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Initial state of matter fields and trans-Planckian physics: Can CMB

observations disentangle the two?
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The standard, scale-invariant, inflationary perturbation spectrum will be modified if the effects of
trans-Planckian physics are incorporated into the dynamics of the matter field in a phenomenological
manner, say, by the modification of the dispersion relation. The spectrum also changes if we retain
the standard dynamics but modify the initial quantum state of the matter field. We show that, given
any spectrum of perturbations, it is possible to choose a class of initial quantum states which can
exactly reproduce this spectrum with the standard dynamics. We provide an explicit construction
of the quantum state which will produce the given spectrum. We find that the various modified
spectra that have been recently obtained from ‘trans-Planckian considerations’ can be constructed
from suitable squeezed states above the Bunch-Davies vacuum in the standard theory. Hence, the
CMB observations can, at most, be useful in determining the initial state of the matter field in the
standard theory, but it can not help us to discriminate between the various Planck scale models of
matter fields. We study the problem in the Schrodinger picture, clarify various conceptual issues
and determine the criterion for negligible back reaction due to modified initial conditions.

PACS numbers: 98.80.Cq, 04.62.+v

I. THE TANGLED WEB

The inflationary scenario [1–3] is at present the most attractive paradigm for generating the initial small scale
inhomogeneities [4, 5]. These perturbations leave their imprints as anisotropies in the Cosmic Microwave Background
(CMB) [6] and later evolve, due to gravitational instability, into the large-scale structures that we see around us today.
While there is no natural particle physics candidate for generating the inflationary phase, a single (or a few) ‘inflaton’
field(s), with fine-tuned designer couplings, is (are) often introduced in order to reproduce the observed magnitude
and shape of the perturbation spectrum.
In many of the models of inflation [3], the period of acceleration lasts sufficiently long so that length scales that are

of cosmological interest today would have emerged from sub-Planckian length scales at the beginning of inflation. This
suggests that physics at the very high energy scales can, in principle, modify the primordial perturbation spectrum [7]
and these modifications can—in turn—leave their signatures on the CMB [8]. This has led to a considerable interest in
understanding the effects of Planck scale physics on the inflationary perturbation spectrum [7]–[20] and the CMB [21–
23].
Metric fluctuations during the inflationary epoch can be modeled by a quantized, massless and minimally coupled

scalar field [4, 5, 24]. In the absence of a workable quantum theory of gravity, the Planck scale effects on the
perturbation spectrum have to be studied by phenomenologically modifying the dynamics of the scalar field to take into
account the quantum gravitational effects (for an early attempt in this direction, see Ref. [7]). The high energy models
of the quantum scalar field that have been popular in the literature either introduce new features in the dispersion
relation [8–12] or modify the standard uncertainty principle [13, 14] or assume that the spacetime coordinates are
non-commutative [15]. (For other approaches, see Refs. [16–19] and, for a recent review of many of these approaches,
see Ref. [20]). Some of these models have been utilized to evaluate not only the Planckian corrections to the standard,
scale-invariant perturbation spectrum, but also the resulting signatures on the CMB [21–23]. This suggests the
possibility that sufficiently accurate measurements of the CMB anisotropies can help us understand physics beyond
the Planck scale.
There is, however, one serious difficulty with this approach, which we shall now briefly describe.
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We begin by noticing that, in a Friedmann universe, each mode qk of the scalar field, labeled by the wave vector k,
evolves as an independent oscillator with time dependent parameters that are related to the expansion factor a(t).
Given the quantum state ψk[qk, ti(k)] for the mode qk at a time ti(k), one can obtain the state at a later time t by

ψk(qk, t) =

∫

dq̄kK[qk, t; q̄k, ti(k)] ψk[q̄k, ti(k)], (1)

where K(qk, t; q̄k, ti) is the (path integral) kernel for an oscillator with time dependent parameters, which can be
written down in terms of the classical solution (see, for e.g., Ref. [25]). To keep our discussion general, we have
allowed for the possibility that the initial quantum state of each of the oscillators is specified at different times so that
ti can depend on k. For instance, one may choose to specify the quantum state of each oscillator when the proper
wavelength of that mode is equal to the Planck length [16, 26]. Of course, when the initial state of all the modes are
specified at a given time, ti(k) = ti will be independent of k. The dynamics of the system is completely specified by
the kernel K.
It is obvious that the mathematics of a free scalar field in a Friedmann universe is trivial and is no more complicated

than that of an oscillator with time dependent parameters. The perennial interest in this problem (allowing so many
e-prints to be written!) arises from two conceptual issues:

1. To make any predictions, we need to know ψk(qk, t), which, in turn, requires knowing ψk[q̄k, ti(k)]. We have
absolutely no idea what to use for ψk[q̄k, ti(k)] and so different choices (usually called ‘vacuum states’, which is
only a manner of speaking) can be investigated.

2. There are infinite number of such oscillators, leading to the standard, unresolved, issues of regularization in
quantum field theory.

To make any progress, we need to make an assumption regarding ψk[q̄k, ti(k)] and our results are only as valid as this
assumption.
If we now further modify the dynamics (due to a phenomenological input regarding trans-Planckian physics), we

will be changing the form of the kernel K. But, since we can only observe the integrated effect of K and ψk[q̄k, ti(k)],
the observations can tell us something about the K (and trans-Planckian physics) only if we assume something about
ψk[q̄k, ti(k)]. The usual assumption is to consider the initial quantum state to be the Bunch-Davies vacuum [27], but
it is only an assumption. The crucial question is whether the effect of trans-Planckian physics can be mimicked by a
different choice of the initial state other than the Bunch-Davies vacuum.
We shall show that any (modified) spectrum of fluctuations can be obtained from a suitably chosen initial state

ψk[q̄k, ti(k)], which will prove to be a squeezed state above the Bunch-Davies vacuum in the standard theory. We
shall provide an explicit construction of the state for any given spectrum of perturbations that is observed. So, if some
specific deviation from the standard scale invariant spectrum is seen in the CMB, a conservative interpretation will
be to attribute it to a deviation from the standard initial state of the theory. Unless this possibility is ruled out, one
cannot claim that the observation supports, say, a particular model of trans-Planckian phenomenology. Motivated by
this result, we argue that the CMB can at most help us identify the quantum state of the scalar field in the standard
theory, but it can not aid us in discriminating between the various Planck scale models of matter fields.
The remainder of this paper is organized as follows. In Section II, we set up the formalism and study the evolution

of a Gaussian quantum state in a Friedmann universe. We apply this formalism to power law inflation in Section III.
In Section IV, we show that any modified spectrum can be reproduced from a suitable squeezed state above the
Bunch-Davies vacuum in the standard theory. We explicitly discuss four modified spectra that have recently been
considered in the literature. In Section V, we evaluate the energy density in these excited states and examine whether
these modified spectra also lead to a large back reaction on the inflating background. Finally, in Section VI, we
conclude with a discussion on the wider implications of our analysis.
Our conventions and notations are as follows. We shall set ~ = c = 1 and the metric signature we shall adopt is

(+,−,−,−).

