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Abstract 

Recent experimental studies have shown that particle transfer across streamlines can be 

controlled passively using stratified flows of co-flowing streams at a finite Reynolds number.  

The stratification modifies the forces acting on particles through the curvature of the 

undisturbed velocity profile. In this study, we numerically analyze the particle migration in 

stratified flow of two liquids of different viscosities flowing parallel to each other between two 

infinite parallel plates. Particle migration in two different flow fields is considered: (i) Couette 

flow and (ii) Poiseuille flow. A numerical approach using an immersed boundary method is 

employed to perform two dimensional simulations and determine conditions when particle 

migration from one fluid to the other can occur. This has implications in separating particles 

from a fluid without a membrane. The effect of the viscosity ratio, flowrate ratio, Reynolds 

number and particle size on focusing position are analyzed to identify conditions under which 

the particle migrates from one fluid to the other. It is shown that the particle migrates to the 

fluid with a lower viscosity in case of stratified Couette flow when the holdup of the low 

viscous fluid is sufficiently high. In Poiseuille flow, particle migrates to the less viscous fluid 

beyond a critical flowrate ratio for a fixed viscosity ratio. This critical flowrate ratio increases 

with particle size. 

Keywords: Inertial focusing, Stratified flow, Particle migration and Immersed boundary 

method 
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1.Introduction 

Separation and sorting of micron-sized particles have important applications in 

diagnostics, chemical and biological analysis, food and chemical processing [1–4]. Specifically 

in diagnostics, it is often necessary to separate dead cells from living cells and infected cells 

from normal cells. Towards this, a variety of separation methods have been developed. These 

can be broadly categorized as: active and passive methods [5]. The former involves the 

application of an external field like acoustic field [6], electric field [7], magnetic field [8], and 

optical tweezers [9] for sorting of suspended cells or particles. On the other hand, passive 

methods involve controlling sorting based on modifying the internal hydrodynamic forces, 

particle interactions, particle and fluid properties, and microchannel geometry. These have 

been exploited in pinched flow fractionation [10,11], micro-vortex manipulation  [12], 

deterministic lateral displacement [13], hydrodynamic filtration [14] and inertia based 

separation [15]. Amongst these passive separation methods, techniques based on inertial 

focusing are widely used as their operation is elegant and throughput is high [16]. 

Inertial focusing is the cross-stream migration of particles in the presence of finite 

inertia. This phenomenon of lateral migration of rigid, neutrally buoyant particles, in a 

cylindrical channel was first observed by Segre and Silberberg [17] in a pressure driven flow. 

Their experiments showed that the particles focused at a radial position of ~ 0.6R, where R is 

the channel radius. Later, Bretherton [18] showed that in a Stokes flow (in the absence of 

inertia), a rigid sphere follows streamlines, and cannot migrate across the channel as the flow 

field is reversible. This clearly confirms that the cross-stream migration occurs only in the 

presence of finite fluid inertia. Following this several theoretical studies were carried out to 

understand particle migration in the presence of fluid inertia.  

Rubinow and Keller [19] used matched asymptotic expansions to find the inertial force 

on a rotating particle in a uniform unbounded flow. They found the force to be independent of 

viscosity and to act in a direction perpendicular to the axis of rotation and the incident flow.  

This force always acts towards the center of the channel in Poiseuille flow, and hence, this 

could not be the dominant force in the experiments of Segre and Silberberg. Later Saffman [20] 

extended Rubinow and Keller’s analysis and obtained the lift force on a particle moving with 

a  relative velocity to the undisturbed flow-field in an unbounded shear flow. He showed that 

a particle leading (lagging) in a shear flow would migrate to the low (high) velocity region. 

This phenomenon was experimentally confirmed by Jeffrey and Pearson [21]. Ho and Leal [22] 

studied the migration of a rigid neutrally buoyant particle in a 2D Couette flow and Poiseuille 
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flow and calculated the lift force acting on a spherical particle explicitly using a regular 

perturbation analysis. They concluded that a balance between the wall force (which acts away 

from the wall) and shear gradient force (which acts towards the wall) in the Poiseuille flow 

gives rise to focusing at equilibrium positions between the wall and the center of the pipe.  

