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SUMMARY

The genetics of complex disease produce alterations

in the molecular interactions of cellular pathways

whose collective effect may become clear through

the organized structure of molecular networks.

To characterize molecular systems associated with

late-onset Alzheimer’s disease (LOAD), we con-

structed gene-regulatory networks in 1,647 post-

mortem brain tissues from LOAD patients and

nondemented subjects, and we demonstrate that

LOAD reconfigures specific portions of the molecu-

lar interaction structure. Through an integrative

network-based approach, we rank-ordered these

network structures for relevance to LOAD pathology,

highlighting an immune- and microglia-specific

module that is dominated by genes involved in

pathogen phagocytosis, contains TYROBP as a key

regulator, and is upregulated in LOAD. Mouse micro-

glia cells overexpressing intact or truncated TYROBP

revealed expression changes that significantly over-

lapped the human brain TYROBP network. Thus the

causal network structure is a useful predictor of

response to gene perturbations and presents a

framework to test models of disease mechanisms

underlying LOAD.

INTRODUCTION

Complex diseases such as late-onset Alzheimer’s disease

(LOAD) arise from the downstream interplay of DNA-sequence

variants and nongenetic factors that act through molecular

networks to confer disease risk (Schadt, 2009). Despite

decades of intensive research, the causal chain of mechanisms

behind LOAD remains elusive. In fact, there are no effective

disease-modifying or preventive therapies, and the only

available treatment remains symptomatic; meanwhile, the inci-

dence of LOAD is expected to double by 2050 (Brookmeyer

et al., 2007). Progress in LOAD research is fundamentally

limited by our reliance on mouse models of severe familial/

early-onset Alzheimer’s disease; therefore, our primary knowl-

edge of LOAD is in actuality based on the downstream effects

of three rare mutations in APP, PSEN1, and PSEN2 (Bertram

et al., 2010). Although such mouse models are necessary and

helpful, the cognitive deficits in these transgenic mice are

less severe than those in humans, and they do not exhibit

equivalent neurodegeneration, which is the most accurate

clinical marker of cognitive disease progression in humans.

Correspondingly, attrition rates from early discovery to late
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drug development have been very high (Schäfer and Kolkhof,

2008).

In contrast to the plethora of potential disease mechanisms

detected in humans with LOAD, the search for LOAD-modifying

interventions has focused primarily on compounds targeting

the amyloid-b pathway. Both biological risk factors, often related

to vascular health and psychosocial factors (Cechetto et al.,

2008; Qiu et al., 2010), as well as genetic susceptibility play a

critical role in the underlying pathophysiology of LOAD

(Bertram et al., 2010). APOE is still the best validated susceptibil-

ity gene accounting for at least 30% of the genetic variance in

LOAD (Corder et al., 1993). Genome-wide association studies

(GWAS) have identified several additional genetic risk loci for

LOAD that seem to cluster in patterns that suggest immunity

(CLU, CR1, CD33, EPHA1, MS4A4A/MS4A6A), lipid processing

(APOE, ABCA7), and endocytosis (PICALM, BIN1, CD2AP) as

important causal biological processes (Bettens et al., 2013).

More recently, low-frequency missense variants in APP and

TREM2 were found to confer strong protection or elevated risk

of LOAD (Guerreiro et al., 2013; Jonsson et al., 2012, 2013).

However, the overall contribution of these new common and

low-frequency variants to the heritability of LOAD is very small,

suggesting that a large fraction of the genetic variance beyond

the APOE risk still remains hidden. Can we clarify the pathology

of LOAD by zooming out to the pathway level to search for emer-

gent risk of many genomic contributions? If so, how canwe iden-

tify the key causal genes in these pathways?

In light of the complexity and elusiveness of LOAD pathogen-

esis, new approaches are needed to boost the probability of

identifying causal genes and pathways. Recently, we have

leveraged the molecular network structure that is reflected in

genotypic and gene-expression data to uncover biologically

meaningful gene modules involved in the development of com-

plex disease (Chen et al., 2008; Emilsson et al., 2008). Targeting

such causal networks in ways that restore them to a normal

state has been proposed as a path to treat disease (Schadt

et al., 2009), but this potential has never been realized for

LOAD. However, the complexity of these networks makes it

difficult to distinguish the causal from correlated disease effects

or how the causal regulators propagate their effects. To better

address this, we constructed molecular networks based on

whole-genome gene-expression profiling and genotyping data

in 1,647 autopsied brain tissues from hundreds of LOAD

patients and nondemented subjects. We identified numerous

modules of distinct functional categories and cellular specificity,

many showing a massive remodeling effect in the LOAD brain.

Next, we applied an integrative network-based approach to

rank-order these modules for relevance to LOAD pathology

and used a Bayesian inference to identify the key causal regula-

tors of these remodeled networks. For instance, we identified

eight causal regulators of the top-ranked immune/microglia

module, including TYROBP (a.k.a. DAP12) as the highest

ranking in terms of regulatory strength and differential expres-

sion in LOAD brains. We demonstrate through mouse microglia

cells overexpressing intact or truncated dominant-negative

TYROBP that downstream expression changes significantly

overlapped the human TYROBP brain network. This study pre-

sents many of the network advantages useful in identifying

and prioritizing pathways and gene targets involved in the

pathophysiology of LOAD.