II. EVOLUTION OF THE QUANTUM STATE: GENERAL FORMALISM

Consider a flat Friedmann universe described by the line-element

ds2 = dt2 − a2(t) dx2 = a2(η)
(

dη2 − dx2
)

, (2)

where t is the cosmic time, a(t) is the scale factor and η denotes the conformal time with dη = dt/a(t). The scalar as
well as the tensor perturbations during the inflationary epoch can be modeled by a massless and minimally coupled,
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real scalar field, say, Φ, governed by the action [1, 2, 4, 5, 24, 28]

S[Φ] =
1

2

∫

d4x
√−g ∂µΦ ∂µΦ. (3)

The homogeneity and isotropy of the Friedmann metric (2) allows us to decompose the scalar field Φ as

Φ(x) =

∫

d3k

(2π)3/2
q̄k(η) e

ik·x (4)

The q̄k is complex and for each k gives two degrees of freedom in the real and imaginary parts of q̄k = Ak + iBk.
But since Φ is a real scalar field, we can relate the variables for k to that for −k by A∗

k
= A−k, B

∗
k
= −B−k and only

half the modes are independent degrees of freedom. Therefore, we can work with new set of the real modes qk for all
values of k with suitable redefinition, say, by taking qk = Ak for one half of k vectors and q−k = Bk for the other
half. In terms of real variables qk, the action (3) can be expressed as follows:

S[Φ] =
1

2

∫

d3k

∫

dη a2
(

q′2k − k2 q2k
)

, (5)

where the primes denote differentiation with respect to the conformal time η and k = |k|. The action (5) describes a
collection of independent oscillators with time dependent mass a2 and frequencies k. (It is sometimes useful to keep
track of the real and imaginary parts of the q̄k separately. In our case, this is unnecessary and we can define our
system in terms of real qk. Our approach is completely equivalent to the conventional one. Also, note that, in the
literature, one usually finds the Fourier decomposition in Eq. (4) expressed in terms of (qk/a) rather than with just
qk. Such a decomposition will lead to oscillators that have a unit mass, but a time-dependent frequency, say, ω2

k
,

which can become negative at super Hubble scales. In our description—which is, again, equivalent to the conventional
one—the mass varies as a2, but the frequency is constant.)
In the Schrodinger picture, the scalar field Φ can be quantized by quantizing each independent oscillator qk. The

Hamiltonian corresponding to the k-th oscillator is given by

Hk =
p2
k

2 a2
+

1

2
a2k2q2k, (6)

where pk is the momentum conjugate to the coordinate qk. Therefore, each of the oscillators satisfy the Schrodinger
equation

i
∂ψk

∂η
= − 1

2 a2
∂2ψk

∂q2
k

+
1

2
a2k2q2

k
ψk (7)

and the complete quantum state of the field is described by a wave function that is a product of ψk for all k. Equiv-
alently, the time evolution of the wave function can be described by Eq. (1) in terms of the kernel K [qk, t; q̄k, ti(k)].
As we do not expect a large scale, spatially inhomogeneous classical scalar field to be present in the universe, it is

conventional to assume that the expectation value 〈ψk|q̂k|ψk〉 vanishes in the quantum state of the field for k 6= 0.
(Since 〈ψk|q̂k|ψk〉 satisfies the classical equations of motion, this condition can be satisfied at all times if suitable
initial conditions are imposed at an early epoch.) When the mean value vanishes, the power spectrum as well as the
statistical properties of the perturbations are completely characterized by the two-point functions of the quantum
field. Therefore, the power spectrum of the perturbations per logarithmic interval, viz.

[

k3 PΦ(k)
]

, is given by (see,
for instance, Ref. [28])

k3 PΦ(k) =
k3

2π2

∞
∫

−∞

dqk |ψk (qk, η) |2 q2k. (8)

Though this result is fairly well established in literature, there are a couple of subtleties we would like to mention.
The quantity on the right hand side of the above equation depends on the time η and one needs to settle at what

epoch it has to be evaluated. In classical perturbation theory, one evaluates the perturbation at Hubble exit, i.e.
when the physical wavelength (k/a)−1 of the mode corresponding to the wavenumber k is comparable to the Hubble
radius H−1, where H = (a′/a2). In other words, the spectrum is to be evaluated when, say, (k/a) = (z H), where z
is a number of the order of unity. This is a thumb rule which accounts for the differences in the evolutionary history
of the mode when its proper wavelength is smaller than the Hubble radius as compared to the situation when it is
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larger than the Hubble radius. There is no simple way of deciding whether one should evaluate the expression when
z = 1 or when, say, z = (2π). In the literature, one also finds the perturbation spectrum evaluated at super Hubble
scales (i.e. when (k/aH) → 0) which corresponds to the limit z → 0. Even for the simplest case of exponential
inflation with the Bunch-Davies vacuum for the initial state, these results differ by a numerical factor. In this case,
we will find that, [k3 PΦ(k)] =

[

C(z)
(

H2/2π2
)]

, where C(z) = [(1 + z2)/2] (see Eq. (47) below). It is sometimes
claimed erroneously in the literature, that evaluating the spectrum as z → 0 leads to the same result as evaluating it
at z = 1. (See, for instance, Ref. [2], pp. 182–183. Notice that, in this reference, Eq. (7.87) is wrong by a factor 2 and
the claim after Eq. (7.98) that Eqs. (7.98) and (7.87) are “in agreement” is incorrect. This can be trivially verified
from equations (7.96) and (7.98).) In this particular case (i.e. exponential inflation with the Bunch-Davies vacuum
for the initial state), this discrepancy is not of great importance since it only changes the amplitude by a numerical
factor, since C(1) = 1, C(2π) =

[(

1 + 4π2
)

/2
]

and C(0) = (1/2). But when one considers the power spectrum in a
more general context, these choices will lead to a more complicated difference, as we shall see. Of course, if one first
approximates the wave function ψk (qk, η) with an assumption such as z → 0 (when the expressions do simplify) and
then evaluate it at z ≃ 1, one is being inconsistent. This may sound rather elementary but we were surprised to find
papers in the literature which do this. Any result which crucially depends on one specific choice for z in computing
the power spectrum is suspect. In what follows, we shall usually assume that the expressions are evaluated for z = 1
(i.e. when (k/a) = H) when the choice of z is not of much consequence and will comment on the results which depend
crucially on this choice.
Let us now consider the problem of determining the wave function ψk (qk, η). For a time dependent oscillator, there

is no concept of a unique ground (‘vacuum’) state unless the parameters describing the oscillator go to a constant value
asymptotically—which, in general, it does not, for the Friedmann universe. There is, however, a class of solutions to
the time dependent harmonic oscillator which are form invariant in the sense that the qk dependence of the wave
function ψk(qk, η) is the same at all η. One can show that the most general state having this property is an exponential
of a quadratic function of qk and such states have been extensively investigated in the past in different contexts (see,
for instance, Refs. [29, 30]). When 〈ψk|q̂k|ψk〉 = 0, the mean value of the Gaussian vanishes and the quantum state
of the mode can be described by the wave function [28–30]

ψk (qk, η) = Nk(η) exp−
[

Rk(η) q
2
k

]

, (9)

where Nk(η) and Rk(η) are complex quantities. The normalization condition on the wave function then relates Nk

and Rk as follows:

|Nk|2 =

(

Rk +R∗
k

π

)1/2

. (10)

Therefore, the only non trivial aspect of the quantum state is encoded in the time dependence of the function
Rk(η). It can be shown that (for details, see Appendix A), if we introduce a function µk(η) through the relation
Rk = −

(

i a2/2
)

