higher likelihoods. Also, this
enables generation of a larger number of samples around the most likely sample, leading to
the possibility of achieving greater accuracy levels.
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The next question that needs to be addressed is the choice of the pdf p(θ0). Usually, if one
has prior information about the likely values of the parameters, one can decide on a Gaussian
pdf centered about the likely values. However, in the absence of any information, one can
consider p(θ0) to be uniformly distributed in a range [θl, θu], where, the subscripts l and
u, respectively denote the lower and upper bounds and can be chosen based from physical
considerations. In the numerical calculations presented in the next section, it will be shown
that in estimation of system parameters, the proposed methodology is insensitive to the errors
in choice of the range for θ.

4. Numerical Examples and Discussions

A cantilever beam of length 150 mm and cross-sectional dimensions 10× 3 mm, is considered.
The material is assumed to be aluminium having mass density 2700 kg/m3 and modulus of
elasticity 75×109 N/mm2. The first five natural frequencies, calculated analytically, are 17.94,
657.25, 3970.40, 6281.60 and 13023.00 rad/s respectively. Next, the beam is FE discretized
using 5 Euler-Bernoulli beam elements. An eigenvalue analysis of the 5-element undamaged
discretized model leads to natural frequencies that are identical to the analytical predictions
indicating that the suitability of the 5-element FE model. Any discretisation errors are assumed
to be small enough to be addressed through the uncertainty parameters in the particle filter
algorithm. For the time domain analysis, a Rayleigh proportional damping model has been
considered. More details on the FE model and its validation are available in [44].

The beam is next modeled using P cracked beam finite elements. The supports are assumed
to be subjected to harmonic transverse accelerations ü(t) with frequency 20 rad/s and are
implemented in the FE model using the large mass concept. The resultant set of coupled
differential equations are recast in the first order form and are numerically integrated using
the β-Newmark algorithm so that the integration time steps are equal to the data acquisition
sampling rate. The measurements, in the form of accelerations, are obtained synthetically
by solving the forward problem and adding noise to the response. Since a 5 element model
is used in the computations, the dimension of θ is 5. The crack is assumed to be at the
center of the beam and the response measurements are taken at the free end. The size of
the cracks are expressed in terms of a non-dimensional variable ā = a/h. Usually for cracks
ā > 0.25, deterministic methods which use changes in natural frequencies and mode shapes
are sufficiently accurate. Here, the efficiency of the algorithm in identifying ā ≤ 0.2 are
investigated.

4.1. Identifying the crack size at known location

First, it is assumed that the location of the crack size is known with only the crack size ā to
be identified. Thus, the dimension of θ is one. The number of particles N is taken to be 1000.
A parametric study is carried out to check for the robustness of the method by considering
three cases where the crack sizes ā were assumed to be 0.2, 0.05 and 0.025. In the absence
of any information, the initial pdf p(θ0) is assumed to be uniformly distributed in [0.05, 0.5]
for all the cases. Note that the actual crack size lies within this band only in the first two
cases. Figures 3-4 show that the estimates of the mean crack size converge correctly quite fast.
An inspection of the standard deviation of the estimates show that they tend towards zero

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
Prepared using stcauth.cls

Page 11 of 23

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Time, s

θ k
|k
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Figure 3: Case Study 1: Mean estimates of ā.
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Figure 4: Case Study 1: Standard deviation estimates of ā.

indicating convergence in the estimates. The mean crack estimates in the above figures reveal
that for smaller crack sizes, the statistical convergence is quicker. However, the algorithm was
unable to accurately estimate the crack size when ā = 0.01. This gives an indication of the
lower limit of the efficiency of the method.
Since the computational cost is proportional to N , the performance of the algorithm with

