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This paper presents domain form of the interaction integrals based on three independent
formulations for computation of the stress intensity factors and electric displacement
intensity factor for cracks in functionally graded piezoelectric materials. Conservation inte-
grals of J-type are derived based on the governing equations for piezoelectric media and the
crack tip asymptotic fields of homogeneous piezoelectric medium as auxiliary fields. Each
of the formulation differs in the way auxiliary fields are imposed in the evaluation of inter-
action integral and each of them results in a consistent form of the interaction integral in
the sense that extra terms naturally appears in their derivation to compensate for the dif-
ference in the chosen crack tip asymptotic fields of homogeneous and functionally graded
piezoelectric medium. The additional terms play an important role of ensuring domain
independence of the presented interaction integrals. Comparison of the numerically eval-
uated intensity factors through the three consistent formulations with those obtained
using displacement extrapolation method is presented by means of two examples.

Electric displacement intensity factor © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials are widely used in many fields such as aerospace, automotive, medical and electronic technolo-
gies. While designing piezoelectric structures/components, it is important to take into account imperfections, such as cracks,
that are often pre-existing or are generated by external loads during the service life. In recent years, emergence of the func-
tionally graded materials (FGMs) has demonstrated that they have the potential to reduce the stress concentration and to
increase the fracture toughness. Consequently, a new kind of material, such as a functionally graded piezoelectric material
(FGPM), has been developed to improve the reliability of piezoelectric materials and structures by extending the concept of
the well-known functionally graded material (FGM) to a piezoelectric material (Wu et al., 1996). For example, a device
wholly made up of the FGPMs or using the FGPMs as a transit layer instead of the bonding agent avoids existence of discern-
ible internal seams or boundaries. In addition, no internal stress peaks are caused when the voltage is applied and the failure
due to development of internal de-bonding or stress peaks in conventional bimorphs can be avoided (Wu et al., 1996; Zhu
et al.,, 2000). However, the microstructure of FGPM is generally heterogeneous, and the dominant type of failure in the FGPM
is crack initiation and growth from inclusions. The extent to which constituent material properties and microstructure can
be tailored to guard against potential fracture and failure patterns is relatively unknown. Such issues have motivated much
of the current research into the numerical computation of crack driving forces in the FGPM, and several analytical studies
concerned with the static fracture problems of the FGPMs were reported (Wang and Noda, 2001; Li and Weng, 2002; Wang
and Zhang, 2004; Ma et al., 2005; Ueda, 2006, 2007, 2008). Thus, most of the studies on the FGPMs till today are analytical in
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nature. As a result, there is considerable interest in developing numerical methods for the evaluation of crack driving force in
the FGPMs. Recently, Sladek et al. (2007) developed a contour integral for computation of the stress intensity factors (SIFs)
and electric displacement intensity factor (EDIF) for cracks in continuously non-homogeneous piezoelectric body subjected
to transient dynamic load. To extract the mixed mode SIFs in FGMs the interaction integrals based on constant constitutive
tensor formulations (Rao and Rahman, 2003a; Rao and Rahman, 2003b), incompatibility (Dolbow and Gosz, 2002; Rao and
Rahman, 2003a; Rao and Rahman, 2003b) and non-equilibrium (Kim and Paulino, 2003; Paulino and Kim, 2004) have been
developed.

In this paper domain form of the interaction integrals based on three independent formulations are presented for com-
putation of the SIFs and EDIF for cracks in the FGPMs. To determine fracture parameters, e.g., the SIFs and EDIF, by means of
the interaction integral method, the near crack tip electromechanical fields which are selected as auxiliary fields are needed.
In fracture of the FGPMs, the use of the auxiliary fields developed for homogeneous piezoelectric materials results in viola-
tion of one of the three basic relations namely, equilibrium, compatibility, and constitutive, which leads to three indepen-
dent formulations: non-equilibrium, incompatibility, and constant constitutive tensor formulations. Each formulation
leads to a different final form of the resulting interaction integral, and for consistency, extra terms naturally appears in their
derivation to compensate for the difference in the chosen crack tip asymptotic fields of homogeneous and functionally
graded piezoelectric medium.

This paper is organized as follows. Section 2 briefly reviews basic equations for piezoelectric media. Section 3 pre-
sents crack tip fields in the FGPMs. Section 4 provides three consistent formulations using the interaction integral ap-
proach, proof of existence of the proposed integrals and the evaluation of intensity factors. Section 5 briefly describes
displacement extrapolation method and illustrates the three formulations through two numerical examples. Finally, Sec-
tion 6 concludes this work.

2. Basic equations for piezoelectric media

The elements of elasticity and electrostatics are combined in piezoelectric media. The governing equations and the
boundary conditions which form the foundation of piezoelectric media are given below.

2.1. Field equations

In a fixed rectangular coordinate system x; (j = 1-3), the field equations for a linear piezoelectric medium subjected to
electromechanical loads in the absence of body forces and charges are

o Constitutive equations:
Gij = Cijkses — €siEs, (1)
D; = ejséexs + Kisks, (2)

e Kinematic equations:

&j = %(“u +Uji) Ei ==, (3)
e Equilibrium equations:

0ijj =0,D;; =0. 4)

In Egs. (3) and (4), a comma denotes partial differentiation, and the repeated indices summation; u; is the component of the
elastic displacement vector u; ¢ is the electric potential; oy, &;, D;, and E; are the components of the stress, strain, electric
displacement, and electric field, respectively; Gk, and ey, are the elastic and piezoelectric constants, respectively; i; are
the dielectric permitivities. Using the relation between the indices 11 - 1, 22 - 2,33 - 3,23 -4, 31 - 5 and 12 - 6,
the constitutive Egs. (1) and (2) may be written in Voigt notation as: gy = Cypes — esqes and D; = ejgeg + Kis Es respectively,
where o, =1, ...,6,and i, s=1-3.

2.2. Boundary conditions

Consider a piezoelectric medium occupying the space Q. The surface of Q is denoted as S and
S=S;+S,=Sp+S,. (5)
On the boundaries Sg, and Sp, the resultants of stresses and electric displacements are respectively:
oy =p), onS,, (6)
Dinj = @°, on Sp, (7)
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where pj‘.’, and w° are some prescribed values on Sg, and Sp, respectively. n is the unit normal vector of S (n directed towards
outside). On the boundaries S,, and S, the displacement vector u, and the electric potential ¢, are respectively:

uy=u’, onS,, (8)
¢=¢° onS,, 9)

where uj‘-), and ¢° are some prescribed values on S, and S, respectively.

3. Crack tip fields in functionally graded piezoelectric media

Consider a two-dimensional functionally graded piezoelectric structure with a rectilinear impermeable crack of length 2a,
subjected to external loads p?,p3, ...,p%, and electrical displacement »° as shown in Fig. 1. It is assumed that the material
properties, such as Cy1, Caz, C12, C13, Caa, €21, €22, €16, K11, and Ko, (in Voigt notation), vary according to

(C11,Ca2,C12,Cr3,Cag, €21, €22, €16, K11, K22) (X) = (C110, C220, C120, C130, Cas0, €210 €220, €160, K110, K220)f (X1, X2), (10)

where x = {xhxz}T € R, (C11, C22,C12, C13, Cag, €21, €22, €16, K11,K22) (X) are continuous, and at least piecewise differentiable
functions on domain €, and the (x;, x;)-coordinate system is defined in Fig. 1. In reality, FGMPs are multiphase materials
generally with locally discontinuous material properties. Hence, (Cy1, Ca2, C12, C13, Ca4, €21, €22, €16, K11, K22) (%) in Eq. (10)
should be viewed as smoothly varying “effective” material properties of FGMPs.