(µ′
k/µk), then µk satisfies the differential equation

µ′′
k + 2

a′

a
µ′
k + k2µk = 0 (11)

which is the same as the classical equation of motion satisfied by the oscillator variable qk. We find that the pertur-
bation spectrum (8) corresponding to the wave function (9) can be expressed as (see Appendix A)

k3 PΦ(k) =
k3

2π2

( |µk|2
W (k)

)

, (12)

where W (k) is a k-dependent constant determined by the Wronskian condition for µk [cf. Eq. (A5)].
Since the differential equation (11) has real coefficients, if sk is a solution, so is s∗k and the general solution is a

linear superposition of the form, say, µk = [A(k) sk + B(k) s∗k]. The quantum state ψk(qk, η), however, depends only
on Rk which is independent of the overall scaling of µk. This feature translates into the power spectrum (12) as well;
a global scaling of µk also changes the Wronskian W (k) leaving

[

|µk|2/W (k)
]

invariant. Hence, we can ignore the
overall scaling in µk. We shall set A(k) to unity and choose the Wronskian W (k) to be

W (k) = 1− |B(k)|2. (13)

Then, the power spectrum (12) reduces to

k3 PΦ(k) =
k3

2π2

(

[

1 + |B(k)|2
]

|sk|2 + 2Re. [B(k) s∗k2]
1− |B(k)|2

)

. (14)
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(In the Heisenberg picture, one usually introduces the Bogoliubov coefficients α(k) and β(k). These coefficients are
related to B(k) through the relation: B(k) = [β(k)/α(k)]. In terms of α(k) and β(k), the Wronskian condition (13)
reduces to the standard normalization condition, viz.

(

|α(k)|2 − |β(k)|2
)

= 1.) The dynamics imposes no restrictions
on the form of B(k), which is related to the choice of the quantum state at any specified time. The spectrum evidently
depends on B(k) and with a suitable choice for B(k) we can generate any, given, reasonable spectrum.

A. Squeezing and instantaneous particle content of the quantum state

We shall see concrete examples of this result and its consequences for the case of power law inflation in the following
sections. But, before we do that, let us try and understand what the wave function (9) implies. The wave function (9),
in general, describes what is referred to in the literature as a squeezed state (see, for e.g., Refs. [30]). Squeezed states
for a given mode qk are described by two parameters, say, rk and ϕk and the quantity Rk can be related to these two
parameters as follows [30]:

Rk =

(

k a2

2

) (

cosh rk + e2iϕk sinh rk
cosh rk − e2iϕk sinh rk

)

. (15)

This, however, does not lead to any deeper insight in this particular case.
An alternative procedure, which is physically better motivated, is to compare the quantum state (9) with the

instantaneous ground state at any given time. We recall that the oscillators have the frequency k and a time
dependent mass a2(η). The ground state of a harmonic oscillator with the frequency k and mass a2(η) will depend
on qk as exp−[(k/2) a2 q2

k
]. Suppose we are given a specific quantum state determined by the function Rk(η). We

can attempt to solve the equation Rk(η) = [k a2(η)/2] for η determining a function, say, η̄(k). If such a real solution
can be obtained, then we can interpret our quantum state as the ground state for the mode qk at the moment of
time η̄(k). In general, however, this will not be possible since Rk(η) is complex. (One exception is in the adiabatic
approximation, in which the mode µk is chosen such that that Rk ≈ (k a2/2) so that this condition is identically
satisfied; as to be expected, the state evolves as an adiabatic vacuum in this case.)
More generally, one can expand our quantum state in terms of the instantaneous states of the harmonic oscillator at

any given time η, thereby identifying its particle content. At any given time η, the instantaneous ground and excited
states of the oscillators qk can be described by the wave functions

φn (qk, η) = (2n n!)
−1/2

(

k a2

π

)1/4

Hn

(√
k a qk

)

exp−
(

k

2
a2 q2

k
+ iEn η

)

, (16)

where Hn are the Hermite polynomials, En = [(n + (1/2)) k] and n = 0, 1, 2, . . .. We can now decompose the actual
wave function ψk (qk, η) in terms of the above instantaneous wave functions as follows:

ψk (qk, η) =
∞
∑

n=0

cn(k, η)φn (qk, η) e
iEnη, (17)

where the decomposition amplitude cn is given by the integral

cn(k, η) =

∞
∫

∞

dqk ψk (qk, η) φ
∗
n (qk, η) . (18)

On evaluating this integral, we find that the amplitude cn corresponding to the odd n’s vanish, while the amplitude
for the even n’s are given by

c(2n)(k, η) = ∆k

(

√

(2n)!

2n n!

)

Γn
k , (19)

where

∆k = Nk

(

k a2

π

)1/4 (
2πiµk/a

2

µ′
k + ik µk

)1/2

(20)
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is a n-independent normalization and

Γk = −
(

µ′
k − ik µk

µ′
k + ik µk

)

. (21)

The probability Pk(n) for our quantum state to be in the (2n)-th excited state of the instantaneous harmonic oscillator
mode can be thought of as the probability for existence of n pairs of particles at the time η. This is given by

Pk(n) ≡ |c(2n)(k, η)|2 = Pk(0)

(

(2n)!

n!2

)( |Γk|2
4

)n

(22)

and the generating function Gk(σ) for this pair creation probability can be expressed in closed form as follows:

Gk(σ) ≡
∞
∑

n=0

Pk(n)µ
n =

Pk(0)

(1− σ |Γk|2)1/2
=

(

1− |Γk|2
1− σ |Γk|2

)1/2

. (23)

The last equation follows from explicitly calculating Pk(0) or—more simply—by noticing that Pk(n) is normalized
and hence Gk(1) = 1. Given this generating function one can compute various moments of the created particles. In
particular, the mean number of particles, which are present at the time η (obtained by doubling the mean number of
pairs) is given by

〈nk〉 =
|Γk|2

1− |Γk|2
. (24)

These equations exhibit the time dependent particle content of our quantum state and it can be computed once the
function µk(η) is specified. Though, 〈nk〉 can not be interpreted as particles with respect to the in-vacuum at late
times, it is related in a simple manner to the energy density. The expectation value of the Hamiltonian operator
corresponding to the oscillator qk, say, Ek, can be evaluated using the wave function (9). We obtain that

Ek =

(

a2

2W (k)

)

(

|µ′
k|2 + k2 |µk|2

)

(25)

and, on using the expressions (21), (24) and (25), we find that Ek and 〈nk〉 are related as follows:

Ek =

(

〈nk〉+
1

2

)

k. (26)

The energy density of the quantum scalar field is then given by

ρ =
1

2π2a4

∞
∫

0

dk k2 Ek =
1

2π2a4

∞
∫

0

dk k3
(

〈nk〉+
1

2

)

. (27)

We will require these results while discussing the issue of back reaction due to the modified initial conditions.