The above mentioned theoretical studies were based on the perturbation series 

expansion in Reynolds number of particle and the particle size. These are valid only for very 

low Reynolds numbers and small particle sizes. Most of these theoretical studies failed to 

capture the migration behavior of the particle near the wall. The analysis of particle migration 

using Direct Numerical Simulations (DNS) avoids these limitations. The advantages of DNS 

is that the effect of the wall induced hydrodynamic rotations, the lift force, the lateral particle 

velocity, and equilibrium positions can be obtained without any assumptions on the particle 

size and the Reynolds number  [23]. Feng et al. [23] studied the migration of a single circular 

particle in two dimensional Couette and Poiseuille flows. Pan and Glowinski  [24] and Shao et 

al. [25] numerically studied the inertial migration of a circular and a spherical particle, 

respectively, in Poiseuille flow in a circular pipe. Nakagawa et al.  [26] used an immersed 

boundary method to study migration of a spherical particle in a microchannel with a square 

cross-section. They reported that for channel Reynolds number Re<260, the equilibrium 

position at face centers are stable and for Re beyond 260, the equilibrium positions are stable 

at the corners of the channel.  

The focusing locations are determined by the balance of wall lift force and shear 

gradient lift force. Ho and Leal [22] showed that the sign of the shear gradient force is 

proportional to 𝛼𝛽, where 𝛼 and 𝛽 are the shear and shear gradient respectively. This can be 

exploited to alter the equilibrium positions by changing the shear gradient lift force [27]. Based 

on the modification in the shear gradient force, Gossett et al. [28] conducted experiments on  

particle migration in a co-flow of two fluids comprising of a suspension and a transfer solution. 

They demonstrated that the particles could migrate across the fluid streamlines from the 

suspension to the transfer solution and focus in the transfer solution. Xu et al.  [29] and Deng 

et al.  [30] experimentally showed size based separation of particles from a suspension by 

inducing large velocity gradients. Here, the velocity gradient was controlled using sheath fluids 

of different viscosities. These flow above and below the suspension fluid. Large particles 

separated and focused in the less viscous sheath fluid whereas small particles remained in the 

suspension. Lee et al. [31] studied particle separation in a co-flow system of two miscible 

liquids with different viscosities in a rectangular microchannel. They observed two kinds of 
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focusing based on the operating conditions: stable equilibrium focusing (because of the balance 

of wall and shear gradient forces) and inflection point focusing. They reported an inflection 

point focusing for the first time, where the sign of the shear gradient force changes. Ha et 

al. [32] and Tian et al. [33] studied the particle separation in a co-flow of Newtonian fluid and 

non-Newtonian fluid where the particles migrate from the non-Newtonian fluid to the 

Newtonian fluid. 

These experimental studies show that the particles can move from one fluid to the other 

in a stratified flow of two miscible liquids. To the best of our knowledge, no modeling study 

has been reported on particle separation using inertial focusing in stratified flows. The primary 

objective of our work is to obtain physical insights on particle migration in viscosity stratified 

flows. Hence, we numerically simulate the migration of a single particle in stratified flows in 

a two dimensional domain (flow between infinite parallel plates). This is justified since, for 

rectangular channels with aspect ratio  greater than 3, the 3D geometry can be approximated as 

2D domain [34] This enables us to obtain physical insights in a computationally efficient 

manner.  

The system analysed consists of two Newtonian fluids with different viscosities flowing 

parallel to each other forming a viscosity stratified flow. A stable stratified flow with viscosity 

stratification has been experimentally  observed for miscible liquids   [35,36]. As a first step, 

we have neglected the miscibility region between the two liquids i.e. assumed the viscosity 

stratification to be sharp. Particle migration in a stratified Couette flow (pure shear flow) and 

a stratified Poiseuille flow are analysed. An immersed boundary method [37] is used to analyze 

the motion of the particle. We numerically study the effect of viscosity ratio, flowrate ratio, 

holdup, Reynolds number and the particle size and identify the conditions under which particle 

migration occurs from one fluid to the other. The approach adopted in this work can be used to 

design microfluidic systems for membrane less transfer of particles/cells from one fluid to the 

other. 

This paper is organized as follows: the geometry of the particle separator and 

mathematical model are described in Section 2. The immersed boundary method is detailed in 

Section 3. Simulation results on particle migration in stratified Couette flow and Poiseuille 

flow are discussed in Section 4 and Section 5, respectively. The key conclusions are 

summarized in Section 6.  
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2. Mathematical modeling 

2.1. Geometry of the system 

 

FIG. 1. Schematic of particle migration in a stratified (a) Couette flow and (b) Poiseuille flow with the interface 

location ‘ℎ′’. The two fluids have different viscosities 1 2( , )   and flow parallel to each other. Velocity profiles 

are shown for 2 1  . Coordinates in a stationary reference frame are x,y and in a reference frame with respect 

to the particle center are 𝑥′, 𝑦′. 
In the present analysis, we consider a two dimensional domain as shown in FIG. 1.The 

motion of a circular particle in a stratified flow between two infinite parallel plates is depicted 

in FIG. 1. The height between two parallel plates is H′ and length is L′. The two fluids with 

different viscosities 1 2( , )   flow parallel to each other in a stratified flow configuration. The 

volume fraction occupied by the bottom fluid (h′/H′) is the holdup. In the absence of the 

particle, the fluid flow is fully developed (u⃗ 0′ (y′)). A freely suspended circular particle of 

diameter ‘d’ is located at ( )
c

x t . The particle migration is studied in two different flow fields: 

(1) Couette flow and (2) Poiseuille flow as shown in FIG. 1a and 1b respectively.  