Eischen (1987) and Jin and Noda (1994) showed that for piecewise differentiable material property variations, the elastic
stress and displacement fields in FGM can be derived using the stress function in variable separable form, identical to the
homogeneous case. Similarly Sladek et al. (2007) showed that in case of the FGPMs the leading singularity is same as that
for a homogenous piezoelectric body with material constants given by the crack tip values of the corresponding material
parameters in the considered non-homogenous piezoelectric medium. For cracks in homogenous piezoelectric media the
asymptotic behavior of the field quantities has been given by Sosa (1991) and Pak (1992). If polar coordinates (r, ) with
the origin at the crack tip are used, the electromechanical stress and electrical displacement fields can be written as

a3 (r,0) W% S Kaf (), (1)
N

Di(r, 0) :\/%n'r S Kng(0), (12)
N

and, the near tip displacement field and electric potential can be obtained as

u(r,0) = \/%?ZKNUI?(@), (13)
B(r,0) = \/%ZKNVN(H), (14)
N

crack

Polarization

Fig. 1. A crack in functionally graded piezoelectric material.
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where i, j=1-2, and the summation over N ={II, I, Ill, IV} comprises the fracture opening modes, usually indicated by
roman letters. K;, K;; and Kj;; denote the well known mode-I, mode-II, mode-IIl, mechanical SIFs and K;y denote the EDIF
characterizing the concentration of the electrical displacement fields. For two-dimensional functionally graded piezoelec-
tric structure as shown in Fig. 1, Ky =0. The angular functions fY(0), g'(0), dY(0), and v(0), are the standard angular
functions for a crack in a homogeneous piezoelectric elastic medium, which depend only on the material properties,
and can be found by means of the extended Stroh formalism and semi-analytical calculations. They can be expressed
in terms of complex material eigenvalues py, eigenvectors Ay, and matrices My, and Nyy (Park and Sun, 1995; Ricoeur
and Kuna, 2003; Kuna, 2006) as

N

! :—iRe MiocNothac y :iRe MiocNozN
i ="\ \JcosO+p,sind| " & | \/cosO+p,sind[’

4 4
gllv _ Z Re M41N01Npg(. , g,zv _ Z Re M4aNocN i , (15)
pom \/€os0+p,sin0 o \/€os0+p,sin0
4 4
dY¥ = Red AiuNyny/cosO+p,sinfy, VN = Res AgyNyn+/COSO +p,Sinb ¢, 16
1 o o
o=1 a=1

where Re{...} and Im{. ..} denote the real part and the imaginary part respectively of the quantity in brackets. The four con-
jugate pairs of eigenvalues py, the (4 x 4) matrix of eigenvectors Ay which depends only on material properties, not on the
boundary value problem itself can be obtained by solving the following quadratic, eigenvalue problem:

[(Cnm ein > N <Cizk1 +Cike €21+ €inz )p+ (Cizkz () )pz] |:Ai} —0 (17)
€ik1  —Kn €1 + €12 —Ki2 — K1 €2  —K2 Ay

Only the four eigenvalues py, having positive imaginary part and the corresponding eigenvectors are used in Egs. (15) and
(16). The (4 x 4) matrices My and Ny are calculated by

NoL = My, = {(CiZH + CioioPy)Akz  (€1i2 + €202D,)Asy }

(ear1 + €212Py) Ak (—K21 — K22P,)Ady
Even though the material gradient does not influence the square-root singularity or the singular stress and electrical dis-

placement distribution, the material gradient does affect the SIFs and EDIF. Hence, the fracture parameters are functions of
the material gradients, external loading, and geometry.

(18)

4. Interaction integral formulations

The interaction integral method is an effective tool for calculating the SIFs and EDIF in homogeneous piezoelectric mate-
rials (Enderlein et al., 2005; Kuna, 2006). In this section the interaction integral method for homogeneous piezoelectric mate-
rials is first briefly summarized, then extended for cracks in the FGPM. In fact, the study of the FGPM would enhance the
understanding of a fracture in a generic piezoelectric material, since upon shrinking, the gradient layer in the FGPM is ex-
pected to behave like a sharp interface, and upon expansion, the fracture behavior would be analogous to that of a homo-
geneous piezoelectric material.

4.1. Homogeneous piezoelectric materials

The path independent electromechanical J-integral for a homogeneous piezoelectric cracked body is given by (Cherepa-
nov, 1977; Pak and Herrmann, 1986; Pak, 1990)

]:/ (H(S]j —a i a¢>nj dr, (19)
r

oxy o

where H = [ g;de; — [ D;dE; is the electric enthalpy density, n; is the jth component of the outward unit vector normal to an
arbitrary contour I" enclosing the crack tip and J; is the Kronecker delta. For linear piezoelectric material models it can be
shown that H = (gyi&; — D; E)[2 = Gjiugijer/2 — eiiér Ei — Kim EiEm[2. Applying the divergence theorem, the contour integral in
Eq. (19) can be converted into an equivalent domain form, given by

_ Ui 0 s ) 24 /i Ui 0
1_/A (a,] s H()U> adeAfA ax; (%, * Digg, —How q da, (20)

where A is the area inside the contour I" and q is a smooth weight function chosen such that it has a value of unity at the
crack tip, zero along the boundary of the domain I, and smoothly interpolated in between (Anderson, 2005). By expanding
the second integrand, Eq. (20) reduces to
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00y du; TR %
8 a(j) s ; oxll +0 U ax;: 6);] + ox; oxq DJ cxjaxl
u; q . aG;
]: A (O’ija-i-Dja—Hé]j)a—xjdA—i- _Cijkl‘pijé;(l;l Z‘CU lelklgkl+gklalklE +"X1 ekuE q dA. (2])

0K,
A +£klelkl ‘\Xl L+ E; Klm = 1 E o E

(xl 1o,
Using equilibrium (0g;/0x; = 0,0D;/0x; = 0) and compatibility (e; = (0u;/0x; + du;/0x;)/2,E; = —0¢/0x;) conditions and not-
ing that 9Gjj/0x1 = 0, dejq/dx; = 0, dic;m/0x1 = 0 in homogenous piezoelectric materials, the second integrand of Eq. (21) van-
ishes, yielding
.\ O
J= / <oy Sin e ¢ H%.) % 4a, (22)

0X;
which is the domain form of the electromechanical J-integral in homogenous piezoelectric materials.