B. Wigner function

Another possible way of understanding the physical content of a quantum state, especially its classicality, is through
the Wigner function (see, for e.g., Ref. [31]). Given a wave function ψk(qk, η), the Wigner function Wk (qk, pk, η) is
defined as [31]

Wk (qk, pk, η) =
1

2π

∞
∫

∞

duk ψ
∗
k

[

(qk +
1

2
uk), η

]

ψk

[

(qk − 1

2
uk), η

]

eipkuk . (28)

The Wigner function corresponding to the Gaussian wave function (9) can be expressed as

Wk (qk, pk, η) =
1

π
exp−

[

q2
k

σ2
k(η)

+ σ2
k(η) (pk − Jk(η) qk)

2

]

, (29)
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where σk and Jk are given by

σ2
k = (Rk +R∗

k)
−1 and Jk = i (Rk −R∗

k) . (30)

On using the relations (A3) and (A5), we find that the quantities σk and Jk can be written in terms of the function
µk and the Wronskian W (k) as follows:

σ2
k =

(

2 |µk|2
W (k)

)

; Jk =

(

a2

2

)

d ln |µk|2
dη

. (31)

The quantum versus classical nature of the wave function depends on the evolutionary behaviour of σk(η) and Jk(η).
It is possible for evolution to lead to a Wigner function sharply peaked around some region in the phase space, starting
from a Wigner function which is uncorrelated in phase space [32]. For example, in the case of exponential inflation
and the Bunch-Davies vacuum for the initial state which we will discuss later on (see Eqs . (43) and (55)), we we will
find that

σ2
k =

(

H2

k3

)

(

1 + k2η2
)

; Jk =

(

k2

H2 η

)

(

1 + k2η2
)−1

. (32)

In such a case, Jk(η) → 0, σ2
k → ∞ at early times (η → −∞) which corresponds to a state sharply peaked around

the q-axis. At late times (η → 0), however, we have Jk(η) → ∞ with a finite σ2
k which corresponds to a state sharply

peaked around the p-axis. In fact, whenever kη → 0 (corresponding to super Hubble scales), the Wigner function
gets peaked around a classical trajectory. This can be verified more explicitly by studying the classical solution for
our problem. Classically, for the case of exponential inflation, we can write the general solution for qk as:

qk = 2Re

[

−LHη
(

1 +
i

kη

)

eikη
]

(33)

where L(k) is an arbitrary complex number. Writing L(k) = L(k) ei l(k), this solution becomes

qk = −2LHη cos [kη + l(k)] +
2LH

k
sin [kη + l(k)] . (34)

The conjugate momentum pk =
(

a2 q′
k

)

corresponding to the above qk is then given by

pk = − (2Lk/Hη) sin [kη + l(k)] . (35)

The trajectory of the system in the phase space is given by

qk
L

=
H2η

k2L
pk ± 2Hη

(

1− H2η2

4L2k2
p2
k

)1/2

(36)

At late times (when η → 0) or at super Hubble scales, we have (qk/pk) → 0 indicating a trajectory along the vertical
p axis, which is precisely what we get from the Wigner function. On the other hand, one cannot naively take the
early time limit (when η → −∞) with finite qk, pk in the trajectory in Eq.(36) since qk becomes imaginary. One
can, however, take the limit of η → −∞, pk → 0 keeping ηpk constant; in this limit, we obviously get a trajectory
along the horizontal pk = 0 axis, which matches with the analysis based on the Wigner function. Incidentally, notice
that the Hamiltonian for our system has a kinetic energy term K ∝ p2/a2 ∝ (pη)2 and a potential energy term
U ∝ a2q2 ∝ (q/η)2. At late times, potential energy dominates over kinetic energy leading to near classical behaviour
peaked around q = 0; on the other hand, at early times if we let η → −∞ keeping (pη) fixed, the kinetic energy
remains finite and dominates over the potential energy. This is the quantum regime. (We plan to explore these ideas
in detail in a separate publication).

III. POWER LAW AND EXPONENTIAL INFLATION

A. Standard initial conditions

Let us now apply the above formalism to the case of power law inflation. Power law inflation corresponds to the
situation wherein the scale factor a(t) grows with t as

a(t) = a0 t
p, (37)
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where p > 1. In terms of the conformal time η, this scale factor can be written as

a(η) = (−H η)
(γ+1)

, (38)

where γ and H are given by

γ = −
(

2p− 1

p− 1

)

and H = (p− 1) a
1/p
0 . (39)

Note that γ ≤ −2 with γ = −2 corresponding to exponential inflation. Also, the quantity H denotes the characteristic
energy scale associated with inflation and, in the case of exponential inflation, it exactly matches the Hubble scale.
On writing µk = (fk/a) in the differential equation (11), we find that fk satisfies the following equation:

f ′′
k +

[

k2 −
(

a′′

a

)]

fk = 0. (40)

In a Friedmann universe described by the scale factor (38), the general solution to this differential equation can be
written as (see, for e.g., Ref. [33], p. 362)

fk(η) =

√
πη

2

(

e−(iπγ/2) H
(1)

−(γ+ 1

2 )
(kη) + B(k) e(iπγ/2) H(2)

−(γ+ 1

2 )
(kη)

)

, (41)

where H
(1)
ν and H

(2)
ν are the Hankel functions of the first and the second kind, respectively. The k-dependent constant

B(k) is to be fixed by choosing suitable initial conditions for each of the modes. For the above solution, it can be
easily shown that the Wronskian condition (A5) leads to the relation (13) between B(k) and W (k).
Let us first briefly review the standard theory (see, for e.g., Ref. [28]) in which the initial conditions are imposed on

sub-Hubble scales, i.e. when the physical wavelengths (k/a)−1 of the modes are much smaller than the Hubble radius
H−1. A natural choice for the initial condition will be the one in which each of the oscillators qk is in its ground state
at sub-Hubble scales. This condition implies that the wave function (9) has the following asymptotic form:

lim
(k/aH)→∞

ψk (qk, η) →
(

k a2

π

)1/4

exp−
(

k

2
a2 q2

k
+ i

k

2
η

)

(42)

which, in turn, requires that, as (k/aH) → ∞, we need to have Rk →
(

k a2/2
)

and Nk →
(

k a2/π
)1/4

e−ikη/2. These

conditions can be satisfied provided fk → (eikη/
√
2k) as (k/aH) → ∞ [cf. Eqs. (A3), (A4) and (A6)]. This can be

achieved by setting B(k) = 0 in Eq. (41), so that we have

fk(η) =

(√
πη

2

)

e−(iγπ/2)H
(1)

−(γ+ 1

2 )
(kη) (43)

and this choice corresponds to what is known as the Bunch-Davies vacuum [27]. Note that, according to the Eq. (13),
B(k) = 0 impliesW (k) = 1. Therefore, on substituting the above fk in Eq. (12) and imposing the condition of Hubble
exit, viz. that (k/a) = (z H), we obtain the spectrum of perturbations to be (for a recent discussion, see, for e.g.,
Ref. [34])

k3 PΦ(k) = C(z)

(H2

2π2

) (

k

H

)2(γ+2)

, (44)

where C(z) is given by

C(z) =
(π

4

)

∣

∣

∣

∣

H
(1)

−(γ+ 1

2 )
[(γ + 1) z]

∣

∣

∣

∣

2

|(γ + 1) z|−(2γ+1)
. (45)

In the limit of z → 0, this expression simplifies to [34]

C(0) =

(

2−2(γ+1)

2π

) ∣

∣

∣

∣

Γ

[

−
(

γ +
1

2

)]∣

∣

∣

∣

2

. (46)
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In the case of exponential inflation, corresponding to γ = −2, the perturbation spectrum in Eq. (44) reduces to

k3 PΦ(k) =

(

1 + z2

2

) H2

2π2
(47)

which is a spectrum that is exactly scale invariant. (Note that, for exponential inflation, H = H .) As we pointed out
before, the numerical value of the amplitude depends on whether we evaluate the expression at z = 1, z = (2π) or as
z → 0.
Let us now consider a more general situation with B(k) 6= 0. It is convenient to write