RESULTS

Leveraging a Systems Approach to LOAD

We developed and applied an integrative network-based

approach to identify modules of genes associated with neurode-

generative disease (Figures 1A–1C). We processed 1,647 autop-

sied tissues from dorsolateral prefrontal cortex (PFC), visual cor-

tex (VC), and cerebellum (CB) in 549 brains of 376 LOAD patients

and 173 nondemented healthy controls (Figure 1A). All subjects

were diagnosed at intake, and each brain underwent extensive

LOAD-related pathology examination. We note that the known

APOE genotype exposure was confirmed in the Harvard Brain

Tissue Resource Center (HBTRC) sample, showing an odds ratio

of 3.74 per copy ε4 allele (p = 4.1 3 10�13). Each tissue sample

was profiled for 39,579 transcripts representing 25,242 known

and 14,337 predicted gene-expression traits, and each subject

genotyped for 838,958 unique SNPs (Figure 1A). Unless other-

wise noted, gene-expression analyseswere adjusted for age and

sex, postmortem interval (PMI) in hours, and sample pH andRNA

integrity number (RIN). In the overall cohort of LOAD and nonde-

mented brains, the mean ± standard deviation (SD) for sample

PMI, pH, and RIN were 17.8 ± 8.3, 6.4 ± 0.3, and 6.8 ± 0.8,

respectively. Extensive analysis of the effect of covariates on

gene-expression variation in LOAD and nondemented brains

was carried out, as shown in Figure S1 (available online) and

described in the Extended Experimental Procedures. Here, we

used a robust linear regression model for covariate corrections

in all our gene-expression analyses (Experimental Procedures).

Results of traditional differential expression analysis demon-

strate that subsets of genes were up- or downregulated in

LOAD (Figure 2A). Consistent with the known progression and

regional severity of LOAD pathology (Braak and Braak, 1991),

we observed that the PFC region contained the greatest number

of differentially expressed genes (Figure 2B). Figure 2C summa-

rizes the clustering or colinearity of the various LOAD pathology

traits and age within the HBTRC cohort, resulting in distinct

groups of clinical pathology and age as separate clusters. For

instance, the number of significant correlations of expression

traits to neuropathology like Braak stage within the LOAD patient

group was highest in the PFC region (Figure 2D). Given these

observations and the fact that PFC is more commonly affected

in LOAD than CB and VC (Braak and Braak, 1991), a particular

attention was paid to this region in our strategy to rank-order

modules for relevance to LOAD. These massive data sets were

the basis of further method development with the aim to identify

and rank-order network modules and gene targets associated

with LOAD pathology (Figures 1A–1C). Results of these various

analysis steps are discussed in the sections that follow, and a

more detailed description of methods and statistical procedures

is found in the Extended Experimental Procedures.

Remodeling of the Molecular Interaction Structure in

LOAD Brains

For simultaneously capturing the intra- and interregional gene-

gene interactions in the LOAD or nondemented state, we
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constructedmultitissue coexpression networks consisting of the

top one-third (n = 13,193) of the most variable gene-expression

traits per brain region in individuals donating tissues from all

three regions (Extended Experimental Procedures). The multitis-

sue coexpression network in LOAD brains indicated strong

structurally segregated regions of the human brain molecular

interactome (Figure 3A), consisting of 111 modules and each

containing between 30 and 1,446 gene members (Figure 3A),

whereas the network generated from nondemented samples

has 89modules ranging in size from 30 to 2,278 genes. Figure 3B

highlights a direct comparison of the two topological overlap

matrices corresponding to the LOAD or nondemented associ-

ated network for a subset of 16 modules, demonstrating that

LOAD reconfigures specific portions of the molecular interaction

structure. To analytically detect and quantify this network reor-

ganization across the demented and nondemented states, we

developed a metric that we refer to as modular differential con-

nectivity (MDC) (Extended Experimental Procedures). MDC is

Figure 1. Sample Processing and the Integrative Network-Based Approach

(A) Five hundred and forty-nine brains were collected through the Harvard Brain Tissue Resource Center (HBTRC) from 376 LOAD patients and 173 nondemented

subjects, and tissues extracted from three brain regions, the commonly affected PFC in LOAD and the less affected VC and CB (1). Each brain went through

extensive neuropathology examination, and all tissues were profiled for 39,579 transcripts, and every subject genotyped for 838,958 SNPs (2). These data sets

were the basis of the method development in the present study (3).

(B) From the microarray RNA expression data, we identified gene-expression traits showing individual variability in gene-expression traits as per brain region (1).

Next we computed the coregulation (connectivity) strength between genes, defined the appropriate connectivity threshold (2), and performed hierarchical

clustering analysis to construct the undirected coexpression network (3). Finally, we used brain eSNPs (Q) as causal anchors in the construction of directed

Bayesian networks to infer a causal relationship between nodes in the network (4). A variant of the underlying causality-scoring process here can be applied to

relationships among thousands of nodes to infer genome-scale networks.

(C) Comparison of LOAD and nondemented networks was performed to explore any effect on the molecular interaction structure associated with the disease.

Differentially connected modules in LOAD were investigated for their functional organization (1), module relevance to clinical outcome, as well as the enrichment

of brain eSNPs (2). Modules were rank-ordered (this figure does not show the true rank-order) for their strength of the functional enrichment, module correlation to

neuropathology, and eSNP enrichment (3).

See also Figure S1 and Table S1.
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the ratio of the average connectivity for any pair of module-

sharing genes in LOAD compared to that of the same genes in

the nondemented state and is a continuous measure ranging

from 0 to infinity. This module-centric measure of differential

connectivity between the two states is therefore fundamentally

different from the gene-centric analysis of previous studies that

applied hard cutoffs (Mani et al., 2008). Given the nature of

the coexpression network analysis, MDC > 1 indicates gain of

connectivity (GOC) or enhanced coregulation between genes,

whereasMDC<1 indicates loss of connectivity (LOC) or reduced

coregulation between genes. In extreme cases where MDC >>1,

e.g., the glutathione transferase (GST) module (Figure 3B), or

MDC << 1, e.g., the nerve myelination module (Figure 3B), the

corresponding genes do not form a coherent cluster in the

nondemented state or LOAD, respectively. Thus, new modules

are created in LOAD, whereas in other cases, a portion of the

network is completely disrupted. The statistical significance of

the MDC metrics was computed through the false discovery

rate (FDR) procedure as described in the Extended Experimental

Procedures. Based on 10% FDR, 54% of all modules showed

GOC, whereas 4.5% of modules exhibited LOC. The structures

of the remaining 41.5% of the modules were found to be

conserved across the LOAD and nondemented states by this

MDCmeasure. We note a negligible overlap of only 6% between

signatures of differential connectivity and standard differential

gene expression in LOAD brains, implying that the observed

disruption in coregulation of genes reflects a previously un-

tapped marker of LOAD neuropathology.