Next, we consider two independent equilibrium states of the cracked body. Let state 1 correspond to the actual state for
the given boundary conditions, and let state 2 correspond to an auxiliary state, which can be near tip electromechanical fields
of any of the fracture opening modes I, II, III, and IV. Superposition of these two states leads to another equilibrium state
(state S) for which the domain form of the J-integral is

o +u?) A" +9?) aq
© _ OENCINCIC i DY 4 p@ _HSgs, |9 2
.] /A <(O-U +GU ) ax] +( j + j ) axl b]] axjdA7 ( 3)
where superscript i = 1, 2, and S indicate fields and quantities associated with state i and
HY = (6] + o) (&) + ) — (DY + D) (EV + E?)) /2. (24)
By expanding Eq. (23)
19 = 0 4 j@ 4 02, (25)
where
ouy’) o' aq
1) _ (1) Y4 (1) N (ORI B §
V= /A (% o +D; o H'Y 4 & dA, (26)
and
ou'? ogp? oq
@ _ @%% " o _H®s. 199 27
J /A (0‘1 x T o ox; da, (27)
are the electromechanical J-integrals for states 1 and 2, respectively, and
ou® 0p®  oul M oq
M2 — MU pm e _H125 )% 4a 2
.\ S ay ax1 I o axjdA’ (28)
is an interaction integral In Eqs (26)-(28), HY = (afjl)sfjl ”E(1 )/2, H® = (o UZ & D<2’E2>)/2 and
H' = (oe? + 67e’ — DVE? — DP’E{") /2 represent various electric enthalpy densities, which satisfy
HS = HY 4 H® +H1-2 : (29)

For linear piezoelectric solids under mixed-mode loading conditions, the electromechanical J-integral is also equal to the en-
ergy release rate and hence, the electromechanical J-integral can be written as (Kuna, 2006)

J= % K'YK, (30)

where K = {Ky K Ky Ky }T is the vector of the four field intensity factors, and Y is the (4 x 4) generalized Irwin matrix,
which depends on the elastic, piezoelectric, and dielectric material constants is given by
YMN = —Im{AMO(NaN}. (3])

For two-dimensional case, Equation (30) reduces to,

J= Kﬁyn + ;KZY22 + ;K Ya4 + KiKy Y1z + KK Y1s + KiKiyYos. (32)
Applying Eq. (32) to states 1, 2, and the superimposed state S gives

v = %K;”Zyn + %Kf”zyzz + %Kfyzm +KVKOY 1 + KPKE Y + KK Yo, (33)

J@ = %K}E)ZY]] + %K?)Zyzz + %KI%”YM +KPKP Y12 + KPKS Yia + KK Yoa, (34)
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and
J9 =]+ KK Y 0+ KK Yo + KK Yaa + (KUK + KK Yo + (KK + KK Y g
+ (K"K + KW K?)Yaa. (35)
Comparing Egs. (25) and (35)
M2 = KVKRY 1 + KUK P Yo + KK Yag + (KUK + KKy + (KPKS + KK Y14 + (KUK
+KK)Y . (36)

The individual SIFs and EDIF for the actual state can be obtained by judiciously choosing the auxiliary state (state 2). For
example, if state 2 is chosen to be near tip displacement and stress field corresponding to the fracture opening mode I, then
K® =1,K =0, and K{Y = 0. Hence, Eq. (36) can be reduced to

MM = KVY 5 + K Y1y + KR Y. (37)
Similarly, if state 2 is chosen to be near tip displacement and stress field corresponding to the fracture opening mode II, with
K® =0,K? =1,and K = 0 and if state 2 is chosen to be near tip displacement and stress field corresponding to the frac-
ture opening mode IV, with K® = 0, K’ = 0, and K’ = 1, then Eq. (36) reduces to

M — KDy, + KDYy + K Vi, (38)
and

M) = KVY 0 + K'Y 14 + K Yaa, (39)

respectively.

Solving the simultaneous Egs. (37)-(39), K", K", and K{}) can be obtained. The interaction integrals M"Y, M(*'V and
M) can be evaluated from Eq. (28). Egs. (37)-(39) have been successfully used for calculating the SIFs and EDIF in homog-
enous piezoelectric materials under various mixed-mode loading conditions (Enderlein et al., 2005; Kuna, 2006).

4.2. Functionally graded piezoelectric materials

For non-homogeneous piezoelectric materials, even though the equilibrium and compatibility conditions are satisfied, the
material gradient term of the second integrand of Eq. (21) does not vanish. So Eq. (21) reduces to a more general integral,
henceforth referred to as the electromechanical J-integral, which is

- u aCj; oe; 1 0Kim
]:/A< U6X1+Djaf H(S],) —dA - /( 5o, Tk~ IW‘]’“Ei—zEI Em>q dA. (40)

By comparing Eq. (40) to the electromechanical J-integral (see Eq. (22)), the presence of material non-homogeneity results
in the addition of the second domain integral. Although this integral is negligible for a path very close to the crack tip, it must
be accounted for with relatively large integral domains, so that the electromechanical J-integral can be accurately calculated.

The electromechanical J-integral also represents the energy release rate of piezoelectric body. It is elementary to show
that the electromechanical J-integral becomes zero for any closed contour in an uncracked homogeneous piezoelectric, as
well as in non-homogeneous piezoelectric bodies, and therefore remains path independent when used in conjunction with
cracks in the FGPMs.

In order to derive the interaction integral for the FGPMs, consider again actual (state 1), auxiliary (state 2), and superim-
posed (state S) equilibrium states. For the actual state, Eq. (40) can be directly invoked to represent the electromechanical J-
integral. However, a more general form, such as Eq. (20), must be used for auxiliary and superimposed states. For example,
the electromechanical J-integral for the superimposed state S can be written as

~ o + u? (¢ + ¢ 3
JO = / <(O-l(j” + ngb)w + (DO) + D@)M _ H(s)éu q “14dA
A

0X1 ] J 0Xq ox X

o (oo +u®) a0 39" +6%) e

+ /A & ((aij +0;7) = +(D;” +D;7) o H%5y; |q dA. (41)
Clearly, the evaluations of J® and the resulting interaction integral depends on how the auxiliary field is defined. There

are several options in choosing the auxiliary field. Three methods, studied in this paper, are described in the following.

4.2.1. Method I - constant constitutive tensor formulation

The method I involves selecting the auxiliary stress, electrical displacement, displacement fields and electric potential gi-
ven by Egs. (11)-(14) and calculating the auxiliary strain and electric fields from the symmetric gradient of the auxiliary dis-
placement field and the gradient of the auxiliary electric potential. In this approach, the auxiliary stress, and electrical
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displacement are related to the auxiliary strain, and electrical fields through a constant constitutive tensor comprising of the
elastic, piezoelectric and dielectric material constants, evaluated at the crack tip. Hence, both equilibrium
(00" /ox; = 0,0D;”) /ox; = 0) and compatibility (¢ = (duj® /ox; + ou® /ox;)/2,E¥ = —0¢®) /ox;) conditions are satisfied in
the auxiliary state. However, the non-homogeneous constitutive relation of the FGPM is not strictly satisfied in the auxiliary
state, which would introduce gradients of stress fields as extra terms in the interaction integral.