In the Couette flow, the top wall of the microchannel moves with a velocity ‘Uw’, and 

the bottom wall is kept stationary as shown in FIG. 1a. The fully developed fluid flow is 

governed by the motion of the top wall alone in the absence of the particle. The geometry for 

the stratified Poiseuille flow is the same as that for the Couette flow. Here in the absence of the 

particle, the fully developed fluid flow as shown in FIG. 1b is driven by a constant pressure 

gradient and has a parabolic velocity profile. The two fluids flow with flowrates Q1 and Q2.  
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2.2. Assumptions 

The model is based on the following assumptions 

1. The flow field in the absence of the particle is fully developed 

2. The two fluids are Newtonian  

3.  Densities of the two fluids and the particle density are same i.e., the particle is neutrally 

buoyant 

4. The miscibility region between two liquids is negligible i.e., viscosity stratification is 

sharp. 

5. The interface between the two fluids remains flat, even when the particle is near the 

interface [28]. 

2.3. Governing Equations 

Consider an undisturbed fully developed flow �⃗� ′0(𝑦′). Introduction of a rigid solid 

particle of diameter ‘d’ located at 𝑥 𝑐(𝑡) modifies the flow field to �⃗� ′(𝑦′). This flow field in a 

stationary reference frame is governed by 

 '. ' 0 u  (1) 

 
 '

'. ' ' ' ' '. ( ' ' ( ' ') )
'

 
          

T

f

u
u u p u u

t
 (2) 

where 
f

 is the density of the fluid, and   is the viscosity given as 

 
1

2

' '

' '







  

y h

y h
 (3) 

Here, 1  ( 2 ) are the viscosity of the two fluids and ℎ′ is the interface location as shown in 

FIG. 1. 

The boundary conditions imposed are  

(i) No-slip and no penetration for velocity and Neumann condition on pressure at the 

channel walls ( ' 0 and ' 'y y H  ) 

 '( ' 0) 0; '( ' ') 0

'( ' 0) 0; '( ' ') 0

' '
( ' 0) 0; ( ' ') 0

' '

            

            

        

   
   

 
   

 

u y u y H
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(ii) Periodic boundary conditions are applied at the upstream and downstream ends of 

the channel ( ' 0 and ' ' x x L ). We incorporate this condition as described in 

Patankar et al.  [38], where the total pressure gradient is divided into two 

components, i.e., pressure drop per unit length (𝛼′) responsible for the fluid flow 

and the pressure gradient 
'

'

 
  

P

x
 in which Pressure ( 'P  ) is spatially periodic. This 

is written as 

 ' '
'

' '


 
 

 
p P

x x
 (5) 

 This modifies the x-momentum equation as 

 ' ' ' ' ' ' '
' ' ' 2

' ' ' ' ' ' ' ' '
   

                                      
f

u u u P u v u
u v

t x y x x x y x y
 (6) 

 The periodic boundary conditions imposed are 

 '( ' 0) '( ' ')

'( ' 0) '( ' ')

'( ' 0) '( ' ')

  
  
  

u x u x L

v x v x L

P x P x L

 (7) 

 The pressure gradient responsible for the fluid flow is explicitly accounted using 𝛼′ 
as a source term in the x-component Navier- Stokes equation. 𝛼′ is zero in Couette 

flow and has a finite value in Poiseuille flow. 

(iii) We use the the single fluid formulation, and hence do not explicitly impose 

boundary conditions at the interface. 

 

(iv) The boundary condition on the particle surface is 

 ( ' )   
p c c c

U U x x  (8) 

where, ,  and c c cU x  are the translation velocity, the angular velocity and the 

location of the center of mass of the particle, respectively in a stationary reference 

frame, and 
p

U  is the particle velocity. 