Functional Organization of the Network and Its

Relevance to LOAD Pathology

As observed in previous network-based studies (Chen et al.,

2008; Emilsson et al., 2008; Zhang and Horvath, 2005), we

find that brain gene expression is organized into modules of

distinct functional categories (Figure 3C). Overrepresentation

of canonical pathways and biological processes in modules

was measured through Fisher’s exact test (FET) and corrected

for number of modules and functional categories tested. Fig-

ure 3C highlights significant overrepresentation of functional

categories in modules showing GOC, LOC, or conserved con-

nectivity and containing at least 50 genes. The multifactorial

basis of LOAD neuropathology involves biological processes

active in both the central nervous system (CNS) and the meta-

bolic and vascular peripheral system that have often progressed

silently for many years (Huang and Mucke, 2012; Murray et al.,

2011). In fact, we find that multiple functional categories,

including the immune response, unfolded protein, vascular sys-

tem, extracellular matrix, neurogenesis (brain development),

glucose homeostasis, synaptic transmission, and olfactory sen-

sory perception categories in the GOC modules, are highly

enriched in the LOAD-associated modules (Figure 3C), whereas

the LOC modules are enriched for genes involved in nerve mye-

lination, cell cycle, g-aminobutyricacid (GABA) metabolism, and

neurotrophin signaling (Figure 3C). Many of these functional

categories have previously been implicated in LOAD and/or

CNS-related function (Ansari and Scheff, 2010; Cechetto et al.,

2008; Dodel et al., 2003; Luchsinger, 2008; Morawski et al.,

Figure 2. Differential Gene Expression in

LOAD Brains and Expression Correlation to

Braak Stage

(A) The heatplot shows the genes (n = 6457),

absolute mean-log ratio > 1.5 for each profile,

which most significantly differentiate disease

status in PFC. The legend to the right shows the

arrangement of samples with blue points denoting

LOAD (A), and red points denoting nondemented

state (N).

(B) The number of differentially expressed genes

in LOAD compared with controls per brain

region using Bonferroni adjusted p < 0.05 by

correcting for the number of probes tested (p %

2.46 3 10�7).

(C) Clustering analysis where the rows and

columns represent age, and 25 LOAD pathology

traits are arranged in a symmetric fashion and

sorted by the hierarchical clustering tree of the

correlation matrix. The color intensity signifies the

correlation strength between two traits (red posi-

tive and green negative). AT, atrophy; WMAT,

white matter atrophy; EL, enlargement.

(D) Number of genes showing significant expres-

sion correlation to Braak stage as measured per

brain region using Bonferroni adjusted p < 0.05

by correcting for the number of probes tested

(p% 2.46 3 10�7).

See also Table S1.
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2012; Schiffman et al., 2002), again reinforcing the complex

multifactorial basis of the underlying pathophysiology. The func-

tional categories enriched in the conserved modules included

‘‘muscle contraction’’ (actin-related system), coated vesicle,

cadherin, and zinc ion metabolism (Figure 3C).

CNS cell-type-specific gene signatures, from the Allen Brain

Atlas (http://www.brain-map.org/), were enriched in distinct

network modules as previously observed (Oldham et al.,

2008): neurons in the synaptic transmission modules (11-fold,

p = 3.7 3 10�24), astrocytes in the GABA biosynthesis module

(22 fold, p = 1.53 10�15), oligodendrocytes in the nerve myelina-

tion module (30 fold, p = 2.5 3 10�30), choroid plexus cell types

in the extracellular matrix module (35 fold, p = 3.9 3 10�15), and

microglia signatures responding to amyloid-b treatment (Walker

et al., 2006) in the immunemodule (10-fold, p = 4.53 10�20) (Fig-

ure 3C). In contrast to the GOC and LOC modules, conserved

modules were not enriched for any CNS-specific cell types (Fig-

ure 3C). Pathways enriched in the brain modules and not previ-

ously implicated in LOADmay therefore represent novel disease

mechanisms including, for instance, the glucuronosyl trans-

ferase activity and the dynein complex (Figure 3C). Moreover,

the comprehensive representation of gene-gene interactions

in the LOAD-associated networks can uncover novel gene

members in pathways already implicated in LOAD, thus allowing

us to work out a known pathologic mechanism in more detail

than ever before. In summary, the immune module shows the

statistically most significant functional enrichment of all modules

(Figure 3C) and as such may have a more comprehensive repre-

sentation of its respective pathway members.

Table S1 contains extensive information regarding the func-

tional enrichment and gene membership of modules containing

at least 50 unique gene symbols. We highlight some specific

findings of interest from Figure 3C: (1) The enrichment of path-

ways related to olfactory sensory perception in a LOAD-associ-

ated module is of interest given that the processing of olfactory

function is affected in subjects who are genetically at risk of

developing LOAD long before the symptoms of dementia are

manifested (Schiffman et al., 2002). (2) The APOE transcript is

located in the LOC module enriched for astrocyte signatures

and GABA metabolism, consistent with the observation that

astrocytes are the major source of APOE in the CNS (Boyles

et al., 1985). The close connectivity of APOE and GABA meta-

bolism in the brain network may therefore have some bearing

on the observation that GABA interneuron dysfunction is partic-

ularly severe in APOE4 carriers (Li et al., 2009). (3) The previously

identified macrophage-enriched metabolic network (MEMN) in

peripheral tissues and strongly supported as causal for a number

of metabolic and vascular traits related to obesity, diabetes,

and heart disease (Chen et al., 2008; Emilsson et al., 2008) is

remarkably enriched within the brain immune/microglia module

(3.9-fold, p = 2.4 3 10�46). This is of interest given the strong

epidemiological evidence for metabolic- and vascular-based

exposure on LOAD (Huang and Mucke, 2012; Murray et al.,

2011). (4) The postsynaptic density proteome in the human

neocortex of 748 proteins overrepresented with risk loci known

to underlie cognitive, affective, and motor phenotypes (Bayés

et al., 2011) is significantly enriched in the synaptic transmission

module (3-fold, p = 1.63 10�32). It is still unclear how and which

of these different biological processes mentioned above interact

to affect LOAD; however, it is likely that only a few downstream

mechanisms on which many diverse effects converge are caus-

ally related to LOAD (Huang and Mucke, 2012; Murray et al.,

2011). The accumulated data show a strikingly coherent organi-

zation of molecular processes in the LOAD-associated network.