Using Eq. (29) and invoking both equilibrium and compatibility conditions, Eq. (41) can be further simplified to

1) 0Cj (1 ) e, ) 0K
—lsg.)i”"'sl(d)jtskl jk‘E )+ 1ED JkE

Wy <2>> e 2% xq Xy 27k ox
- (1) (2) 0u; " +15” (1) (2)y2(0' " +4'7) 2)
](S) _ (aij +0ij )T+(Dj +Dj )CT aqu+ +104 )“1(12] 7lﬂ8 + ( agjl 718013'&8('1) qu
) 2) 12) OX; 2 0xq 2 xq 2 y oxq 20 ij :
A 7(H +H +H ’ )5]j J 1 E(2 apM 1 (Z)EEOJ 16D (1)
A 3DV S B DY S E
(42)
By expanding Eq. (42),
JO =] L J@ 4 M2, (43)
where
~ ou oM oq 1 1 0C; oe; 1 ) 0K;
m _ oM i D _HDVs,: ) 21 da — D Ik (1) (1) JklE E JkE g dA 44
J /A ( iox o X, V] ox; . 270 ox; MM Bx, 2 i )49 (44)
~ ou? 0¢® aq
@= | (6 =1-+D?————-H5, | >dA 45
] A< y 6x1 J aX] 1 an ’ ( )
are the electromechanical J-integrals for states 1 and 2, respectively, and
) ; ma el o) e e )
[YGE o.g}>a“§ )+a@ ou | a)9g® +Dgz>af/>“) _Ho2s5 ) gay [ 1 o) e Oy qdA
Uoox; Uoox; 1 0x1 T 0x J ] ox; 2 DmaEJm aDJ!”E(z) Da)aE]‘.” P ) ’
! SN BT B
(46)

is the modified interaction integral for non-homogeneous piezoelectric materials.

4.2.2. Method II - incompatibility formulation

The method II entails selecting the auxiliary stress, electrical displacement, displacement fields and electric potential
given by Eqs. (11)-(14) and calculating the auxiliary strain and electric fields using the same spatially varying elastic, pie-
zoelectric and dielectric material tensors of the FGPM. In this approach, the auxiliary stress and electrical displacement
fields satisfies equilibrium (aa ) /ax; = 0,8D”) /ox; = 0); however, the auxiliary strain and electric fields are not compatible
with the auxiliary dlsplacement fields and ‘electric potential (¢ # (ou® /ox; + ou® /ox;)/2,EY # —0¢®) /ax;). If the auxil-
iary fields are not compatible, extra terms that will arise due to lack of compatibility should be taken into account while
evaluating the interaction integral. Hence, this method also introduces additional terms to the resulting interaction
integral.

Following similar considerations, but using only equilibrium condition in the auxiliary state, Eq. (41) can also be simpli-
fied to

M 4 5@ @ o 1) | @ [2e® | EY
) )y o +u®) 1) | 1@ 26D162) (0' +0j )(axox, = |+ (D7 +D7) ax(gx]+a):1
Jo = (05 +0 ) s+ (D} + D)) ajdA+ 1 @7\ C (1) @) A) | pOn e qdA
A *(H”+H(2J+H“2)5U X —1e + &) S ey +aiy) + (B +ED) S (el +ef)
A +%(E 1)+EZ)>OAH,H(E$)+E$))
(47)
Comparing Eqs. (47) and (43)
~ oulV 1V aq 1 +aCs o6, 1o
M = o\h i pv _HDs, | A — L%k @) xklE _ Y e %im g0\ 0 4a 48
! /A<] SO S A 2 Tk, MM Ty 25 oy om )4 (48)
I jou? 20 S\ o - o0 5
" / <"fj Pl H“%w‘) A + / (e G B PO (49)
A 1 1 J A\ _ %S( ) aaCykl ) + EE]Z a:;k, 42+ E ef,:'lm E
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are the electromechanical J-integrals for states 1 and 2, respectively, and

- ou™ 5 oul” 1) 0 y 0t @q
12) _ (1) T (2 12)g..
M /A (% o +0,} ax +DJ o +D] A —H dA

a) [ 2u® acff) pih (262 ErE;z) (1) Gyt _(2)
+\/ O-ij wxoxy  oxg + J\ ok + x| & B3] ki q dA (50)
(1) dey aEn (1) (1) 3knm £(2)
A +(E ax]“bkl +E Sy > +E S Ey

is another modified interaction integral for non—homogeneous piezoelectric materials.

4.2.3. Method III - non-equilibrium formulation

This method entails the auxiliary displacement and electric potential given by Eqs. (13) and (14), and calculating the aux-
iliary strain and electric fields from the symmetric gradient of the auxiliary displacement field and the gradient of the aux-
iliary electric potential. The auxiliary stress and electrical displacement fields are computed using the same spatially varying
elastic, piezoelectric and dielectric material tensors of the FGPM. In this approach, the auxiliary stress and electrical displace-
ment fields does not satisfy equilibrium (60 /ax # 0,0D; 2)/6x, 0); however, the auxiliary strain and electric fields are
compatible with the auxiliary displacement ﬁeld and electric potential (& u = (6u§2)/axj + auf)/axi)/z,Ef.z) = —0p® jox;). If
the auxiliary field does not satisfy equilibrium, extra terms that will arise due to violation of equilibrium condition should
be taken into account while evaluating the interaction integral. Therefore, this method also introduces additional terms to
the resulting interaction integral.

Following similar considerations, but using only equilibrium condition in the auxiliary state, Eq. (41) can also be simplified to

~ aq

S — (u u)
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are the electromechanical J-integrals for states 1 and 2, respectively, and
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is another modified interaction integral for non-homogeneous piezoelectric materials. o _
Note, that for homogeneous piezoelectric materials, regardless of how the auxiliary field is defined, the J¥,J@  and M1
integrals in methods I-1II degenerate to their corresponding homogeneous solutions, as expected.

4.2.4. Proof of existence of interaction integral for FGPMs

Egs. (46), (50) and (54) contains the second integral involving extra terms due to material non-homogeneity. The exis-
tence of the second integral in Egs. (46), (50) and (54), as the limit r —» 0 is proved below. The material properties, such
as Gijs, €sij» Kis, must be continuous and differentiable functions, and thus can be written as

Cijks(r7 0) = uks + rcyl(s( ) + 2 Cl]ks( ) + O(r3) +eeey (55)
T
eSij(rv 0) - esy + regz] (0) +5 2 Slj ( ) + O( ) AR (56)
2
K1, 0) = K + T (0) + = kP (0) + O(%) + -, (57)

2



B.N. Rao, M. Kuna/International Journal of Solids and Structures 45 (2008) 5237-5257 5245

where Cj,, ez, iy, are the local material data at the crack tip, &', and Cjj(0), eff’(0), and !’ (0) with n=1, 2, ... are angu-

lar functions. Hence, spatial derivatives of the material properties, Cijks, €sij, Nsij, Kis» Bis, Vis» are bounded at the crack tip,
i.e., Ciiks.1, €sii1> Msiji1, Kis1, Bisa and 7isq are O(r*) with o > 0. In the limit r — O the integrand of the second integral in Eq.
(46)

moy ) @ @ W

O-ij 0x1 X gij +6U Xy B3] 'Sij

lin(} 2 ) 1) (1) 2 qdA|.
r— oF! 3 R )
1) oF: aD: (2) 2) oF; aD; (1)
_Df a?]<1 a)?1 Ef - Df a’il a’?l J
@ m @
L R A P R (58)
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In Eq. (50), the incompatibility terms in the integrand of the second integral
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naturally vanish because the auxiliary fields are compatible very near the crack tip (asymptotically). Rest of the terms in the
integrand of the second integral of Eq. (50) in the limit r —» 0 becomes

lim {(78;1) Cij {2 4 (E(]) Oenki (@ 4 f@ Oengi 8(1)) L EM 0Knm E(Z))qu:|
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In Eq. (54), the non-equilibrium terms in the integrand of the second integral, as the limit r — 0 becomes

00? ou®  aD? gg® 00i? ou oD pgM
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In the limit r — 0 rest of the terms in the second integral of Eq. (54) becomes as given in Eq. (60). Thus all the proposed inter-
action integrals for non-homogeneous piezoelectric materials in Egs. (46), (50) and (54) are well posed as the limit r - 0
exists.