The equations of motion for the particle are given by the Newton-Euler equations [39] .The 

translation velocity of the particle is determined by 
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dU
m ds

dt
  

(9) 

and the angular velocity is determined by 

 
. ( ' ) ( . )

' 

  c
p c

d
I x x ds

dt

   
(10) 

where,  is the hydrodynamic stress tensor, and .

 ds  represents the total interaction force 

between the particle and the surrounding fluid over the particle surface Γ.  ,  and 
p p p

m I are 

density, mass and moment of inertia of the particle respectively. Initial condition for the particle 

translation velocity is zero and the initial angular velocity is set equal to the background 

vorticity.  

It is convenient to solve the problem in a frame of reference moving with the center of 

the particle. This enables us to use a variable mesh size i.e., finer grid near particle and coarse 

grid away from the particle and avoid remeshing around the particle. Using the bar (-) to denote 

the variables in the moving reference frame   [40], we obtain 

 '  c
x x x , 't t , ( , ) '( ', ') ( ')  cu x t u x t U t  (11) 

In this reference frame, the governing equations are modified as 

 . 0 u  (12) 

 

 

 . ' ' . ( ( ) )
  

              
Tc

f f

dUu
u u P u u

t dt
     (13) 

Where ˆˆ ˆ  
   

  
i j k

x y z
 

The boundary conditions are 

  
c

u x   for | | / 2x d  (14) 

 '
0  cu u U  as | |x  (15) 

Theses equations are non-dimensionalised using the following characteristic scales 

 2', , '/ , ,    chch ch ch ch ch ch f
x H U U t H U P U  (16) 

This results in the dimensionless variables 
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x u t P

x U t P
     (17) 

 

The characteristic velocity ( ch
U ) chosen for Couette flow is Uw and Poiseuille flow is 2Q / H '  

The resultant dimensionless equations are 

 

 

0
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1
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Re
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Tc

r

c p

c

u

dUu
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Here, Re is the Reynolds number, 2ch f ch
x U  ; Dp is the dimensionless particle size, /

ch
d x ; 

and r is the viscosity ratio, defined as 

 
1 2/

1

 



  

r

y h

y h
 (19) 

where, h is the dimensionless interface location, specifically holdup of fluid 1.  

An immersed boundary method (IBM) is used to solve the fluid flow equations (18) 

along with the particle motion equations (9)-(10).  In IBM, the effect of the immersed boundary 

(particle presence) is incorporated as an external force field in the fluid flow equations. IBM 

was first proposed by Peskin  [41] and used to analyze the blood-valve interaction system. This 

formulation employs a mixture of Eulerian variables and Lagrangian variables. The immersed 

boundary is represented as a set of discrete Lagrangian markers embedded in an Eulerian flow 

field. The force was determined on the Lagrangian markers using a spring restoration force 

model and then interpolated to the Eulerian field using a Dirac delta function [42]. This method 

was developed for elastic structures. Subsequently a direct forcing method was developed to 

simulate the flow containing rigid bodies  [43–46]. Here the force is assumed to be proportional 

to the difference between the fluid velocity and the immersed boundary velocity on the surface 

of the body.  

In this work, we have adopted the IBM formulation proposed by Su et al.  [37]. They 

developed an implicit direct forcing scheme to accurately calculate the force on the particle 

surface such that it satisfies the no-slip condition on the surface of the particle.  So far, IBM 

has been used to solve problems on a fixed reference frame. We believe that this is the first 
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work in which IBM is employed in a moving reference frame. The advantages of using IBM 

in the moving reference frame are that the grid construction is elegant and re-meshing is 

avoided   [47] when non-uniform grids are used. This allows us to use use a fine grid near the 

particle and a coarse grid away from the particle as it is computationally efficient. In the next 

Section, the implementation of IBM is discussed in detail. 

3. Immersed boundary method  

The immersed boundary  method captures the interaction of moving solid boundaries 

with fluid flows  [37], [43]. This method uses a non-body conformal grid where two separate 

grids are used in a domain Ω as shown in FIG. 2. An Eulerian-fixed grid ( )
i

x  is used for the 

fluid flow and a Lagrangian grid ( )kX  is used on the particle surface to capture the particle 

dynamics.   Here i and k represent the Eulerian and Lagrangian grid numbers, respectively. The 

lowercase and uppercase letters are used to represent the Eulerian fluid domain and Lagrangian 

grid respectively. The immersed boundary is represented as a simple closed curve Γ of length

b
L  by the parametric representation ( ),0 bX s s L   . Here, s is the arc length parameter 

representing the solid boundary. The presence of a solid boundary is represented as an external 

body force in the Navier-Stokes equations (18).  