The coexpression network structure, its changes between

nondemented and LOAD brains, and the genetic loci responsible

for the expression covariation behind these networks collectively

reflect molecular processes associated with LOAD. By linking

the network modules to clinical outcome or LOAD neuropa-

thology via a multiple regression analysis (Extended Experi-

mental Procedures), we can infer key molecular processes

associated with LOAD. A covariance matrix of the average

expression correlation (jrj) between 49 modules, comprised of

at least 100 probes, and 25 LOAD-related traits is shown in Fig-

ure 4A. We performed principal component analysis (PCA) to

estimate the module-trait correlation and used the FDR method

to assess the significance (see Extended Experimental Proce-

dures). Of all modules, the immune/microglia showed correlation

to the greatest number of LOAD-related neuropathology traits

(Figure 4B). Expression of the PFC immune/microglia module

correlated to atrophy levels in multiple brain regions, including

frontal cortex (r = 0.27, FDR = 0.018) and parietal (r = 0.20,

FDR = 0.016), temporal (r = 0.19, FDR = 0.022), and neostriatum

regions (r = 0.28, FDR = 3.3 3 10�9), as well as ventricular

enlargement (r = 0.17, FDR = 0.031). Several modules, however,

showed correlation to a more restricted type of neuropathology,

including the modules characteristic for the glucuronosyl trans-

ferase correlated to Braak stage (r = 0.18, FDR = 9.8 3 10�5),

NAD(P) homeostasis to Braak stage (r = 0.25, FDR = 1.4 3

10�7), neurogenesis to ventricular enlargement (r = 0.19, FDR =

5.1 3 10�5), and GST to ventricular enlargement (r = 0.22,

FDR = 4 3 10�6). The significance of functional enrichment in

modules and the number of neuropathology traits correlated

with modules were considered important criteria in rank-

ordering modules for their potential to affect LOAD.

Bayesian Networks and the Immune Module as an

Effector in LOAD

Causal probabilistic Bayesian networks were constructed and

used as an alternative approach to delineate potential regulatory

mechanisms. In order to establish a causal relationship or

dependency between nodes in the network, we constructed a

directed probabilistic Bayesian network through the application

of brain cis expression (e)SNPs as causal anchors. Because cis-

eSNPs are in linkage disequilibrium (LD) with causal variants that

affect the expression levels of a neighboring gene or they are the

causal variant themselves, they serve as an excellent source of

natural perturbation to infer causal relationships among genes

and between genes and higher-order phenotypes like disease

(Chen et al., 2008; Emilsson et al., 2008). We detected a total

of 11,318 unique cis-eSNP transcripts in the three brain regions,

at FDR of 10% (Figure S2A), which is the largest number of brain

eSNP transcripts detected to date in a single study (Webster

et al., 2009). The methodology to identify cis- and trans-eSNPs

is detailed in Extended Experimental Procedures, whereas Table

S1 lists all cis- and trans-acting eSNPs detected in the present
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Figure 3. Multitissue Gene Coexpression Network in LOAD Brains

(A) The topological overlap matrix (TOM) plot corresponds to the LOAD multitissue coexpression network. The rows and columns represent the same set of the

top one-third (13,193) of the most variably expressed genes in each of the three brain tissues and states, expressed in a symmetric fashion and sorted by the

hierarchical clustering tree of the LOAD network.

(B) Individual TOM covariance matrices of 15 differentially connected and one conserved modules in LOAD (the upper right triangle of each module) versus that

in the nondemented state (the lower left triangle of each module). Differential connectivity (MDC) and FDR estimate is specified in each panel in parenthesis

(MDC, FDR).

(legend continued on next page)
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study at FDR of 10%. There was between 70% and 80% sharing

of cis-eSNP transcripts across different brain regions, and

37% overlapped all brain regions (Figure S2A). Importantly, we

find a variable and often strong enrichment of brain eSNPs in

many of the LOAD-associated modules compared to all probes

on the array, suggesting the possibility that these variants

determine the differential connectivity observed in LOAD.

For instance, in the PFC region (Figure 4C), there were five

modules showing significant enrichment for cis-eSNPs, in-

cluding the unfolded protein (3.8-fold, p = 3.8 3 10�81), nerve

myelination (2.5-fold, p = 2.9 3 10�40), immune function (2.2-

fold, p = 4.3 3 10�30), GABA metabolism (2.7-fold, p = 2.3 3

10�13), and extracellular matrix (1.6-fold, p = 2.3 3 10�7)

modules (Figure 4C). The enrichment of cis-eSNPs in the differ-

entially connected LOAD modules in the VC and CB regions is

shown in Figure S2B. For the present study, however, a partic-

ular attention was paid to the cis-eSNPs for their applicability

as priors in the construction of Bayesian networks (Extended

Experimental Procedures and schematic Figure S3).