smaller N is next investigated. Assuming N = 50, it has been observed that the convergence
is slower and not to desired levels. To improve the accuracy of the identification with N = 50
particles, global iterations are carried out. Global iteration involves the following steps: (a)
Using the particle filtering algorithm outlined in steps 1-7; (b) Once the the filtering is carried
out for the entire duration of measurements, the steps are repeated from k = 0 once again.
However, here, the initial distribution of the parameters to be identified is assumed to be the
probability mass function obtained at the end of the filtering in step (a). This constitutes a
global iteration; (c) steps (a) and (b) are repeated till convergence is achieved. Fig. 5 show how
the estimates for the θ̄k|k varies with global iterations. An inspection of the y-axes in Fig.5
reveal that good convergence is achieved within the first three global iterations. If there areM
data points, using 50 particles and with three global iterations implies M × 50× 3 solutions of
the forward problem. This is in contrast to M × 1000 solutions of the forward problem when
N = 1000. Thus, significant savings in computational costs is achieved by using smaller N in
conjunction with global iterations. More importantly, using global iterations, one can obtain
desired accuracies in the identification even with short data segments of measurements.
Next, we investigate the effect of assumption of the initial pdf p(θ0). In the absence of any

information, p(θ0) is assumed to be uniformly distributed in the range [a, b]. Different choices
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Figure 5: Estimates of the mean ā with global iterations: actual crack size ā = 0.2.

of a and b are considered; the results are shown in Fig. 6 for the case ā = 0.2. Figure 6(a)
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Figure 6: Effect of assumption of initial pdf p(θ0) on the accuracy of the estimates.

considers the case where the range (b − a) is large such that ā lies within this range. In Fig.
6(b), a is much higher than ā while in Fig. 6(e) b is much smaller than ā. Though in all cases,
the estimates converged to the correct results, it is observed that when the range of p(θ0)
encompasses the actual crack size ā = 0.2, faster convergence is achieved. Importantly, these
results show that even a wrong assumption of p(θ0) leads to correctly identifying the crack
size.
The noise associated with the model and the measurement equations are assumed to be

Gaussian white noise; thus, wk and vk are represented as Gaussian i.i.d. variables having
standard deviation of 5% of the response range. The implication of assuming the noise to
be i.i.d. random variables is that the noise processes are assumed to be delta-correlated.
Delta-correlated noise processes, also known as white noise processes, have infinite energy
and in reality are physical impossibilities. However, the fluctuations in the noise usually occur
at faster scales than the system response. Thus, in the time scales at which the response
are observed/measured, it is reasonable to assume that the correlation lengths of the noise
processes are infinitesimally small. Hence, the assumption of noise being modeled as delta-
correlated processes in the time scales of structure response, is not unrealistic. The assumption
of the pdf for the noise is somewhat arbitrary. Since Gaussian models for noise are in general,
considered to be acceptable, an investigation is carried out to check the robustness of the
method for varying intensities of the noise. As wk is an artificial noise of small intensity, only
the intensity for vk is varied; see Fig. 7 for the results. As the noise intensity increases, the
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Figure 7: Effect of assumption of noise intensity on the accuracy of the estimates.

accuracy of the estimates is observed to decrease. Here, one must recollect that vk models
the combined effect of the uncertainties in the measurements and in modeling the system. A
high noise intensity implies that either the measurements are highly corrupted with noise, or
the model for the system has gross inaccuracies, or both. In either case, it is unreasonable to
expect accurate identification of the system parameters.

4.2. Identifying the crack size and location

We next show the usefulness of the proposed method in identifying the crack size as well as its
approximate location. We take the same beam considered in the previous example. As before,
the synthetic measurements are generated by numerically solving the forward problem and
adding noise to the response. In solving the forward problem, the beam is modeled using finite
elements discretized into 5 finite elements. The element containing the crack is modeled using
the cracked beam element and the rest of the elements are modeled as Euler-Bernoulli beam
elements. The synthesized response is taken to be the input to the particle filtering algorithm.
However, in the finite element model used in the particle filtering algorithm, we use the cracked
beam element for all the 5 elements. As an initial guess, the size of the cracks in each element
is assumed to be equal i.e., {āi}