 

FIG. 2. Grid for the immersed boundary method where a uniform Eulerian grid ( )x is used for fluid flow and a 

Lagrangian grid ( )X  is used on the particle surface (given by closed curve) 
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The dimensionless equations governing the fluid flow field with immersed boundary, in the 

moving reference frame are given by  

 

 

. 0

1
. . ( ( ) ) ( , )

Re

 

 
              

Tc

r

u

dUu
u u P u u f x t

t dt
 

 (20) 

where, ( , )f x t  is the external body force on the fluid domain Ω which arises due to the presence 

of the solid particle. This force is calculated such that it satisfies the no-slip condition on the 

surface of the particle. First, the force ( ( , )F X t ) is found on the particle surface (on the 

Lagrangian grid), and then interpolated to the Eulerian grid ( f ) using 

 ( , ) ( , ) ( )
k k

k

f x t F X t x X s    (21) 

where, ( ) x X  is the Dirac delta function and s is the Lagrangian step length. 

To satisfy the no-slip condition on the particle surface, the velocity field needs to be 

interpolated from the fluid domain (Eulerian grid) to the particle surface. This is done using 

 ( , ) ( , ) ( )   k k

x y

U X t u x t x X x y  (22) 

where, ( , )U X t is the interpolated velocity on the particle surface. The Eulerian and Lagrangian 

variables are related by the Dirac delta function as shown in Equations (21) and (22), which is 

approximated as  

 ( ) ( ) ( )   
i k j k

x X d x X d y Y  (23) 

where, 

  (1 / )

( )

0 otherwise

r r
r r

d r r

  
   



 

(24) 

k is the Lagrangian grid number,   kr x X and r is the grid size. This representation is 

equivalent to a bilinear interpolation between the Eulerian and the Lagrangian variables. 

.

 ds in Equations (9) in terms of the immersed boundary force is given by Equation (25) as 

derived in  [39] 
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c
f f p

V

dU
ds f dV V

dt
    (25) 

The type of the grid and the numerical scheme used to solve fluid flow and particle motion 

equations using IBM are discussed in the next Section. 

3.1. Numerical scheme 

The fluid flow equations are solved in the reference frame that moves with the particle. 

This facilitates employing a finer grid near the particle and a coarser grid away from the particle 

as shown in FIG. 3. Here Nf is the total number of grids in the fine region and Nc = Nc1 + Nc2 

is the total number of grids in the coarse region. 𝑙 is the length of finer grid region and is 

dependent on the particle size. The step size in coarse grid region is (𝐻 − 𝑙)/(𝑁𝑐 − 1)  and in 

finer grid region is  𝑙/(𝑁𝑓 − 1). Such non-uniform gridding is computationally efficient as it 

captures the rapidly varying flow field near the particle. Re-meshing or use of adaptive mesh 

near the particle is avoided here since we work in the moving reference frame. As we calculate 

the lift force curves to determine the equilibrium positions, the moving reference frame is 

elegant, since the position of the particle is fixed at different locations in the direction transverse 

to the flow.  

 

FIG. 3. Representation of a non-uniform grid used in the simulations. Finer grid near the particle (Nf = 20) and 

coarser grid (Nc = 20) away from the particle are used. Here, the size ratio is 0.2 and 𝑙 = 0.3. 
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A staggered grid is used to solve the Navier –Stokes equations following the approach 

given in Olsson and Kreiss  [48].  Equations (20) is solved using a projection method where 

the fractional step approach is used. The non-linear advection and diffusion terms are 

discretized using a second order central difference scheme and the semi implicit Crank-

Nicolson method respectively. At the beginning of each time step, the solution 
1,n n

u u


is used 

to calculate 1n
u

 .  

The time advancement and spatial discretization is described next. As a first step, the 

first predictor velocity u is calculated without the body force as  

 
    1

( . ) . ( ( ) ) . ( ( ) )
2Re

 
                  

n
n

n n n n T Tc
r r

dUu u
u u P u u u u

t dt
  

 

(26) 

 * * u u tf  (27) 

Here, *
u is the second predictor velocity that includes the body force *

f due to the presence of 

the solid particle and its evaluation is given in Section 3.2 

The third predictor velocity, **
u , which includes the pressure correction is calculated as  

 ** *   n
u u t P  (28) 

The pressure is determined using the pressure Poisson equation (29) 

 **
2 1 ( . )n u
P

t

 
 


 

(29) 

The pressure is calculated such that the obtained velocity profile is divergence free, resulting 

in  

 1 ** 1   n n
u u t P  (30) 

In the above equations, * **, ,u u u are the intermediate velocity components between the steps n 

and n+1. and t  is the computational time step.  