B(k) = B(k) exp [i b(k)] , (48)

so that the resulting power spectrum can be expressed as [on assuming that Hubble exit occurs at (k/a) = (z H)]

k3 PΦ(k) = C(z)

(H2

2π2

) (

k

H

)2(γ+2)
[

1−B2(k)
]−1

(

1 +B2(k) + 2B(k) cos [b(k) + πγ − 2θ]

)

, (49)

where θ is the phase of the Hankel function H
(1)
ν at Hubble exit, given by the relation

H
(1)

−(γ+ 1

2 )
[(γ + 1)z] =

∣

∣

∣

∣

H
(1)

−(γ+ 1

2 )
[(γ + 1)z]

∣

∣

∣

∣

eiθ. (50)

If we write cos [b(k) + πγ − 2θ] = d(k), then, the power spectrum (49) reduces to

k3 PΦ(k) = C(z)

(H2

2π2

) (

k

H

)2(γ+2)(
1 +B2(k) + 2B(k) d(k)

1−B2(k)

)

, (51)

where −1 ≤ d(k) ≤ 1.
At super-Hubble scales (i.e. as z → 0), the above power spectrum bears a simple relation to the mean number of

particles 〈nk〉 as given by Eq. (24). We find that they are related as follows:

k3 PΦ(k) ≃
(H2

π2

)

(

〈nk〉 [(γ + 1) z]
2
)

(

k

H (γ + 1) z

)2(γ+2)

. (52)

This relation can be easily obtained by using the expression (25) for Ek and Eq. (26) which relates Ek to 〈nk〉. At
super-Hubble scales (i.e. as (kη) → 0), the general solution for fk as given by Eq. (41) reduces to

fk(η) ∝
1√
k
(kη)(γ+1). (53)

On using this expression, it is straightforward to show that µ′
k = (fk/a)

′ is sub-dominant to µk at super-Hubble
scales. Then, from Eqs. (25) and (26), we have

Ek ≃ k2a2

2

( |µk|2
W (k)

)

≃ 〈nk〉 k. (54)

It is then evident from the definition (12) that the power spectrum will be proportional to the mean number of particles
at super Hubble scales. On using the above result, one can easily arrive at the relation (52), by first imposing the
condition for Hubble exit [viz. that (k/a) = (z H)] and then taking the limit z → 0. In the limit of exponential
inflation (i.e. as γ → −2), we find that

[

k3 PΦ(k)
]

≃
(

H2 〈nk〉 z2/π2
)

at super-Hubble scales.
In the next section, we shall show that any modified spectrum obtained from a high energy model can be constructed

in the standard theory by simply choosing suitable forms for the functions B(k) and b(k). But, before we do that,
we shall discuss an alternative procedure for imposing the initial conditions wherein the initial condition for different
modes are imposed at different times.

B. Specifying initial conditions when [k/a(ηk)] ≃ L−1

P

In the last section, we chose the quantum state by imposing a condition as (k/aH) → ∞ and one may question
whether we are sure of the short distance, sub-Planck scale physics well enough to make this choice. An alternative
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procedure, discussed extensively in the literature [16], attempts to address this question by choosing to impose the
initial conditions for the different oscillators at different times. Specifically, one chooses the initial condition for the
oscillator qk at a time ηk such that [k/a(ηk)] ≃ L−1

P , where LP is the Planck length. The initial state of the oscillator
uniquely determines the function B(k) and the corresponding power spectrum can then be constructed using Eq. (49).
However, it should be emphasized here that, apart from the fact that it has to be consistent with the observations,
there exists no restrictions on the initial state to be chosen at ηk.
To illustrate the point, let us consider the case of exponential expansion for which a(η) = (−Hη)−1. Let us

assume that the oscillator qk is in the ground state at a given time, say, ηi, which then requires that, at this instant,
Rk = −

(

i a2/2
)

(µ′
k/µk) =

(

k a2/2
)

. For the case of exponential expansion, the general solution for fk as given by
Eq. (41) can be expressed in terms of simple functions as follows (see, for instance, Ref. [33], pp. 437–438):

fk(η) =
1√
2k

[(

1 +
i

kη

)

eikη + B(k)
(

1− i

kη

)

e−ikη

]

. (55)

On imposing the condition Rk =
(

k a2/2
)

at ηi, we can determine the function B(k) to be

B(k) = (1 + 2i kηi)
−1

e2ikηi . (56)

Our original choice of the Bunch-Davies vacuum corresponds to assuming ηi → −∞ so that B(k) vanishes for all k.
The modified procedure will be to choose ηi differently for different k by imposing the initial condition at, say,
[k/a(ηk)] = L−1

P . For exponential inflation, this translates to (k ηk) = −(HLP)
−1 ≡ −ξ−1, a constant. For ηi = ηk,

the B(k) above reduces to [16, 20]

B(k) = [1− (2i/ξ)]
−1

e−(2i/ξ) (57)

which is a constant independent of k. Thus the k-dependence of the power spectrum remains unchanged when the
initial condition on the k-th oscillator is imposed at a time such that [k/a(ηk)] = constant. The amplitude of the
power spectrum, of course, gets scaled by a k−independent factor; this is of no observable consequence since we do
not know how to obtain the amplitude from a first principle theory anyway.
The power spectrum corresponding to the above B(k) when evaluated at Hubble exit, say, when (k/a) = (z H), is

given by

k3 PΦ(k) =

(

1 + z2

2

)(H2

2π2

)[

1 +
ξ2

2
+

(

(z2 − 1) ξ2 − 4z ξ

2 (1 + z2)

)

cos

(

2

ξ
− 2z

)

+

(

(z2 − 1) ξ + z ξ2

1 + z2

)

sin

(

2

ξ
− 2z

)]

.

(58)
This expression is exact and shows that the spectrum is strictly scale invariant, but is modified from the original result
[viz. Eq. (47)] by a multiplicative factor independent of k. This factor depends on two parameters: (i) ξ = (HLP)
which measures the energy scale of inflation relative to the Planck scale and (ii) z which is the ratio of the Hubble
radius and the physical wavelength of the perturbation. As we explained before, we can evaluate the power spectrum
either at z = 1 or at z = (2π). For z = 1, the spectrum (58) reduces to

k3 PΦ(k) =

(H2

2π2

) [

1 +
ξ2

2
− ξ cos

(

2

ξ
− 2

)

+
ξ2

2
sin

(

2

ξ
− 2

)]

, (59)

while, for z = (2π), we get

k3 PΦ(k) =

(

1 + 4π2

2

) (H2

2π2

) [

1 +
ξ2

2
+

(

(4π2 − 1) ξ2 − 8π ξ

2 (1 + 4π2)

)

cos

(

2

ξ

)

+

(

(4π2 − 1) ξ + 2πξ2

1 + 4π2

)

sin

(

2

ξ

)]

.