5
i=1 = 0.2. The proposed algorithm is now used to estimate the

crack sizes in each of these elements. Thus, the dimension of the vector of system parameters
to be identified, θ, is 5. If there exists only one predominant crack, it is expected that the
estimates of 4 parameters in the vector θ would converge to zero. The non-zero value in θ not
only gives an estimate of the crack size, but an approximate location can be determined from
the location of the corresponding finite element with respect to the beam. In this problem,
the crack has been first assumed to exist within the third element. Figure 8 illustrates the
estimates of āi at each of the i elements for 5 global iterations. It is observed that by the
fifth iteration, estimates of ā3, corresponding to the third element converge to the correct
value, while the rest correctly converge to zero. The probability mass function for āi in the
5 elements, at a particular time instant for iteration 2, is shown in Fig. 9. The mean values
computed from each of these probability mass functions is the mean estimates that are shown
in Fig. 8. The probability mass functions shown in Fig. 9 change at every instant the particle
filter is employed. The samples that are generated to predict the response at the next time
step are drawn from these mass functions. Since it was found from earlier studies that the
estimates are reasonably accurate for crack sizes up to ā = 0.025, when the mean estimates
become less than 0.025, they are forcibly made to be zero. This is done so as to avoid obtaining
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(e) Iteration 5

Figure 8: Estimates of the crack size in the 5 elements.
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Figure 9: The probability mass function for the crack size at t = 10s , in iteration 2.

Copyright c© 2000 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2000; 00:0–0
Prepared using stcauth.cls

Page 15 of 23

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15

impossible estimates of crack sizes, such as negative sizes. The possibility of obtaining negative
crack sizes arise due to the effect of the artificial noise wk.

Figure 10 show the estimates of the crack size at the end of 3 global iterations, when the
predominant crack is assumed to be in element 1, 2, 4 and 5 respectively. In all cases, the
accelerations are measured at the tip of the beam (right end node of element 5). The actual
crack size in each of these cases was taken to be ā = 0.2. Note that the estimates when the
crack exists in element 3 has already been presented in Fig. 8. From the results shown in Fig.
10 it is observed that the predominant crack location and its size is reasonably identified by
the third iteration.
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(b) Crack in Element 2
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(c) Crack in Element 4
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(d) Crack in Element 5

Figure 10: Estimated crack sizes at the third global iteration; measurements taken at the tip
of the beam.

Next, studies are carried out to investigate the dependency of the accuracy of the algorithm
and the locations where the response are measured. Here, it is assumed that the measurements
are taken at the right end node of the third element. Four different cases are considered where
the predominant crack is located at elements 1, 2, 4 and 5 respectively. Figure 11 illustrates the
mean crack size for the four cases, at the third global iteration. It is observed that the algorithm
is reasonably accurate in identifying the predominant crack size, though there appears to be
a false detection of a crack, when there is a crack in element 4. The existence of false alarms
can be avoided by executing the algorithm afresh, but by assuming cracks to exist only at the
two elements where cracks have been identified. Importantly, it is observed that the algorithm
is able to identify the crack irrespective of where the measurements are taken and based on
only one set of response measurements.
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(b) Crack in element 2

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

Time, s

θ
k
|k

 

 

1
2
3
4
5

(c) Crack in element 4
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(d) Crack in element 5

Figure 11: Estimated crack sizes at the third global iteration; measurements taken at right end
node of third element.

5. Experimental Verification

This section investigates the applicability of the proposed method for identifying cracks using
experimentally acquired measurements. A rectangular aluminium beam of length 310 mm
and having cross-sectional dimensions of 25.65 mm× 3.25 mm is considered. The excitations
were imparted through a V406 LDS electrodynamic shaker. The application of base vibrations
with the shaker implied attaching the beam to the shaker directly. However, on account of

(a) Schematic diagram. (b) Photo of fixture

Figure 12: Experimental setup.

slight transverse rotations at the support lead to difficulties in mimicking the base excitations
considered earlier in this paper. Instead, we imparted a concentrated load on the beam
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through the shaker. The location of the point of excitation was taken to be 186 mm from
the support, such that the location coincided with a midpoint of an element when the beam
is mathematically modelled using a 5-element FE model. A Dytran force transducer with a
sensitivity of 493.1 mV/lbf is placed at the point of excitation to measure the force imparted
to the cantilever beam. A Dytran 3055B2 accelerometer was placed at the tip of the beam to
measure the tip accelerations of the response; see Fig. 12. Since the weight of the accelerometer
(8.6 gms) was not negligible in comparison to the weight of the beam, the accelerometer was
included in the FE model as a lumped mass at the tip. More details on the experimental set-up
and studies on the corresponding mathematical models is available in [45]. A 16-channel NI
6341 USB data acquisition system was used to acquire the force and the tip accelerations of the
beam over two channels. The sampling rate was kept at 1000 samples/s. These measurements
are used as inputs to the particle filter algorithm.
A saw cut, across the breadth of the beam, was introduced into the beam at a location of