3.2. Boundary force evaluation 

The procedure to find the Lagrangian force is given, so that the second predictor 

velocity *
u satisfies the boundary values *

U . First u  is obtained from Equation (26) and 

interpolated to the Lagrangian grid to obtain the velocity ( )
k

U X , as 



15 

 

 ( ) ( ) ( )
k k

x y

U X u x x X x y     (31) 

The above interpolation procedure is applied to Equation (27) directly, to yield 

 *
* ( ) ( )
( ) ( ) k k

k

x y

U X U X
f x x X x y

t



   

  

(32) 

where, *( )kU X  is the interpolated velocity of *
u at the Lagrangian grid k. By setting 

* 1( ) ( ) n

k p k
U X U X , the force field *

f is determined such that *
u satisfies the boundary 

condition on the particle surface. 

Substituting Equation (21) in Equation (32), we obtain 

 1

*
( ) ( )

( ) ( ) ( )
 

     


n

p k k

m k m

m x y

U X U X
F X x X x X x y s

t
   

(33) 

Here 1( )n

p k
U X  is the velocity of the rigid particle at at the Lagrangian grid k at time instant 

‘n+1’, which is given by Newton-Euler equations. This results in a system of linear equations, 

which are solved to obtain *( )mF X  at the Lagrangian markers. Equation (21) is used to 

interpolate the body force on the Eulerian grid. Following Feng et al.  [39], the Newton-Euler 

equations are discretized as 

 

 1 1  n n

p c
U x  (34) 

   

 
1 1

,

1 
 

        
 

f f fn n n n

c c c

x yp p p p

U U U f x y t
V

  
  

 
(35) 

 
 1 1

,

1
f f fn n n n

c c c

x yp p p p

x f x y t
I

  
  

  
 

 
         
 

  
(36) 

and the particle path is calculated using 

 1

1


   

 

n

n

c

dx
U

dt
 

(37) 
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The algorithm to solve the fluid flow and the particle migration in each time step is 

summarized below 

1. Solve Equation (26) to obtain the intermediate velocity u  

2. Calculate the Lagrangian velocity at the particle surface using Newton-Euler equations 

(34) to (36) 

3. Calculate the Lagrangian body force *( )mF X  using Equation (33) 

4. Distribute the Lagrangian body force to the Eulerian grid using Equation (21) 

5. Calculate * ** and u u using Equations (27) and (28) 

6. Calculate the pressure using the pressure Poisson Equation (29) 

7. Update the fluid velocity 1n
u

 using Equation (30) 

Steps (1) - (7) are repeated over each time step to solve for the fluid flow and the particle 

motion. The direction of the migration of the particle is obtained from the lift force, which is 

discussed next. 

3.3. Lift force calculation 

The lift force is exerted on the particle in the lateral direction (y-direction). This force 

shows the direction in which the particle migrates. The point at which the lift force is zero 

represents the equilibrium position, where the particle focuses. To calculate the lateral force 

exerted on the particle due to inertia, we assume that the particle translates freely in the flow 

direction and rotates freely and it does not move in the lateral direction [26] i.e., ,c y
U , the 

particle translation velocity in the y direction is set to zero.  

The dimensionless lift force is given by 

 
,

l y

x y

F f x y     (38) 

The lift force is non-dimensionalized using 2 '
f ch
U H  

  An alternative method to determine the equilibrium position is to track the trajectory of 

the particle. In the Supplementary material we show that the equilibrium position determined 

from particle trajectory and lift force curve are identical. We however use the lift force curve 

to determine the equilibrium position in this work as it is computationally elegant. The model 

equations and the numerical procedure to determine the flow field and the lift force have been 



17 

 

discussed so far. We discuss the results of particle migration in a stratified Couette flow in the 

next Section. 

4. Particle migration in a stratified Couette flow 

The dimensionless variables which govern particle migration in Couette flow are the 

Reynolds number (Re), the viscosity ratio ( r ), the particle size (Dp) and holdup (h).The results 

are presented in terms of these dimensionless variables.  

4.1. Grid independence analysis 

The flow profile is solved on a non-uniform grid. A finer grid is used near the particle 

and a coarser grid elsewhere. The variation of lift force along the channel height is shown in 

FIG. 4 for different grid sizes. We observe that the lift force primarily depends on the number 

of grids near the particle. We conclude that Nc = 100 and Nf = 80 are sufficient to obtain a grid 

independent solution for the parameters used in FIG. 4 . The number of grids needed to get a 

grid independent solution depends on the operating parameters such as viscosity ratio and 

diameter of the particle. The maximum number of grids required for r = 4 w   ere Nc = 300 

and Nf = 160.  Grid independence was established for all the results presented in this work. 