4.2.5. Numerical aspects in computation of interaction integrals

For numerical computation of the proposed interaction integrals in the crack coordinate system, first all the state 1 quan-
tities corresponding to the actual state for the given boundary conditions are evaluated in the material coordinate system
and then transformed to the crack coordinate system. All the state 2 quantities corresponding to an auxiliary state are eval-
uated in the crack coordinate system using the transformed material property tensors Cs, €is and ki, from the material
coordinate system to the crack coordinate system. The derivatives of material property tensors Cis, €is and k;s, can be ob-
tained by means of shape function derivatives.

4.2.6. Intensity factors evaluation _
For linear piezoelectric solids, the electromechanical J-integral also represents the energy release rate and, hence for two-
dimensional case
~ 1 .1 .1 . . . «
J =5 KV + 5K Y5 + 5K Yas + KiKnYi, + KK Yy + KiKivY,, (62)
where Y}y = Yun(x*) being the components of the (4 x 4) generalized Irwin matrix, Y is evaluated with the local material
data at the crack tip, x". Regardless of how the auxiliary fields are defined, Eq. (62) applied to states 1, 2, and S yields

~ 1 .1 1
O = TR TR TR G Y K KK ©)
~ 1 .1 1
TP = T3 IR T K+ G Y+ KK 64
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and
JO =0 JO L KPR + KUK Y + KUK Vi + (KRS + KK )Y, + (KPKE + KK ) Vi
+ (KUK + KK ) Vs (65)
Comparing Eq. (43) with Eq. (65)
W12~ KKV, + KKV + KRS Y0+ (VK KKV + (KK + KDY+ (KUKE
+KYKP)Y;,. (66)

Following a similar procedure and judiciously choosing the intensity of the auxiliary state as described earlier, the SIFs and
EDIF for non-homogenous piezoelectric materials can be obtained by solving the following three simultaneous Eqs. (67)-(69)

MY = KVys, + KOY;, + KDY, o7

O Z 0¥+ KDY+ K Yen o
and

MY = KVY5, + KY 1, + K Vi .

In Egs. (67)-(69) M, MW and M) are three modified interaction integrals for the three fracture opening modes I, I,
and IV, respectively, and can be evaluated using any of the Eqs. (46), (50) and (54). All the three methods are used in per-
forming numerical calculations, to be presented in a forthcoming section.

Note, Egs. (67)-(69) are the result of a simple generalization of the interaction integral method for calculating the SIFs and
EDIF in linear homogenous piezoelectric materials. When there is no spatial variation in the material properties s, €sjj, Kis,
M12 = M1 _ Consequently, Egs. (67)-(69) degenerate into Egs. (37)-(39), as expected.

5. Numerical examples
In this study, accuracy of the predicted SIFs and EDIF using the interaction integrals based on three formulations is inves-
tigated by comparing with those obtained by using displacement extrapolation method (DEM). The SIFs and EDIF in piezo-

electric materials can be evaluated using DEM with the help of discontinuity of displacements and electric potential across
the crack faces as follows:

X2

Crack Tip

rp

Fig. 2. Displacement extrapolation method.
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In finite element (FE) calculations, the relative displacements and electric potential between two nodes on the crack surface
are used for determination of the SIFs and EDIF. Namely, from displacements and electric potential at a node i on the crack
surface located at a distance r; from the crack tip, intensity factors K' are calculated using

T

1
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As shown in Fig. 2, intensity factors values at two points ‘a’ and ‘b’ near the crack tip are calculated by Eq. (71) and extrap-

A¢

olated so as to obtain the SIFs and EDIF, as follows:
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(b) Geometry, and loads under far-

field shear load 1t~ and far-field
electrical displacement load D~

(¢) FEM discretization (2416 nodes, 736 8-noded quadrilateral elements, and 64
focused quarter-point 6-noded triangular elements)

Fig. 3. Finite horizontal crack in an infinite medium (example 1).




5248 B.N. Rao, M. Kuna/International Journal of Solids and Structures 45 (2008) 5237-5257

rd® — o K°
K=" T (72)
Tq—Tp
where r, and r;, are respectively the distance of two points ‘a’ and ‘b’ from the crack tip. For non-homogeneous piezoelectric
materials generalized Irwin matrix, Y in Eq. (71) has to be evaluated with the local material data at the crack tip, x".
In the two numerical examples presented below, the material properties are assumed to be one-dimensionally dependent

as

(Ci11,C22,C12,Ci3,Cag, €21, €22, €16, K11, K22) (X) = Wexi<W (73)
- A X
(C1105 C220, C120, C130, Ca40, €210, €220, €160, K110, K220) EXP(1X1) ' ’

where 7 is a non-homogeneity parameter that controls the variation of material properties. In numerical examples na = —0.5,
—0.25, —-0.125, 0, 0.125, 0.25, and 0.5 are considered, which corresponds to 0.000045401, 0.0067, 0.0821, 1, 12.185, 148.413,
and 22026.5 respectively as the ratio of the material properties at left edge to that at right edge of the domain, for the geo-
metric configurations adopted in numerical examples with W =10 and a = 1. The following material constants are adopted in
the two numerical examples presented:

Ci10=12.6 x 10" Pa Ca0 =11.7x 10" Pa Ci20 =53 x 10" Pa
Ci30 =5.5x 10" Pa Casgo =3.53 x 10" Pa
210 = —6.5 x 10° N/(GVm) ey = 23.3 x 10° N/(GVm) ejq0 = 17 x 10° N/(GVm)’
K110 = 15.1 x 10 N/(GV)?> K0 = 13 x 10° N/(GV)?

(74)
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Fig. 4. Mesh refinements around the crack tip for finite horizontal crack in an infinite medium (example 1).
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In the numerical examples studied the loading combination parameter defined as /= D>c330/(6°°€330) Or A= D>C330/
(Tt>°e330) is used to reflect the combination between the far-field normal load o> and the far-field electrical displacement
load D* or the combination between the far-field shear load 7> and the far-field electrical displacement load D>°. The loading
combination parameter 4 = 0, corresponds to the case of far-field electrical displacement load D> = 0. An impermeable crack
in an infinite medium is considered in all numerical examples presented. Obviously, a FE model cannot represent the infinite
domain, but as long as the ratio a/W is kept relatively small (e.g., a/W < 1/10), the infinite medium approximation is
acceptable.