186 mm from the fixed end; see Fig. 13a for a close-up photo. The depth of the saw-cut, a, is

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12

−2

−1

0

1

2
F

or
ce

, N

Time, s

(b)

Figure 13: (a) Close-up photo of the saw-cut damage in the beam, (b) Time history of arbitrary
force imparted to the beam.

measured using a crack depth gauge and the ā is measured to be 0.3. It must be mentioned
here that introducing a crack like defect in a beam is a complicated procedure. First, one needs
to initiate a V-notch and subsequently, the sample needs to be subjected to repeated loadings
in a fatigue testing machine. This can be time consuming and a complicated process. Instead,
using a saw-cut as a crude model for a crack like defect is simpler. Moreover, it has been shown
that the vibration characteristics of a beam with a saw-cut defect and a crack which always
remain open are quite similar [46, 47]; the differences between the two cases become marked
only when the cracks start propagating.
Next, an arbitrary forcing is imparted to the beam through the shaker; see Fig. 13b for the

time history. The experimentally acquired measurements are now used as inputs to the particle
filter. θ is a 5-dimensional vector. p(θ0) are assumed to uniformly distributed in [0, 0.3] and
N is taken to be 100. The estimates of āi in the 5 elements, as a function of time, are shown
in Figs. 14(a)-14(e). It is observed that at the end of iteration 5, the crack size in element
3 converges correctly to ā = 0.3. However, the fifth element also shows a convergence to a
crack size of ā ≈ 0.1. Clearly this is a false identification. We next consider a FE model where
cracks are assumed to be available only in elements 3 and 5 and carry out particle filtering
with the time history signals acquired earlier. Thus, θ is now of dimension 2. p(θ0) is taken to
be the probability mass functions for the corresponding elements obtained earlier at the end
of iteration 5. Figures 15(a) -15(c) show the estimates of ā for the two elements as a function
of time and as the number of iterations increase. It is observed that the mean value for ā at
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Figure 14: Estimates of the crack size in the 5 elements for arbitrary forcing.
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Figure 15: Estimates of the crack size in the 2 elements for arbitrary forcing.

the end of iteration 3 in element 3 is 0.302 indicating an error of 0.53%. The corresponding
standard deviation of the estimate is computed to be 0.01, indicating convergence. The mean
value of ā in element 5 is 0.023 which is of the order of the noise levels and hence can be
neglected.

The above two-step procedure gives an indication of how the method can be applied to large
scale engineering structures. The key complexities include handling a larger dimension for θ

and a more complicated FE model. Rather than direct application of the proposed method
which will be computationally expensive, one can adopt the following approach:

(1) A simple model for the structural system having few unknown parameters is first
considered. Thus, for example, the flexural rigidity of the major component members
could be assumed to be constant over the spatial domain and treated as the unknown
variables. This would ensure that the dimension of θ remains low and is not related to
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the number of finite elements.
(2) A comparison of the estimated parameters for θ using the proposed algorithm and the

likely values of the same for an undamaged structure would provide indications as to the
components which are likely to have cracks or other defects.

(3) A more sophisticated FE model could be created next with θ comprising of parameters
of the elements in the regions likely to have defects. The particle filtering can be carried
out with respect to these parameters only.

There can be no prescriptive methods for application of these algorithms for large engineering
structures. Combined with basic engineering knowledge and intelligent modelling of the
system, one can use the proposed method for identifying crack like defects from vibration
measurements. It must be noted that reductions in the computational costs is achieved at
the price of accuracy of the estimates. Existing methods available in the literature require
large data sets of vibration measurements which require large investments in sensor and data
acquisition costs. In comparison, here the computational costs appear to be higher.