 

FIG. 4. Grid independence analysis for the stratified Couette flow for Re = 40, 
r

 = 0.5, h = 0.5 and Dp = 0.2  

  



18 

 

4.2. Particle migration in single phase Couette flow 

The migration of a particle in a Couette flow depends on three forces  [23] : (i) the wall 

repulsion force, (ii) the lift force due to particle slip velocity (the difference between the particle 

translating velocity and undisturbed flow velocity) called Saffman lift force, and (iii) the lift 

force associated with the particle rotation called Magnus lift force. The wall repulsion force, 

caused by a lubrication effect, pushes the particle away from the wall. The direction of Saffman 

lift force depends on whether the particle leads (slip velocity is positive) or lags (slip velocity 

is negative) the background fluid flow. The leading particle migrates towards the low velocity 

region and the lagging particle migrates towards high velocity region. Accordingly, the particle 

migrates towards the stationary plate if it leads the flow and towards the moving plate if it lags 

the flow  [49]. In the Couette flow investigated, the particle rotation is in the clock-wise 

direction and the angular velocity is almost constant i.e. independent of y direction. Besides 

the magnitude of the Magnus lift force is negligible compared to the other two effects. Hence 

we consider only the first two forces in analyzing the results. The variation of the total lift force 

(shown by a solid line) experienced by a particle and the particle slip velocity (shown by a 

dashed line) with channel height in a Couette flow is depicted in FIG. 5 for Re = 40, r = 1, h 

= 0.5, and Dp = 0.2. The position at which the lift force is zero is the equilibrium position at 

which the particles focus. In single phase Couette flow, the center of the channel is the 

equilibrium position, represented by a solid circle where the different contributions to the lift 

force balance. 

The wall repulsion force is proportional to the velocity gradient. For r = 1, the velocity 

gradient is constant throughout the channel and so the force from both the walls are equal and 

opposite. Slip velocity of the particle is also depicted in FIG. 5. The particle lags (negative slip 

velocity) in the lower half of the channel. Hence particles here move towards moving wall 

because of the Saffman lift force. Similarly the particle leads (positive slip velocity) in the 

upper half of the channel, and here the particles are pushed towards the stationary wall. Because 

of the symmetry in wall lift forces and the direction of the Saffman lift force the particle 

migrates to the center. Hence, in single phase Couette flow, the center of the channel is the 

equilibrium position to which all particles migrate. 

  The magnitude of the Saffman lift force is significantly lower compared to the wall lift 

force and they act in the same direction. Hence in the literature on the lift force in Couette flow, 

it has been neglected. In viscosity stratified flows, both the wall lift and the Saffman lift are 
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asymmetric and hence both contributions have to be discussed to physically understand the 

effect on equilibrium positions.  

 

FIG. 5. Variation of the lift force curve (represented by a solid line) and particle slip velocity (represented by a 

dashed line) with the height of the channel in a Couette stratified flow for Re = 40,
r

 = 1, h = 0.5 and Dp = 0.2. 

Here the equilibrium position exists at the center of the channel to which the particle migrates 

4.3. Effect of viscosity ratio 

In this section, we study the effect of viscosity ratio on the equilibrium position. 

Variation of the equilibrium position with the viscosity ratio ( r ) is depicted in FIG. 6 for Re 

= 40, h = 0.5 and Dp = 0.2. We see that the equilibrium position always lies in the low viscosity 

fluid. The equilibrium position is dependent on the three forces discussed in the previous 

Section.  

The wall lift force is proportional to the velocity gradient of the undisturbed flow in the 

region  [22]. For r  = 1, the velocity gradient in both fluids are equal, so the wall forces from 

the two walls are equal, and the particle focuses in the center of the channel. As the viscosity 

ratio changes, the velocity gradient is different in each region, i.e., it is more in the low viscous 

fluid and vice versa. Consequently, the wall repulsion force is more in the less viscous fluid as 

compared to that in the more viscous fluid. The particle slip velocity for Re = 40, h = 0.5, Dp = 

0.2, and r  = 0.5, and r  = 2 is shown in FIG. 7a and FIG. 7b, respectively. It is seen from 

FIG. 7a that the particle leads the flow in the more viscous fluid and the particle lags the fluid 

near the bottom wall over a small region. In the region where the slip velocity is negative 
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(positive), the particle moves towards the moving (stationary) wall due to Saffman lift force. 