5.1. Example 1: finite horizontal crack in an infinite medium

The geometric configuration and the loads considered in this study are shown in Fig. 3(a) and (b). Two types of loading
combinations are studied: (1) type 1: the far-field normal load ¢* and the far-field electrical displacement load D*; (2) type
2: the far-field shear load 7> and the far-field electrical displacement load D*. The poling direction is assumed to be oriented
perpendicular to the crack. FE model adopted for the evaluation of intensity factors using the interaction integrals based on
the proposed three formulations (in Egs. (46), (50) and (54)) involves 2416 nodes, 736 eight-noded quadrilateral elements,
and 64 focused quarter-point six-noded triangular elements, as shown in Fig. 3(c). The SIFs and EDIF are also evaluated using
DEM.

For the evaluation of intensity factors using DEM r, and r;, are taken to be equal to L./4 and L. respectively, where L, is the
length of six-noded triangular quarter-point element edge containing 1/4-point node. Before comparing intensity factors ob-
tained using the proposed interaction integrals with the values obtained using DEM, convergence of the values obtained
using the later method, for different values of L, = 0.0333a, 0.025a, 0.02a, 0.01667a is verified by using four different mesh
refinements around the crack tip with FE discretizations involving 2416 nodes, 2612 nodes, 2808 nodes, and 3004 nodes,
respectively over the entire domain. The magnified view of mesh refinements around the crack tip for these four FE discret-
izations are shown in Fig. 4(a)-(d). Fig. 5(a) and (b) show the convergence of the normalized mode-I SIF K; /(0> v/7a), and the
normalized EDIF Ky /(D>+/7ta) evaluated at the right crack tip, with respect to L./a, under type 1 loading combination for

1.64
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Fig. 5. Convergence with respect to L./a under type 1 loading combination (example 1).



5250

B.N. Rao, M. Kuna/International Journal of Solids and Structures 45 (2008) 5237-5257

K, /(vY 1ia)

K, J(D™ Ta)

1.12
—a— pA=235
o= A=0
LIl [ —se 55
1.10
1 09 1 1 1
0.015 0.020 0.025 0.030 0.035
Lja
(a) Normalized mode-II SIF K, (t” \/TE(Z)
0.40
035
—— A=5
=% A=5
O 30 1 1 1
0.015 0.020 0.025 0.030 0.035
L/a

(b) Normalized EDIF K, (D"\/E )

Fig. 6. Convergence with respect to L./a under type 2 loading combination (example 1).

Table 1
Normalized mode-I stress intensity factor K;/(¢>+/7a) under far-field normal load ¢> and far-field electrical displacement load D> (example 1)
na A=-5 A=0 A=5
Method-I Method-II Method-III DEM Method-I Method-1I Method-III DEM Method-I Method-II Method-II DEM
-0.5 1.019055 1.019016 1.019010 1.021536 1.058626 1.058601 1.058594 1.061156 1.098198 1.098186 1.098178  1.100775
—-0.25 1.276499 1.276472 1.276467 1.279606 1.218011 1.217999 1.217993 1.220860 1.159523 1.159525 1.159519 1.162113
—0.125 1.127687 1.127672 1.127669  1.130491 1.093417 1.093411 1.093409 1.095962 1.059146 1.059149 1.059148 1.061433
0 1.012148 1.012148 1.012148 1.014673 1.012222 1.012222 1.012222 1.014542 1.012297 1.012297 1.012297 1.014412
0.125 1.243388 1.243404 1.243407 1.246290 1.185416 1.185421 1.185426  1.188021 1.127444 1.127438 1.127445 1.129752
025 1.607416 1.607439 1.607446 1.610914 1.482584 1.482592 1.482599 1.485704 1.357753 1.357745 1.357752  1.360493
0.5 1.634073 1.634090 1.634104 1.637320 1.608359 1.608361 1.608376 1.611499 1.582646 1.582632 1.582647 1.585679
Table 2
Normalized electric displacement intensity factor Ky /(D*+/7a) under far-field normal load ¢ and far-field electrical displacement load D> (example 1)
na A=-5 A=5
Method-I Method-II Method-III DEM Method-I Method-II Method-III DEM
-0.5 0.091165 0.091076 0.091166 0.089083 0.386365 0.386378 0.386390 0.386608
-0.25 0.391283 0.391194 0.391287 0.387324 0.719800 0.719769 0.719813 0.718707
-0.125 0.749049 0.748987 0.749053 0.743674 0.895752 0.895722 0.895757 0.893672
0 1.002041 1.002041 1.002041 0.995632 1.006458 1.006458 1.006458 1.003751
0.125 0.868655 0.868732 0.868653 0.862348 0.991505 0.991544 0.991501 0.989027
0.25 0.516549 0.516675 0.516545 0.511144 0.875067 0.875127 0.875065 0.873510
0.5 0.132172 0.132332 0.132161 0.128452 0.545319 0.545346 0.545325 0.545686
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Table 3
Normalized mode-II stress intensity factor K;/(t>+/ma) under far-field shear load t> and far-field electrical displacement load D> (Example 1)
na A=-5 A=0 =5
Method-I Method-II Method-III DEM Method-I Method-II Method-II DEM Method-I Method-II Method-IlI DEM
-0.5 0.874329 0.874116 0.874245 0.868701 0.874252 0.874039 0.874291 0.866994 0.874176 0.873963 0.874336  0.865286
—0.25 0942128 0.941981 0.942193 0.931194 0.942112 0.941966 0.942187  0.930947 0.942097 0.941950 0.942182  0.930701
—0.125 0976353 0.976270 0.976389  0.982984 0.976349 0.976266 0.976388  0.978862 0.976345 0.976262 0.976387  0.974708
0 1.008864 1.008864 1.008864  0.998522 1.008866 1.008866 1.008866  0.998353 1.008867 1.008867 1.008867  0.998185
0.125 1.039821 1.039923 1.039784  1.028499 1.039820 1.039923 1.039782  1.028506 1.039820 1.039922 1.039780  1.028511
0.25 1.068013 1.068236 1.067946  1.055827 1.068026 1.068249 1.067955 1.055908 1.068039 1.068261 1.067965  1.055989
0.5 1.118331 1.118846 1.118174  1.105121 1.118350 1.118864 1.118194 1.105146 1.118368 1.118883 1.118213  1.105168
Table 4
Normalized electric displacement intensity factor Ky/(D*+v/7a) under far-field shear load > and far-field electrical displacement load D> (example 1)
na A=-5 A=5
Method-I Method-II Method-III DEM Method-I Method-II Method-III DEM
-0.5 0.238827 0.238788 0.238839 0.237907 0.238704 0.238665 0.238716 0.237784
—0.25 0.555570 0.555510 0.555579 0.553044 0.555513 0.555453 0.555522 0.552987
-0.125 0.822419 0.822373 0.822423 0.818692 0.822382 0.822336 0.822387 0.818655
0 1.004262 1.004262 1.004262 0.999704 1.004237 1.004237 1.004237 0.999679
0.125 0.930092 0.930150 0.930089 0.925700 0.930068 0.930126 0.930065 0.925675
0.25 0.695819 0.695912 0.695816 0.692338 0.695797 0.695890 0.695794 0.692316
0.5 0.338735 0.338829 0.338733 0.337058 0.338756 0.338849 0.338753 0.337079
1.64
— —— MIAr=-5
—&— M-ILA=-5
1.62 —©— ML A=-5
’E* [ TP PO [P, B ="V-- MLA=0
?b 1.60 == MILA=0
> --8-- ML, A=0
——- —%= M A=
158 ML A=5
—- MILA=5
—&- M A=5
156 1 1 1 1
0.00 1.00 2.00 3.00 4.00 5.00
Integral Domain Size
(a) Normalized mode-I SIF K, / (G‘”\/rta)
0.56 —+— MILA=S5
045 | T MALA=S
/é —©— ML A=5
S
N 034
N —%- MLA=5
N
023 —— M-I, A=5
—&- M A=5
0.12 T T T b