(60)
The numerical value of these modified amplitudes will depend on the parameter ξ which is expected to be very small
compared to unity for GUT scale inflation. For ξ ≪ 1, one can easily obtain the leading order terms of polynomial
expressions involving ξ, but determining cos(1/ξ) and sin(1/ξ) for ξ ≪ 1 requires care. Since, one can easily replace
(1/ξ) by, say, [(1/ξ) + (π/2)], in the arguments of trigonometric functions to the leading order, these expressions are
intrinsically ambiguous. For ξ ≪ 1 and z = 1, we get

k3 PΦ(k) ≃
(H2

2π2

)

[1− ξ F (2/ξ)] , (61)

where F is a rapidly oscillating cosine function. (Note that, if one evaluates the spectrum at super Hubble scales, i.e.
as z → 0, then, instead of the cosine, one gets a sine function [16].) Similarly, when ξ ≪ 1, for z = (2π), we have

k3 PΦ(k) ≃
(

1 + 4π2

2

) (H2

2π2

) [

1−
(

4π ξ

1 + 4π2

)

F (2/ξ) +

(

(4π2 − 1) ξ

1 + 4π2

)

G(2/ξ)

]

, (62)



11

where G is a sine function and F , as above, is a cosine function. In each of these cases, a different choice for the
sub-leading phase in the argument of the trigonometric function can make cosine into sine and vice versa. Hence,
only the profile of the oscillating functions are of relevance in the limit of ξ ≪ 1, though the full expressions are often
quoted in literature.
Note that the quantum state with the choice of B(k) in Eq. (57) is a state with the initial condition for all the

oscillators specified at a given moment of time. Thus the above analysis maps the prescription of specifying the
quantum state for different oscillators at different times to specifying the initial condition at a given time. We can
now explore the physical content of this quantum state at any given η in terms of, for e.g., the mean occupation
number 〈nk〉 in the instantaneous harmonic oscillator states. On using the expressions (21), (24), (55) and (57), we
find the particle content of this quantum state to be

〈nk〉 =
(

1

4k2η2

) [

1 +
ξ2

2
+ ξ2 k2η2 − ξ

2
(ξ − 4 kη) cos

(

2

ξ
+ 2kη

)

− ξ (1 + ξ kη) sin

(

2

ξ
+ 2kη

)]

. (63)

This expression has several interesting features.
First, let us consider very early times (i.e. as η → −∞) or very short wavelengths (i.e. as k → ∞). It is precisely

this limit which was considered uncertain due to trans-Planckian effects which motivated imposing the initial condition
for different modes at different times; therefore, it is this limit which is of some interest to explore, to understand
what kind of effective quantum state at η = constant → −∞ will lead to the vacuum state for the k-th mode when
(kη) = −ξ−1. We see from Eq. (63) that the mean occupation number has two sets of contributions. The first three
terms in Eq. (63) is secular, while the last two terms are oscillatory. The secular term increases monotonically from
〈nk〉 =

(

ξ2/4
)

at η = −∞. Thus, in the trans-Planckian limit (i.e. as η → −∞ or as k → ∞) all the modes have the

same mean excitation (ξ2/4). (The oscillatory terms do not contribute in this limit.)
Second, we do know that 〈nk〉 must vanish for (kη) = −ξ−1, since this is the condition we used to choose this state.

As can be directly verified, this is indeed true for the expression in Eq. (63), but occurs because of a cancellation
between the secular and the oscillatory terms. At later times, the secular terms dominate the oscillatory terms and
〈nk〉 increases on the average with superimposed oscillations. (We stress the fact that 〈nk〉 is computed in terms
of the instantaneous harmonic oscillator modes; one should not think of them as particles which are produced with
respect to the in-out states.) Thus, for each of the modes, we start with 〈nk〉 = (ξ2/4) as η → −∞, evolve to 〈nk〉 = 0
at (kη) = −ξ−1 and grow to

〈nk〉 =
(

1

4z2

) [

1 +
ξ2

2
+ ξ2 z2 − ξ

2
(ξ + 4 z) cos

(

2

ξ
− 2z

)

− ξ (1− ξ z) sin

(

2

ξ
− 2z

)]

(64)

at Hubble exit. We see that the alternative prescription of specifying the initial condition when the physical wavelength
of the mode is comparable to the Planck length (which sounds reasonable at first sight) is equivalent to assuming a
quantum state at a η= constant hypersurface, with very specific properties. It can be realized only if unknown physical
effects of the trans-Planckian sector acts in a particular manner to populate the modes with a specific prescription.
It is far from clear whether this will be possible in a generic context.

IV. MIMICKING THE TRANS-PLANCKIAN EFFECTS

We shall now turn to the question of choosing an initial state such that a given power spectrum of perturbations is
reproduced. Let us assume that, in the case of power-law inflation, a ‘trans-Planckian’ theory leads to the following
spectrum:

[

k3 PΦ(k)
]

M
= C(z)

(H2

2π2

) (

k

H

)2(γ+2)

M(k), (65)

where M(k) is the modification factor with, of course, M(k) ≥ 0 for all k. (Alternatively, let us suppose that a future
CMB observation leads to such a spectrum, starting a hectic flurry of theoretical activity to explain it!) Evidently,
the modified spectrum (65) can be constructed from the spectrum (51) in the standard theory, provided we can find
a positive definite function B(k) that satisfies the condition

[

1 +B2(k) + 2B(k) d(k)
]

=
[

1−B2(k)
]

M(k). (66)

This is a quadratic equation in B(k) for each value of k and, if we choose d(k) = ±1, then, we find that the non trivial
and positive definite roots for B(k) can be expressed in terms of M(k) as follows:

B(k) =
|M(k)− 1|
M(k) + 1

. (67)
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Given a M(k), this expression then allows us to reproduce the modified spectrum in the standard theory. However,
note that the B(k) we have constructed above is not unique as it corresponds to a particular value of the phase b(k)
in Eq. (48) such that d(k) = ±1. Clearly, a whole class of such functions can be constructed, with different choices
for d(k), but, as we shall see, this particular choice is sufficient for our purpose.
As we had mentioned in Section I, the Planck scale modifications to the standard inflationary perturbation spectrum

have been obtained in the literature by considering various high energy models for the scalar field [7]–[20]. Most of
these modified spectra deviate from the standard scale invariant spectrum at the ultra-violet end. On the other hand,
the lower power in the quadrupole and the octopole moments of the CMB as measured by WMAP [6]—if it survives
further releases of WMAP data!—requires a suppression of power in the infra-red end of the spectrum [35, 36]. Such
spectra have also been obtained in certain high energy models of the scalar field [19, 22]. It is interesting to determine
how these different modified spectra can be constructed by choosing suitable initial conditions on the scalar field in
the standard theory.
In the following subsections, we shall explicitly construct the function B(k) for four modified power spectra that

have either been proposed to fit the observational data or have been obtained from a high energy model of the scalar
field.

A. Modified spectrum I

Recently, the following spectrum was obtained in a power law inflationary scenario using a Lorentz invariant modified
theory [19]:

[

k3 PΦ(k)
]

M
= C(1)

(H2

2π2

) (

k

H

)2(γ+2)
[

1− C̄

(H
kc

) (

k

H

)(γ+2)
]

, (68)

where kc denotes the high energy scale, C̄ is given by

C̄ =
[

2C(1) (γ + 1)
3(γ+1)

]−1

(69)

and it is assumed that 10−5 . (H/kc) . 10−3. (However, it should be mentioned here that this spectrum is not valid
for arbitrarily small values of k [19].) In fact, a similar spectrum have also been obtained in non-commutative models
of inflation [15, 22]. These spectra exhibit a suppression of power at the large scales, a feature that could be relevant
to the low quadrupole moment observed in the CMB [35]. It is straightforward to see that, for z = 1, the function
B(k) corresponding to the modified spectrum (68) is given by

B(k) =

[

(

2

C̄

) (H
kc

)−1 (
k

H

)−(γ+2)

− 1

]−1

. (70)

For γ < −2, we have B → k(γ+2) → 0 as k → ∞. This implies that, while, towards the infra-red end, the initial state
is different from the Bunch-Davies vacuum, the Bunch-Davies vacuum structure is retained at the ultraviolet end.