We constructed Bayesian networks for each coexpression

module. Although many of the LOAD-associated network

modules are of potential interest, the reconstruction of the

Bayesian network for the immune/microglia module is high-

lighted given that it has the strongest disease association based

on clinical covariates and network-associated properties: (1) sig-

nificant differential connectivity of the cortex-specific immune

modules in LOAD (MDC between 49% and 100% GOC at

FDR < 0.001); (2) the immune/microglia module showed the

most significant enrichment of functional categories; (3) the

highest degree of gene-expression correlation to several mea-

sures of LOAD neuropathology; (4) the PFC version of the

module was highly enriched for brain eSNPs. To increase the

predictive power of inflammation-related regulatory networks,

we further built up the directed Bayesian network for the inflam-

mation modules derived from the individual brain regions. Fig-

ure 5 highlights the interactions within and between the five

predominant immunologic families in the PFC-based putative

microglia module. To generate this roadmap to the complex

structure of the immune/microglia module, genes that were not

direct members of one of these five core pathways were

assigned to the family with which they have the greatest number

of causal interactions. The immune module was dissected into

five families representing functional immune pathways that

were labeled according to their main function as ‘‘complement,’’

‘‘Fc’’ for Fc-receptors, ‘‘MHC’’ for major histocompatibility com-

plex, ‘‘cytokines’’ for cytokines/chemokines, and ‘‘toll-like’’ for

toll-like receptors (Figure 5).

Highlighting the Microglia Pathway with TYROBP as

Causal Regulator

The Bayesian inference enabled us to compute the causal

regulators of the differential connectivity in individual modules,

defined as the genes controlling many downstream nodes in

the respective network (see Extended Experimental Proce-

dures). The causal regulators of the highest scoring immune/

microglia module were rank-ordered based on the number of

downstream nodes, i.e., the power of regulating other genes,

as well as differential expression in LOAD brains. Here, we

used a combined score as Gj =
Q

igji, where, gji is the dis-

criminant value of a j in the case i and is defined as

ðmaxiðrjiÞ+ 1� rjiÞ=
P

jrji (Duda et al., 2000). In comparison to

the average gene/node in a given network, the causal regulators

are expected to have a stronger effect on the clinical outcome as

they direct the expression of a significant portion of the network

module they reside in. The size of the gene membership for the

different regional-specific immune modules ranges from 386 in

CB to 1,108 in the PFC, with 247 of the genes in the CB detected

in all regions (p = 1 3 10�19). The identity of the key causal

regulators is somewhat variable across each brain-regional

version of the microglia module of which CTSC, HCK, TYROBP,

SERPINA1, S100A11, LY86, DOCK2, and FCER1G were com-

mon to all immune modules, regardless of brain region. Through

the combined ranking score based on regulatory strength and

differential expression in PFC of LOAD brains, TYROBP scored

the highest (Figure S4A). Table 1 lists the 20 top-ranking PFC

modules and their respective key causal regulators. Expression

of TYROBP is restricted to cells involved in the innate immunity,

including the microglial cells in the brain (Schleinitz et al., 2009).

Here, TYROBP was significantly upregulated in LOAD brains in

the HBTRC sample (1.18-fold, p = 0.028), and the direction of

this effect was replicated (1.17-fold, p = 5.1 3 10�5) in an inde-

pendent multicenter cohorts study (see Extended Experimental

Procedures and Figure S4B). Additionally, we observed a pro-

gression of TYROBP expression changes across mild cognitive

impairment (MCI) in the replication study (Figure S4B). Esti-

mating what constitutes a ‘‘large’’ or ‘‘small’’ change in gene-

expression levels is challenging in microarray analyses. We

note, however, that TYROBPwas the 124thmost differentially ex-

pressed probe out of 48,803 probes assayed in the replication

study cohort. Moreover, TYROBP was more differentially ex-

pressed in LOAD brains than the classical markers of microglia,

AIF1 and CD68, indicating that there was not a relative downre-

gulation of TYROBP despite elevated microgliosis in LOAD

brains (Perry et al., 2010).

The majority of the common causal regulators were located

either in the ‘‘Fc’’ pathway and associated/clustered genes

(HCK,SERPINA1,S100A11,DOCK2, and FCER1G) or the ‘‘com-

plement’’ pathway (TYROBP) in the immune/microglia network

(Figure 5). Recent reports (we note that our submission predates

these reports) show a striking association of a low-frequency

DNA variant in TREM2 to LOAD (Guerreiro et al., 2013; Jonsson

et al., 2013). More specifically, TREM2 is known to associate and

signal via TYROBP, the key regulator of the immune/microglia

network activated in LOAD. Thus, our data-driven, network-

based approach places both TREM2 and TYROBP in a gene

network that literally unifies them with previous top GWAS risk

(C) Significant (FET p value after correcting for number of modules and functional categories/pathways tested) enrichment of functional categories in conserved

modules (left most panel), LOC modules (center panel), or GOC modules (right most panel). The y axis represents the �log(p value) of enrichment, whereas the

x axis denotes the number of genes per module. Each module contains at least 50 unique gene symbols.

See also Table S1.
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Figure 4. Module Relevance to LOAD Pathology and Enrichment of Brain eSNPs

(A) A heatmap of the correlations (jrj) between 49module principal components (PCs) and 25 LOAD-related neuropathology traits. Thesemodules contain at least

100 probes. AT, atrophy; WMAT, white matter atrophy; EL, enlargement.

(B) Number of significant module-dependent correlations to LOAD-related neuropathology of all differentially connected modules with at least 100 members and

showing significant correlation to at least a single neuropathology trait (see Extended Experimental Procedures). The total number of traits associated with a

module was used to rank-order modules for relevance to LOAD pathology.

(C)We tested the enrichment of brain eSNPs in the differentially connectedmodules of themultitissue coexpression network in LOAD as per brain region. Here we

present a significant enrichment of brain eSNPs in many of the PFC modules. We used the FET analysis to access the significance of the overlap between each

module and cis-eSNPs, correcting for the number of modules tested.