0.00 1.00 2.00 3.00 4.00 5.00

Integral Domain Size
(b) Normalized EDIF K, /(D"ra)

Fig. 7. Integral domain dependence under Type 1 loading combination and na = 0.5 (Example 1).
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various values of /4 and na = 0.5. Similarly Fig. 6(a) and (b) show the convergence of the normalized mode-II SIF K;;/(t>v/7a),
and the normalized EDIF K}y /(D> v/7a) evaluated at the right crack tip with respect to L./a, under type 2 loading combination
for various values of /1 and xa = 0.5. It can be observed that convergence of intensity factors is achieved with L. = 0.02a.

Intensity factors obtained using the proposed interaction integrals are compared with those obtained using DEM (with FE
model involving 2808 nodes and L. = 0.02a), which is presented in tabular form to facilitate comparison of the computed SIFs
and EDIF by the three formulations to desired significant digit accuracy. Tables 1 and 2, show respectively the normalized
mode-I SIF K;/(o>*/na), and the normalized EDIF Ky /(D*\/7ta) evaluated at the right crack tip, under type 1 loading com-
bination using methods I-IIl and DEM for various combinations of 4 and na. A domain size of 1.6 units x 1.6 units is taken
around the right crack tip to calculate the M(?-integral. It can be observed that irrespective of the values of 4 and na all the
three proposed interaction integrals predicted almost the same value of the same normalized intensity factors, which agrees
well with those obtained using DEM. However, method I (constant constitutive tensor formulation) requires the derivatives
of the actual stress and electrical displacement fields, which in turn requires second order derivatives of FE shape functions,
which needs additional effort and also this requirement may introduce accuracy problems with C° elements. As, in the pres-
ent study eight-noded quadrilateral elements, and six-noded triangular elements are adopted, all the three proposed inter-
action integral methods resulted in almost the same value of the normalized intensity factors to the significant digit accuracy
considered.

Similarly, Tables 3 and 4, show respectively the normalized mode-II SIF Kj/(t*/Ta), and the normalized EDIF
Ky /(D*+/ma) evaluated at the right crack tip, under type 2 loading combination for various combinations of /. and #a. Under
type 1 loading combination, it can be observed from Tables 1 and 2 that the loading combination parameter 1 has more influ-
ence on the normalized EDIF K,y/(D*+/7a) than on the normalized mode-I SIF K;/(¢>+/7a). When the magnitude of the ap-
plied electrical displacement load increases, its influence on Kyy/(D*+/7a) will decrease. This means that the mechanical load
has insignificant effect on Kyy/(D>*+/7a) under a strong electrical load. The current observations agree very well with those
reported by Chen et al., 2003) based on analytical study. However, under type 2 loading combination, it can be observed from
Tables 3 and 4 that the loading combination parameter 2 has negligible influence on both the normalized mode-II SIF
Ky /(t*+/Ta), and the normalized EDIF Ky /(D> v/Ta).
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Fig. 8. Integral domain dependence under Type 2 loading combination and na = 0.5 (Example 1).
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The domain independence of intensity factors by the three proposed interaction integral methods is verified by employ-
ing the following five different integral domain sizes taken around the crack tip to calculate the M(-?-integral: 0.4 units x
0.4 units, 0.8 units x 0.8 units, 1.2 units x 1.2 units, 1.6 units x 1.6 units, and 2.0 units x 2.0 units. Fig. 7(a) and (b) show
the domain dependence of intensity factors of the normalized mode-I SIF K;/(¢>y/mta), and the normalized EDIF
Ky /(D*+/7a) evaluated at the right crack tip, using methods I-III (M-I, M-II, M-IIl) with respect to various integral domain
sizes, under type 1 loading combination for various values of /1 and na = 0.5. Similarly Fig. 8(a) and (b) show the domain
dependence of the normalized mode-II SIF Ky /(t>/7ta), and the normalized EDIF Ky /(D*\/7ta) evaluated at the right crack
tip, using methods I-III (M-I, M-II, M-III) with respect to various sizes of the integral domain, under type 2 loading combi-
nation for various values of / and na = 0.5. It can be observed that all the three proposed interaction integrals predicted do-
main independent solution with larger integral domains.

The significance of extra correction terms in the proposed interaction integrals for non-homogeneous piezoelectric mate-
rials (due to the non-homogeneous constitutive relation of the FGPM in constant constitutive tensor formulation; due to lack
of compatibility in incompatibility formulation; and due to violation of equilibrium condition in non-equilibrium formula-
tion), is studied using methods I-III with respect to different integral domain sizes, both under type 1 and 2 loading com-
binations for 4 =5 and na = 0.5. Fig. 9(a) and (b) show the normalized mode-I SIF K;/(6>°v/Tta), and the normalized EDIF
Ky /(D*+/Ta) evaluated at the right crack tip, using methods I-IIl without extra correction terms (M-I (NC), M-II (NC), M-
[II (NC)) and with extra correction terms (M-I (WC), M-Il (WC), M-Il (WC)) with respect to various integral domain sizes.
Similarly Fig. 10(a) and (b) show the normalized mode-II SIF K};/(t*+/7ta), and the normalized EDIF K,y/(D*+/7ta) evaluated
at the right crack tip, using methods I-III without extra correction terms (M-I (NC), M-II (NC), M-III (NC)) and with extra cor-
rection terms (M-I (WC), M-Il (WC), M-III (WC)) with respect to various integral domain sizes. It can be observed that the
contribution of extra correction terms is more significant for larger integral domains. This is due to the reason that, as
the integral domain size shrinks to the crack tip contribution of extra correction terms becomes less as in the limit r — 0,
extra correction terms — 0, which is proved in earlier section.

1.55
—— M-INC)
B---B------ LEEEEE T L et L]
1.60 —— MAI(NC)
T OL65 —6— M-I (NC)
T
A
< 170 | “tVem MAI(WC)
-=0-= M
175 M-ATWE)
180 1 1 1 1 e M-[[[(WC)
’ 0.00 1.00 2.00 3.00 4.00 5.00
Integral Domain Size
(a) Normalized mode-I SIF K, / (G“"’ s/na)
0.68 —— MANC)
0.66
—a— M-I (NC)
0.63
E 0.61 —°~ M-INC)
&
> 059 --¥-- MI(WC)
N
0.57
--o-- MII(WC)
0.54
--8- M-(WC)

0.00 1.00 2.00 3.00 4.00 5.00

Integral Domain Size

(b) Normalized EDIF K, /(D" ra)

Fig. 9. Significance of extra correction terms under type 1 loading combination (example 1).
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Fig. 10. Significance of extra correction terms under under type 2 loading combination (example 1).