6. Concluding Remarks

The present study proposes a methodology for detection of breathing crack-like defects by
estimating their size and location from vibration measurements using principles of dynamic
state estimation. The methodology, by adapting the existing particle filter algorithms to the
specific problem of crack-detection, has distinct advantages over conventional methods such as
modal analysis and deterministic time domain based methods as it requires significantly lesser
data to be acquired. The methodology was applied in detection of a nominal crack like defect
in a vibrating cantilever beam. In the discretized finite element model of the beam, the effect
of crack on the flexibility of beam elements was incorporated as per theory of elasto-plastic
fracture mechanics under small scale yielding conditions. Based on the studies carried out, the
following remarks can be made:

1. The proposed method is effective in detection of cracks even with vibration measurements
available for a short interval of time and at a single location.

2. The effects of measurement noise and model noise, as long as the signal to noise
ratio are within acceptable limits, are effectively handled and is not an impediment
to the identification procedure. This is particularly important as typically vibration
measurements are taken through accelerometers which invariably have significant noise.

3. The numerical implementation of the method shows it to be sensitive to small cracks
with crack-depth ratios as small as 2.5%. Such accuracy, subject to corroboration from
measurements from physical experiments, can prove to be very beneficial for non-
destructive identification of cracks at their early stages of development. To the best
of the authors’ knowledge, existing modal analysis based methods for crack detection
are not sensitive to such small crack sizes, even when only synthetic measurements are
used.

4. Though the proposed method requires an initial guess for the pdf of the parameters to
be identified, the numerical studies illustrate that a wrong assumption for the pdf does
not adversely affect the identification. However, the computational costs are higher when
the choice of the pdf is grossly erroneous.
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5. The estimates for the location of the damage is approximate and is primarily governed
by the mesh size adopted in the FE model. For better accuracy of the estimates of the
crack locations, one could either (a) adopt a finer mesh size but which will increase the
computational costs at each filtering step, or (b) adopt an iterative approach where after
the crack is identified within an element, filtering is carried out once more with a FE
model where a finer meshing is adopted for the identified element only. Such iterative
approaches is expected to reduce the possibilities of false alarms also.

6. The assumption of using breathing cracks is not restrictive in the context of the
identification strategy. For cracks which close, open partially or fully during various
stages of the vibration cycles, the flexibility parameter c would be a function of time.
The identification of system parameters that are functions of time are akin to the state
identification problems considered in the development of the particle filter in [42]. The
difference would be in using appropriate nonlinear field equations in place of Eq. (1) and
Eqs.(20-21). The concerns are similar if the cracks propagate during the acquisition of
the measurements. As long as the physics of the problem is adequately modelled into the
particle filter equations, no conceptual difficulties are expected in the application of the
proposed identification algorithm.

7. Though it appears that the proposed method should be able to identify multiple cracks
also, the reader is cautioned on this aspect. This is because the development of the FE
cracked beam element considered the effects due to a single crack only. The presence
of multiple cracks is expected to have interaction effects on each other and needs to be
suitably modelled. The development of such finite elements is however beyond the scope
of the present study.

8. The numerical examples considered only measurements from a single sensor. Using
measurements obtained from multiple sensors is expected to increase the robustness
of the identification algorithm [48]. In the context of the present study, the placement of
additional sensors did not lead to improvement of results as long as a sensor was placed
at the tip of the beam. More detailed studies on the placement of sensors within the
context of the problem is required.

9. Minimization of the computational costs can be achieved if the proposed method
is integrated with efficient sampling algorithms, such as, importance sampling, latin
hypercube sampling etc. Alternative strategies for minimizing the computational costs
associated with the bootstrap particle filter by transforming the forward problem into
abstract mathematical space has been addressed in a separate study in [49] and is outside
the scope of the present work.

Finally, a note of caution. Damage detection methods either require sufficiently reliable FE
models for representing the undamaged state or measurements from the undamaged structure.
In the latter approach, measurements are used to either bypass structure modelling or are
used to update the FE model with which model based SHM techniques can be used. The
proposed method requires a reasonably accurate FE model without the need for baseline
measurements. Even though the formulation accounts for model errors, the predictions from a
grossly inaccurate FE model may not be reliable. In such a case, one would need measurement
data from the undamaged state. Genetic algorithm based studies [50,51] for crack identification
also bypass the need for benchmark measurements of the undamaged structure. However,
unlike these methods, the proposed method built on the principles of Bayesian filtering is
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shown to work well even with measurements with significant noise.
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