See also Figure S2 and Table S1.
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loci including MS4A4A, MS4A6A, and CD33 (Figure 5). These

new results provide exciting convergent evidence for the specific

microglia network that we had directly implicated as activated in

LOAD and reinforce the potential causality of this pathway in

LOAD pathology. In fact, the dissection of the immune/microglia

module into distinct families and key causal regulators points

toward an important function of the microglia pathways involv-

ing genes of the ‘‘complement’’ and/or ‘‘Fc’’ network clusters.
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Figure 5. The Bayesian Brain Immune and Microglia Module

A module that correlates with multiple LOAD clinical covariates and is enriched for immune functions and pathways related to microglia activity (PFC module

shown). (Inner networks) The PFC module is enriched in genes that can be classified as members of the complement cascade (‘‘complement’’), toll-like receptor

signaling (‘‘toll-like’’), chemokines/cytokines (‘‘chemokine’’), the major histocompatibility complex (‘‘MHC’’), or Fc-receptor system (‘‘Fc’’). The direction and

strength of interactions between these pathways are collected across all gene-gene causal relationships that span different pathways. The minimum line width

corresponds to a single interaction (MHC to toll-like) and scales linearly to a maximum of 17 interactions (Fc to complement). (Outer networks) Each color-coded

group of genes consists of the core members of the different families and genes that are causally related to a given family. Core family members of each pathway

are shaded darkly, whereas square nodes in any family denote literature-supported nodes (at least two PubMed abstracts implicating the gene or final protein

complex in LOAD or a model of LOAD). Labeled nodes are either highly connected in the original network, literature-implicated LOAD genes, or core members of

one of the five immune families. Node size is proportional to connectivity in the module. See also Figure S5.
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Figure S5 (genesmarked in red) highlights many of the key genes

in the pathogen phagocytosis pathways found in the immune/

microglia module. It is notable how comprehensive representa-

tion of specific signal transduction pathways is observed within

the two immune families of this module. The strategic network

position of TYROBP as a causal regulator of many genes mirrors

its bottleneck position in several microglia activation-signaling

cascades. Extrapolating from this data-driven interaction, it is

possible that TYROBPmay be associated with neuronal pruning

activity of the complement system that may be reawakened in

LOAD via amyloid-b and tau aggregates (Perry et al., 2010). In

this manner, the network structure can become a data-driven

hypothesis generator for disease-relevant interactions.

Structure of Causal Networks Guides Differential

Expression in a Distance-Dependent Manner

To test our prediction that TYROBP can direct LOAD-associated

gene networks, we contrast both the molecular function and

genome-wide effects of TYROBP with those predicted by the

structure of causal networks inferred from human LOAD brains.

For this, microglia cells derived from mouse embryonic stem

cells were genetically modified by lentiviral vectors to overex-

press either full-length or a truncated version of Tyrobp that

lacks both intracellular immunoreceptor tyrosine-based activa-

tion motif (ITAM) motifs (Extended Experimental Procedures

and Figure S6). To assess the genome-wide gene-expression

changes in response to the perturbation of Tyrobp, we derived

gene-expression data from the RNA sequencing of mouse

microglia cell lines overexpressing (1) vehicle, (2) the full-length

Tyrobp, or (3) dominant-negative truncated Tyrobp. We identi-

fied 2,638 and 3,415 differentially expressed genes for the

overexpression of full-length Tyrobp and truncated Tyrobp,

respectively (Table S1), at FDR < 2.5%. Roughly one-third

(858 to 1,092) of these genes are found in the most variable

gene set in the brain data set used for the network reconstruc-

tion. The PFC variant of the human immune/microglia module

was highly enriched for genes that are differentially expressed

in the full-length or truncated Tyrobp experiments (p < 1 3

10�15) (Figure 6A). We projected results of RNA-sequencing

experiments onto a large Bayesian brain network of �8,000

nodes that contains the microglia module as well as many other

modules. In this large network, we could track differential

expression of genes that are predicted to be downstream of

TYROBP at various network path distances (Figure 6B). The

highest predictive power for differential expression is in the

primary neighborhood of the perturbed gene, and this power

decreases for genes that are farther away in the network. The

enrichment for differentially expressed genes in the network

neighborhood of TYROBP and strong negative correlation

between the fraction of confirmed targets and path distance

(r = �0.82, p = 4 3 10�7) (Figure 6B) show that our causal

network structure is a significant and useful predictor of

response to gene perturbations, even in a challenging cross-

species setting. Thus, both the structure and direction of links

Table 1. Top 20 Modules in PFC Ranked for Relevance to LOAD Pathology

Module Rank Top Functional and Cellular Category N PFC Genes MDC Highlighted Causal Regulatorsa

Yellow 1 immune and microglia 1,102 1.49 TYROBP, DOCK2, FCER1G

Pink 2 glutathione transferase 113 92.67 GSTA4, ABCC2, TIMELESS

Gray 1 3 cell junction 51 0.82b ACBD5, LMAN1, MLL3S

Seashell 4 coated vesicle 278 1.29b KIFAP3, PCTK2, SNCA

Red 3 5 ribosome 50 24.93 RPS27, RPS18, PCBP2

Green yellow 6 unfolded protein 721 4.50 STIP1, HSPA1A, DOPEY1

Red 7 nerve myelination and oligodendrocytes 987 0.68 ENPP2, PSEN1, GAB2

Gold 2 8 axon growth repulsion 80 3.27 TUBB4, ACTL9, ACTG1

Tan 9 extracellular matrix and choroid plexus cells 700 2.88 SLC22A2, AGTR1, ZIC2