B. Modified spectrum II

Another modified primordial spectrum that has been proposed (see, for e.g., Refs. [36]) in order to account for the
low quadrupole moment observed in the CMB, is the following:

[

k3 PΦ(k)
]

M
= Ak(ns−1)

[

1− e−(k/k1)
α
]

, (71)

where A and ns are the scalar amplitude and index of the standard spectrum. The pivot scale k1 and the constant α
(which turns out to be a positive number of the order of unity) are chosen to fit the CMB data. If we now assume
that amplitude A and the index ns of the above modified spectrum are the same as those in the case of power-law
inflation in the standard theory [cf. Eq. (44)], then, we find that B(k) is given by

B(k) =
[

2 e(k/k1)
α − 1

]−1

. (72)

Note that B(k) → 1 as k → 0 and Bk ≃ e−(k/k1)
α → 0 for large k. Once again, the vacuum structure at the ultraviolet

end is not modified.
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C. Modified spectrum III

Another modified spectrum whose effects on the CMB has also been analyzed is the following spectrum [21]

[

k3 PΦ(k)
]

M
=

( H2

2 π2

)(

1− ξ

(

k

k2

)−ǫ

sin

[

2

ξ

(

k

k2

)ǫ])

, (73)

where ξ ≃ 10−3, ǫ ≃ 10−2 and k2 is a pivot scale. In order to match the leading term in the spectrum, let us assume
that the inflating background undergoes exponential expansion and that the spectrum is evaluated at z = 1. It is
then straightforward to construct B(k) for the above spectrum and it is given by

B(k) =

(

ξ (k/k2)
−ǫ |sin [(2/ξ) (k/k2)ǫ]|

2− ξ (k/k2)
−ǫ

sin [(2/ξ) (k/k2)
ǫ
]

)

. (74)

D. Modified spectrum IV

A more general modification of spectrum one can envisage is a spectrum which has corrections at both the infra-red
and the ultra-violet ends. If we now assume that the standard spectrum is modified in the infra-red as in Eq. (71)
and has the same correction at the ultra-violet end as in Eq. (73), then the complete spectrum will be given by

[

k3 PΦ(k)
]

M
= Ak(ns−1)

(

1− e−(k/k1)
α − ξ

(

k

k2

)−ǫ

sin

[

2

ξ

(

k

k2

)ǫ])

, (75)

where A and ns are the scalar amplitude and index of the standard spectrum and k1 and k2 are pivot scales such that
k1 ≪ k2. Also, as in the earlier case, let α be a positive constant of the order of unity. The corresponding B(k) can
be easily obtained to be

B(k)=

(

∣

∣

∣
e−(k/k1)

α

+ ξ (k/k2)
−ǫ sin [(2/ξ)(k/k2)

ǫ]
∣

∣

∣

2− e−(k/k1)α − ξ (k/k2)
−ǫ sin [(2/ξ)(k/k2)

ǫ]

)

. (76)

These examples demonstrate the fact that the modification of the spectrum due to ‘trans-Planckian considerations’
is degenerate with the choice of the initial quantum state. Without further input, such as an assumption for the
choice of initial quantum state, observations cannot distinguish between these two physical effects.

V. MODIFIED SPECTRA AND BACK REACTION

An issue that remains unresolved in obtaining the modified spectra is whether the conditions that lead to modifica-
tions of the standard spectrum will also lead to a large back reaction on the inflating background. In particular, will
the energy in the quantum field dominate the inflaton energy thereby, possibly, terminating inflation? The approach
we have adopted here allows us to address this issue along the following manner.
Since the modified spectra from a high energy theory can be obtained from the standard theory with a suitable

choice of initial conditions on the modes, we are probably justified in using these modes to evaluate the energy density
of the quantum scalar field (for an earlier discussion on this point, see the first reference listed under Ref. [12]). In
what follows, we shall show that the energy density of the quantum scalar field above the Bunch-Davies vacuum is
finite only if |M(k)− 1| decays faster than k−2 for large k and M(k) goes as kλ with −2 < λ < 2 for small k. Also,
we shall restrict our attention to the easily tractable case of exponential inflation.
Recall that the energy density of the quantum scalar field is given by Eq. (27) with the quantity Ek to be evaluated

using Eq. (25). In the case of exponential inflation, as we had mentioned earlier, the general solution for fk can be
expressed in terms of simple functions [cf. Eq. (55)]. On substituting the solution (55) in the expression (25), we find
that the energy density per mode of the quantum field is given by

Ek =

(

1

4kη2

)

[

1−B2(k)
]−1

(

[

1 +B2(k)
] (

1 + 2 k2η2
)

− 2B(k) cos[b(k)− 2kη] + 4B(k) (kη) sin[b(k)− 2kη]

)

. (77)
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In the Bunch-Davies vacuum, which corresponds to B(k) = 0, this expression for Ek reduces to

EBD
k =

k

2
+

1

2kη2
(78)

and it known that the corresponding energy density (when regularized by point-splitting) is given by [27, 37]

ρBD = −
(

29

960 π2

)

H4. (79)

This energy density is much smaller than the energy density in the classical field that drives inflation. The energy
density of the scalar field above the Bunch-Davies vacuum is then given by Eq. (27) with Ek replaced by Ēk, where

Ēk = Ek − EBD
k =

(

1

2kη2

)

[

1−B2(k)
]−1

(

B2(k)
(

1 + 2 k2η2
)

−B(k) cos[b(k)− 2kη] + 2B(k) (kη) sin[b(k)− 2kη]

)

.

(80)
In order to understand the behavior of the above Ēk for large k, we can ignore the terms containing the sine and

the cosine functions as they will oscillate rapidly in this limit. On neglecting these terms and, on making use of the
relation (67) between B(k) and M(k), we find that, for large k, the above expression for Ēk can be written in terms
of M(k) as follows:

Ēk ≃
(

[M(k)− 1]
2

4M(k)

)

k. (81)

For the energy density ρ corresponding to this Ēk to be finite in the ultraviolet limit, the integral of
(

k2 Ēk
)

over k
should converge at large k. It is easy to see that this condition cannot be satisfied if M(k) ∝ kν for any value of ν.
For all values of ν, this expression varies as k(3+ν) at large k and hence the integral is divergent. To obtain a finite
result, we need M(k) → 1 at large k. If we now assume that M(k) ∝

(

1± k−δ
)

for large k, it is then clear that the

energy density corresponding to the above Ēk will converge only if δ > 2. Thus, the deviations from the standard
spectra should die down faster than k−2 for large k.
One can also investigate the infrared limit in a similar fashion. As k → 0, we find that the leading divergence arises

due to the first term in the expression (80) for Ēk so that, in this limit, we have

Ēk ∝
(

[M(k)− 1]2

M(k) k

)

. (82)