5.2. Example 2: finite inclined crack in an infinite medium

The geometric configuration with crack inclination angle o = 0.257 and the loads considered in this study are shown in
Fig. 11(a). Loading combination of the far-field normal load ¢*° and the far-field electrical displacement load D*° is studied.
The poling direction is assumed to be in x, direction. Fig. 11(b) shows the FE model discretization involving 2416 nodes, 736
eight-noded quadrilateral elements, and 64 focused quarter-point six-noded triangular elements adopted for the evaluation
of intensity factors using the interaction integrals based on the proposed three formulations (in Egs. (46), (50) and (54)). The
SIFs and EDIF are also computed using DEM with L, = 0.02a, using FE model discretization involving a total of 2808 nodes
over the entire domain.

Tables 5-7, show respectively the normalized mode-I SIF K;/(c>+/7a), the normalized mode-II SIF K;;/(6¢>+/7ta), and the
normalized EDIF K,y/(D>*+/Tta) evaluated at the right crack tip, using the proposed methods I-IIl and DEM for various com-
binations of the loading combination parameter 4 and the non-homogeneity parameter #. A domain size of 1.6 units x 1.6
units is taken around the right crack tip to compute the M(?)-integral. It can be observed that irrespective of the values of /
and na, all the three methods predicted almost the same value of the normalized intensity factors which matches well with
those obtained using DEM.

6. Summary and conclusions

The paper presents domain forms of the interaction integrals based on three independent formulations for computation
of the SIFs and EDIF for cracks in the FGPMs. Conservation integrals of J-type are derived based on the governing equations
for piezoelectric media and the crack tip asymptotic fields of homogeneous piezoelectric medium as auxiliary fields. Each of
the formulations differs in the way auxiliary fields are imposed in the evaluation of the interaction integral and each of them
results in a consistent form of the interaction integral in the sense that extra terms naturally appear in their derivation to
compensate for the difference in the chosen crack tip asymptotic fields of homogeneous and functionally graded piezoelec-
tric medium. The additional terms play an important role of ensuring domain independence of the presented interaction
integrals. Accuracy of the predicted intensity factors using the interaction integrals based on three formulations is investi-
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(a) Geometry and loads for inclined crack in an infinite medium under far-field
normal load ¢” and far-field electrical displacement load D~

(b) FEM discretization (2416 nodes, 736 8-noded quadrilateral elements, and 64
focused quarter-point 6-noded triangular elements)

Fig. 11. Finite inclined crack in an infinite medium (example 2).
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gated by comparing with those obtained by using displacement extrapolation method by means of two examples. Very sta-
ble results of intensity factors are obtained regardless of the type of the auxiliary field. The interaction integrals based on all
three independent formulations predicted almost the same value of the normalized intensity factors irrespective of the val-
ues of the loading combination parameter and the non-homogeneity parameter. However, the interaction integral based on

Table 5
Normalized mode-I stress intensity factor K;/(6>=+v/7ta) under far-field normal load ¢> and far-field electrical displacement load D> (example 2)
na i=-5 =0 =5
Method-I Method-II Method-III DEM Method-I Method-II Method-III DEM Method-I Method-II Method-III DEM
-0.5 0.841996 0.841994 0.841993 0.843780 0.850252 0.850255 0.850253 0.852030 0.841996 0.841994 0.841993 0.860281
—-0.25 0.829786 0.829793 0.829792 0.831565 0.770122 0.770132 0.770131 0.771724 0.710457 0.710471 0.710469 0.711882
—0.125 0.624815 0.624820 0.624819 0.626190 0.596311 0.596318 0.596317 0.597555 0.567807 0.567816 0.567815 0.568919
0 0.506144 0.506144 0.506144 0.507273 0.506087 0.506087 0.506087 0.507139 0.506031 0.506031 0.506031 0.507004
0.125 0.721933 0.721925 0.721925 0.723461 0.666742 0.666733 0.666733 0.668097 0.611551 0.611540 0.611541 0.612733
0.25 1.093619 1.093597 1.093597 1.095835 0.972689 0.972667 0.972667 0.974626 0.851760 0.851737 0.851736 0.853416
0.5 1.374289 1.374242 1.374248 1.376936 1.320130 1.320082 1.320088 1.322656 1.265971 1.265921 1.265927 1.268375
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Table 6
Normalized mode-II stress intensity factor Ky /(6v/7a) under far-field normal load ¢> and far-field electrical displacement load D (example 2)
na A=-=5 =0 =5
Method-I Method-II Method-llI DEM Method-I Method-II Method-I1Il DEM Method-I Method-II Method-Ill DEM

-0.5 -0.276975 —0.276553 —0.276606 —0.273079 —0.304114 —-0.303679 —0.303737 —0.299949 —0.331253 —0.330805 —0.330869 —0.326818
—0.25 —0.485569 —0.485332 —0.485384 —0.479746 —0.480176 —0.479949 —0.480001 —0.474510 —0.474784 —0.474567 —0.474618 —0.469275
—0.125 —0.513980 —0.513881 —0.513909 —0.508107 —0.505991 —0.505893 —0.505922 -0.500283 -0.498002 -0.497906 -0.497934 -0.492460
0 —0.504262 —0.504262 —0.504262 —0.498630 —0.504306 —0.504306 —0.504306 —0.498735 —0.504351 —0.504351 —0.504351 —0.498840
0.125 —0.496485 —0.496600 —0.496571 —0.490881 —0.498528 —0.498638 —0.498607 —0.492978 —0.500570 —0.500675 —0.500644 —0.495074
0.25 —0.444048 —0.444366 —0.444306 —0.438944 —0.453071 —0.453361 —0.453301 —0.447947 —0.462094 —0.462357 —0.462296 —0.456950
0.5 —-0.138923 -0.139609 —0.139546 —0.137318 —0.176334 —0.177003 —0.176931 —0.174343 -0.213745 —0.214397 -0.214316 —-0.211367

Table 7
Normalized electric displacement intensity factor Ky /(D> +/ma) under far-field normal load ¢> and far-field electrical displacement load D> (example 2)
na A=-5 A=5
Method-I Method-II Method-III DEM Method-I Method-II Method-III DEM
-0.5 0.036435 0.036446 0.036460 0.035892 0.285948 0.285908 0.285923 0.285193
-0.25 0.266658 0.266644 0.266659 0.265409 0.511087 0.511056 0.511078 0.509162
-0.125 0.525881 0.525863 0.525874 0.523803 0.632715 0.632695 0.632710 0.630136
0 0.707182 0.707182 0.707182 0.704455 0.710371 0.710371 0.710371 0.707400
0.125 0.624432 0.624457 0.624442 0.621784 0.701463 0.701489 0.701471 0.698630
0.25 0.397042 0.397073 0.397051 0.394830 0.619102 0.619151 0.619123 0.616902
0.5 0.156959 0.156979 0.156943 0.154952 0.375867 0.375942 0.375922 0.375477

constant constitutive tensor formulation requires the derivatives of the actual stress and electrical displacement fields,
which in turn requires second order derivatives of finite element shape functions. This requirement needs additional effort
and also may introduce accuracy problems with C° elements. As, in the present study eight-noded quadrilateral elements
and six-noded triangular elements are adopted, all the three methods resulted in almost the same value of the normalized
intensity factors to the significant digit accuracy considered.
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