Gold 3 10 dynein complex 67 12.12 TEKT1, FANK1, HYDIN

Light yellow 11 mRNA cleavage 96 6.01 MED6, STATIP1, SFRS3

Brown 2 12 olfactory perception 77 25.51 PPP2R5A, C1ORF143, RNASE11

Dark cyan 13 steroid biosynthesis 110 1.39b LAMP2, P2RX7, MID1IP1

Khaki 14 GABA biosynthesis and astrocytes 267 0.29 GJA1, STON2, CST3

Grey 60 15 Ser/Thr kinase receptor 495 4.64 CREBBP, ABCC11, MDGA1

Purple 16 synaptic transmission and neurons 805 1.22 SNAP91, BSN, GLS

Green 4 17 cell cycle 50 0.33 DTL, UBE2C, BUB1

Honey dew 18 muscle contraction 128 1.10b RFX4, DGCR6, AQP4

Red 2 19 zinc homeostasis 83 1.17b MT1M, MT1JP, MT1P3

Beige 20 glucose homeostasis 95 12.64 AMPD1, EGR2, PDGFB

This table lists the top 20 rank-ordered modules consisting of at least 50 genes from PFC, or if majority of genes are from PFC in mixed modules with a

total of 50 genes or more. See also Table S1 and Figure S4.
aSelected set of maximum three causal regulators per module.
bMDC FDR > 10% and therefore not considered significant.
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in these causal networks provide significant information on the

effects of complex signal transduction mechanisms.

The inferred network structure has significant predictive

power for nodes that are several links away from TYROBP. We

studied the enrichment of functional categories in the gene

sets responding to the Tyrobp perturbation experiments and

applied Bonferroni-corrected p values for statistical significance

(Extended Experimental Procedures). Approximately 99% of

the differentially expressed genes from the microglia overex-

pressing intact Tyrobp were downregulated compared to the

control vehicle. This set was enriched for genes involved

in RNA metabolism (p = 6.2 3 10�5) and cell-cycle mitosis (p =

2.7 3 10�3). In the microglia cells overexpressing the domi-

nant-negative truncated Tyrobp, 2,856 upregulated genes

were enriched for the vacuole/autophagy (p = 1.7 3 10�8) and

mitochondrion (p = 4.6 3 10�4), whereas 559 genes involved in
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Figure 6. Structure of Causal Networks

Guides Differential Expression in a Dis-

tance-Dependent Manner

(A) Within the microglia module, we show all genes

that receive direct or indirect causal inputs to/from

TYROBP. Genes that were differentially expressed

in either full-length or truncated Tyrobp experi-

ments are circled (p value < 0.05, n = 4/4/4

for control/truncated/full-length RNA-sequenced

samples). Possible reasons for differentially ex-

pressed (DE) predicted upstream genes are

mouse-human network differences, network in-

accuracy, or presence of feedback loops, which

are not represented in a Bayesian framework.

(B) We mapped results of RNA-sequencing ex-

periments onto a large Bayesian network of

�8,000 nodes that contains the microglia module

as well as many other modules. In this large

network, we could track differential expression of

genes that are predicted to be downstream of

TYROBP at various network distances (link dis-

tances). There was a strong negative correlation

(r = �0.82, p = 43 10�7) between the differentially

expressed genes in the microglia and the path

distance from TYROBP in the brain immune

network.

See also Figure S6 and Table S1.

histone assemply (p = 1.6 3 10�31) were

downregulated. Moreover, the Tyrobp-

regulatory effect reflects a degree of

symmetry as 658 genes, related to the

vacuole/autophagy (p = 5 3 10�3), were

downregulated by active Tyrobp but

upregulated in cells expressing domi-

nant-negative truncated Tyrobp. These

findings are of interest because they

link the far downstream effects of

TYROPB to known molecular pathology

in LOAD, such as abnormalities in the

cell cycle, mitochondrion, and autophagy

(Coskun et al., 2004; Webber et al.,

2005). The accumulated data suggest

that TYROBP may be a therapeutic target in prevention of

neuronal damage in LOAD.

DISCUSSION

The construction of gene-regulatory networks in a large

sampling of human brain specimens has revealed many facets

of the molecular-interaction structure in LOAD, when compared

to that in nondemented brains. A comprehensive characteriza-

tion of gene-network connectivity and its regulation and

association to disease can provide critical insights into the

underlying mechanisms and identify genes that may serve as

effective targets for therapeutic intervention. For instance, tar-

geting genes that are the most central (highly connected)

may be more effective in disrupting disease-related networks

for the purpose of therapy, but that could be at the cost of
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more adverse effects. In summary, the utility of network-based

approaches to complex disease includes the following: (1)

elucidating the biological function and molecular context of a

particular set of causal genes, (2) establishing a framework to

map interaction between genes and network modules, (3)

providing an objective filter for rank-ordering genes based on

connectivity or other network features, (4) defining dynamic

changes and corresponding causal regulators of the altered

network structure associated with disease condition, (5) identi-

fying modules and pathways causally related to disease, and

(6) revealing tissue-to-tissue interactions that can aid in the

identification of key target tissues for disease (Dobrin et al.,

2009). The present study utilizes many of these network advan-

tages to highlight and prioritize pathways and gene targets

causally related to LOAD.

Our network-based integrative analysis not only highlighted

the immune/microglia module as the molecular system most

strongly associated with the pathophysiology of LOAD but

also identified the key network regulators, including TYROBP.

In a separate in vitro study, we have found that the microglia-

expressed TYROBP is directly involved in amyloid-b turnover

and neuronal damage (our unpublished data). Of interest,

mutations in TYROBP or TREM2 cause Nasu-Hakola disease

(Bianchin et al., 2010), a rare Mendelian disease characterized

by bone reabsorption dysfunction and chronic inflammatory

neurodegeneration, leading to death in the fourth or fifth

decade of life. The exact pathomechanism underlying Nasu-

Hakola disease is still unclear, but it was hypothesized that

failure of proper microglial clearance is causal for the lethal

effect of neurodegeneration. Thus, dysfunctional immune/

microglia pathways might not be unique to LOAD. To test the

generalization of this concept, we explored the connection of

the immune/microglia module to Huntington disease (HD),

another neurodegenerative disease. HD pathology, caused by

expanded alleles of a variable stretch of trinucleotide (CAG)

repeat length in HTT (The Huntington’s Disease Collaborative

Research Group, 1993), features astrogliosis and neurodegen-

eration of the striatum, prefrontal cortex, and hippocampus.