If we now assume that M(k) ∝ kλ as k → 0, then the finiteness of the energy density ρ corresponding to this Ēk
requires that −2 < λ < 2. It is therefore possible to enhance or reduce power in the infrared limit within a range
and still maintain finite energy density. Modifications of the form [M(k)− 1] ∝ kε with ε > 0 are also allowed and
there are no restrictions on ε in this case. (We stress that the finiteness of ρ is a necessary condition for ignoring
back reaction, but it is not sufficient. The latter will require comparing the energy density in the quantum field with
the background energy density which is difficult to do without assuming a specific model.) Clearly, amongst the four
modified spectra that we have considered in the last section, only the second spectrum (provided α < 2) will lead to
a finite energy density for the case of exponential inflation.
Our expression in Eq. (81) shows that a constant M(k) independent of k leads to a divergent energy density above

the Bunch-Davies vacuum. In particular, the state obtained by giving initial conditions for each of the modes at
[k/a(ηk)]=constant (leading to a B(k) that is independent of k), produces a divergent contribution to the energy
density and hence is suspect as a valid quantum state. It is sometimes argued in the literature that this state has the
same energy density as the Bunch-Davies vacuum along the following lines: When B is independent of k, we are dealing
with mode functions of the form (fk +B f∗

k ), with fk given by Eq. (55), which belong the set of so called α-vacua [38].
It is possible to construct a regularization scheme such that the divergences which arise at the coincidence limit of
the Greens function in this case, is the same as that in the case of B = 0. Such a subtraction will lead to ρ = ρBD

for these states. In our approach, this is equivalent to ignoring the contributions in Eq. (81) when M(k) = M0 is a
constant different from unity. Since this leads to Ēk ∝ k, one can think of M0 as the (constant) occupation number
〈nk〉 for all k; the regularization involves ignoring all these ‘particles’ in measuring the energy density.
We believe this argument is spurious for two reasons. Firstly, a transparent and direct discussion in terms of

harmonic oscillators presented above gives a different result showing that M(k) =M0= constant leads to a divergent
energy density. So, at the least, the results depend on the explicit regularization procedure adopted. Secondly, in
a realistic model, we will have to deal with a weak dependence of B on k rather than no dependence. Then, the
argument based on α-vacua will no longer hold, irrespective of how weak this dependence is. The analysis given
above, however, is completely transparent and clear.
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VI. DISCUSSION

The fact that the measurements of the CMB anisotropies strongly indicate a primordial spectrum that is nearly
scale invariant already implies that the initial state of the quantum scalar field is a state that is ‘very close’ to the
Bunch-Davies vacuum. Clearly, sufficiently precise measurements of the anisotropies in the CMB can provide us with
the form the inflationary perturbation spectrum to a good accuracy. However, this information can at most help
us determine the initial state of the quantum scalar field in the standard theory and it is not sufficient to aid us in
discriminating between the various Planck scale models of matter fields. The reason being that, given a perturbation
spectrum, we should be able obtain the spectrum from any high energy model of the matter field by simply choosing
a suitable state in the modified theory just as we had done in the standard theory.
The above result can be obtained either in the Heisenberg picture or in the Schrodinger picture since these de-

scriptions are mathematically equivalent. We have, however, adapted the Schrodinger picture since the problem we
are discussing is essentially that of a harmonic oscillator with a time dependent frequency for which the intuition
available in the Schrodinger picture is of some value. Our discussion clearly shows that virtually any power spectrum
which is either observed in future or suggested by phenomenological models, can be reproduced by a suitable choice of
the quantum state. Evidently, without additional assumptions one cannot disentangle the dynamics from the initial
conditions and, hence, the CMB observations alone cannot act as a discriminator between different theoretical models.
There are several possible avenues for future work arising from this discussion. One particularly interesting question

will be the evolution of the quantum state of the universe into the future. Several recent observations [39] (as well as
not so recent observations, see Refs. [40]) suggest that the universe has just entered an accelerating phase dominated
by dark energy with an equation of state P ≈ −ρ. While the nature of this dark energy is unclear, it seems likely that
at least at sufficiently large scales it will act like a cosmological constant leading to a late time de Sitter phase [41].
It will be interesting to study the late time evolution of the quantum wave function of the scalar field. The de
Sitter phase in the future should lead to its own thermal fluctuations with a characteristic temperature and it will be
interesting to see how that can emerge.
Another issue of interest is the study of correlations across the horizon in the case of de Sitter spacetime. It has

been shown that the quantum entanglement of modes across the horizon can lead to a holographic description of
gravity [42]. The effects of this entanglement are easy to calculate when de Sitter spacetime is described in the static
coordinates. On the other hand, the time dependent Gaussian state used in this paper is more naturally tuned to
the Friedmann coordinates of the de Sitter spacetime. It will be worthwhile to relate these two descriptions and
understand how the correlations across the horizon arises in the time dependent background.
Finally, the description in terms of the wave function can be easily translated to one in terms of the path integral

kernel using the Feynman-Kac formula. This will allow one to provide a purely path integral derivation of the results
presented in this paper. All these issues are currently under investigation.

APPENDIX A: EVALUATING THE POWER SPECTRUM

Recall that the quantum state ψk of the time dependent oscillator qk was described by the Gaussian wave func-
tion (9). On substituting the wave function (9) in the Schrodinger equation (7) and equating the coefficients of qk
and q2

k
, we find that Nk and Rk satisfy the following differential equations:

i N ′
k =

RkNk

a2
, (A1)

i R′
k =

2R2
k

a2
− k2a2

2
, (A2)

where the prime, as before, denotes differentiation with respect to η. Let us now introduce a new quantity µk(η)
through the relation [28–30]

Rk = −
(

i a2

2

) (

µ′
k

µk

)

. (A3)

On substituting this expression in the above differential equation for Rk, we find that µk satisfies the differential
equation (11) which is the same as the classical equation of motion satisfied by the classical oscillator variable qk.
Also, in terms of µk, the differential equation (A1) can be integrated to obtain

Nk =

(

D(k)√
µk

)

, (A4)
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where D(k) is a k-dependent constant determined by the normalization condition (10). Note that the differential
equation satisfied by µk [viz. Eq. (11)] implies the Wronskian condition

(

µk µ
′
k
∗ − µ′

k µ
∗
k

)

= −
[

iW (k)/a2
]

, (A5)

where W (k) is a k-dependent constant. The relations (A3) and (A4) along with the above Wronskian condition and
the normalization condition (10) determine D(k) to be

D(k) =

(

W (k)

2π

)1/4

. (A6)

Thus, the solution to classical equation of motion allows us to construct the wave function for the corresponding
quantum problem [25, 28–30]. However, it should be pointed out here that, while qk is real, µk, in general, is a
complex quantity.
The power spectrum of the perturbations (8) is given by

k3 PΦ(k) =
k3

2π2

∞
∫

−∞

dqk |ψk|2 q2k =
k3 |Nk|2
2π2

∞
∫

−∞

dqk q
2
k e

−[(Rk+R∗

k
)q2

k], (A7)

where we have substituted the expression (9) for the wave function ψk. On carrying out the integral over qk in the
above equation and making use of the relation (10) and the Wronskian condition (A5), we obtain the power spectrum
to be

k3 PΦ(k) =
k3

2π2

( |µk|2
W (k)

)

(A8)

which is expression (12) we have quoted in the text.
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