We constructed molecular networks in the PFC from 194

HD patients genotyped for CAG allele size (see Extended

Experimental Procedures) and found that the PFC version of

the immune/microglia module was well conserved between

LOAD and HD in terms of gene annotation (75% overlap,

p value < 1 3 10�300). This module, however, did not show

any alteration in connectivity in HD brains compared to the

disease-free controls used in our LOAD study. Moreover,

through a PCA, we did not detect any gene-expression correla-

tion of the HD brain immune/microglia module to expanded

CAG repeat length (r = �0.05, FDR = 56%), a key biomarker

for predicting HD severity (Gusella and MacDonald, 2006).

Thus, based on the comparison to HD, the disease-related

effect of the immune/microglia module appears to be specific

to LOAD (and possibly Nasu-Hakola disease).

Immune activation in LOAD may have multifaceted activity:

long-term use of nonsteroid anti-inflammatory drugs (NSAIDs)

before onset of the disease decreases risk (Etminan et al.,

2003), and microglia effector function via interfering with reac-

tive oxygen production, cytokines, and complement cascade

members has been postulated to damage healthy neurons and

synapses (Cameron and Landreth, 2010). Close association

and positive feedback between amyloid-b and microglia

(Meyer-Luehmann et al., 2008) further cloud the cause and effect

relationships of inflammation to disease progression. Without a

causal framework for these observations, it is difficult to find

optimal molecular targets that direct LOAD inflammation. There-

fore, we integrated clinical factors with whole-genome genotype

and molecular trait data to identify a network module containing

several microglia-signaling cascades functionally related to

the reactive oxygen burst during pathogen phagocytosis. We

highlight the causal regulator TYROBP that exerts control over

multiple genes within this module and pathways involved in

LOAD, thus validating our network structure and its relevance

to LOAD pathology. This approach appears to offer insights for

drug-discovery programs that can affect neurodegenerative dis-

eases, such as LOAD.

EXPERIMENTAL PROCEDURES

Raw gene-expression data together with information related to demo-

graphics, disease state, and technical covariates are available via the GEO

database (GEO accession number GSE44772; GSE44768, GSE44770, and

GSE44771). A brief description of key methods and sample description are

provided below, whereas complete details are found in the Extended Experi-

mental Procedures.

Data Sets and Sample Processing

We compiled six disease- and tissue-specific gene expression data sets

consisting of 1,647 postmortem specimens from three brain regions (PCF

[BA9], VC [BA17], and CB) in LOAD and nondemented subjects recruited

through the HBTRC. Each subject was diagnosed at intake and via exten-

sive neuropathology examination. Tissues were profiled on a custom-made

Agilent 44K array of 39,579 gene-specific DNA probes, and each subject gen-

otyped for 838,958 SNPs.

Molecular Networks and Causal Regulators

We constructed both multitissue and single-tissue coexpression networks

from the top one-third (n = 13,193) of the most variably expressed genes in

each tissue and condition. We computed the MDC in LOAD brains as:

dUðx; yÞ=

PN�1

i = 1

PN

j = i + 1

kxij

PN�1

i = 1

PN

j = i + 1

k
y
ij

;

where kij is the connectivity between two genes i and j in a given network, and

assessed the statistical significance through the FDRmethod.We constructed

causal probabilistic Bayesian networks from individual coexpression modules

and used brain cis-eSNPs as priors to infer directionality between nodes (see

Figure S3). For this, we identified 11,318 unique cis-eSNPs transcripts at

FDR of 10% (Extended Experimental Procedures), all listed in Table S1. The

Bayesian inference allowed us to compute the causal regulators of the differ-

ential connectivity in individual modules by examining the number of N-hob

downstream nodes.

Mouse Microglia Cultivation, Cell Transduction, and RNA

Sequencing

Genome-wide gene expression of messenger RNA (mRNA) from cultivated

microglia cells overexpressing intact or genetically modified TYROBP was

sequenced with a TruSeq Kit for RNA capture and HiSeq 2000 for the

sequencing. Read mapping was done with the TopHat (Trapnell et al., 2009)

RNA-seq aligner.
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ACCESSION NUMBERS

Raw gene-expression data together with information related to demo-

graphics, disease state, and technical covariates are available via the GEO

database (GEO accession number GSE44772; see also accession numbers

GSE44768, GSE44770, and GSE44771).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and one table and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.03.030.
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Morawski, M., Brückner, G., Jäger, C., Seeger, G., Matthews, R.T., and

Arendt, T. (2012). Involvement of perineuronal and perisynaptic extracellular

matrix in Alzheimer’s disease neuropathology. Brain Pathol. 22, 547–561.

Murray, I.V., Proza, J.F., Sohrabji, F., and Lawler, J.M. (2011). Vascular and

metabolic dysfunction in Alzheimer’s disease: a review. Exp. Biol. Med.

(Maywood) 236, 772–782.

Cell 153, 707–720, April 25, 2013 ª2013 Elsevier Inc. 719



Oldham, M.C., Konopka, G., Iwamoto, K., Langfelder, P., Kato, T., Horvath, S.,

and Geschwind, D.H. (2008). Functional organization of the transcriptome in

human brain. Nat. Neurosci. 11, 1271–1282.

Perry, V.H., Nicoll, J.A., and Holmes, C. (2010). Microglia in neurodegenerative

disease. Nat Rev Neurol 6, 193–201.

Qiu, C., Xu, W., and Fratiglioni, L. (2010). Vascular and psychosocial factors

in Alzheimer’s disease: epidemiological evidence toward intervention.

J. Alzheimers Dis. 20, 689–697.

Schadt, E.E. (2009). Molecular networks as sensors and drivers of common

human diseases. Nature 461, 218–223.

Schadt, E.E., Friend, S.H., and Shaywitz, D.A. (2009). A network view of

disease and compound screening. Nat. Rev. Drug Discov. 8, 286–295.
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