The particle would migrate to the location where the slip velocity is zero in the absence of wall 

repulsion forces. However, the focusing or equilibrium position is where the lift force is zero 

and is different from the location where the slip velocity is zero. Since the wall repulsion force 

is high in the less viscous fluid compared to the more viscous fluid, the equilibrium position 

lies above the point where the slip velocity is zero. Similarly, it is seen from FIG. 7b, for r  = 

2, the particle lags in the more viscous fluid and leads in a small region adjacent to the top wall. 

The slip velocity is zero at a point in the top fluid. Again because of the asymmetry in the wall 

lift force, the equilibrium position lies below the point where the slip velocity is zero. We 

conclude that the equilibrium position is determined by both the wall lift force and the Saffman 

lift force.  

For the viscosity ratio less (more) than one, as r decreases (increases), the particle 

equilibrium position shifts towards the wall in contact with less viscous fluid as shown in FIG. 

6 for h = 0.5 .  

 

FIG. 6. Influence of the viscosity ratio on the equilibrium position for Re = 40, h = 0.5, and Dp = 0.2 in the 

stratified Couette flow. The equilibrium position of the particle always exists in the less viscous fluid irrespective 

of the viscosity ratio 
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FIG. 7. Variation of the total lift force (represented by a solid line) and the particle slip velocity (represented by 

a dashed line) with the channel height for Re = 40, h = 0.5, Dp = 0.2, (a) 
r

 = 0.5 and (b) 
r

 = 2 for the Couette 

flow 

4.4. Effect of interface location/holdup 

The influence of the interface location/holdup (h) on the equilibrium position is 

depicted in FIG. 8. The holdup represents the volume fraction occupied by fluid in the lower 

half. Hence, when the holdup increases, the volume fraction of the bottom fluid increases. 

When r < 1 (a more viscous fluid at the top), the velocity gradient in both the fluids reduce 

on increasing the holdup. The reduction in velocity gradient results in a decrease in the wall 

repulsion force near both the walls. To analyze the effect of Saffman lift force, the particle slip 

velocity for different holdups for Re = 40, Dp = 0.2, r = 0.5, and r = 2 is shown in FIG. 9a 

and FIG. 9b, respectively. As the holdup increases, for r < 1, and r >1, the location at which 

slip velocity becomes zero shifts towards the upper wall. As the Saffman lift force is dominant 

here, the particle equilibrium position also shifts towards the upper wall.  
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FIG. 8. Variation of the equilibrium position with the viscosity ratio for different interface locations for Re = 40, 

r
 = 0.5 and Dp = 0.2. The particle moves towards the center for 

r
 <1 and the moving wall for

r
 >1 as h 

increases.  

 

FIG. 9. Variation of the particle slip velocity with the channel height for Re = 40, Dp = 0.2, (a)
r

 = 0.5 and (b) 

r
 = 2 for different interface locations 
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4.5. Effect of Reynolds number 

The main reason for the particle migration observed is the fluid inertia captured by the 

Reynolds number. The dependence of focusing location on Re is shown in FIG. 10. Here the 

Reynolds number is changed by varying the velocity of the top wall. The wall repulsion force 

depends on the Re. As Re increases, the wall repulsion force decreases  [50]. As a result, the 

particle migrates towards the nearby wall as Re increases. This behavior is observed for all 

viscosity ratios. This migration of the particle towards the bottom wall for r < 1 and the top 

wall for r > 1 as Re increases is shown in FIG. 10. 

 

FIG. 10. Variation of the equilibrium position with the viscosity ratio for different Reynolds numbers for 
r

 = 

0.5, h = 0.5 and Dp = 0.2 in the stratified Couette flow. The equilibrium position is less dependent on Re. 

4.6. Effect of particle size 

Differences in size have been exploited in sorting/separation of cells or microparticles. 

The variation of the equilibrium position with viscosity ratio for different particle sizes is 

shown in FIG. 11. This difference arises as the wall repulsion force is proportional to the 

diameter of the particle  [51]. As the size of the particle increases, the wall repulsion force 

increases and the particle migrates away from the nearer wall as shown in FIG. 11. The 

equilibrium positions of the particles is not very sensitive to the size i.e the focusing positions 

are very close by for particles of different sizes. However the small particles have a low 

migration velocity compared with the larger ones. So the small particles take more time or need 
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a longer channel for focusing. This has been observed experimentally, where the large particles 

focus quickly to the equilibrium position as compared to small particles  [52]. Hence size based 

separation can be achieved by exploiting this difference in particle velocities. 

 

FIG. 11. Variation of equilibrium position with viscosity ratio for different particle sizes for Re = 40, 
r

 = 0.5 

and h = 0.5 in the stratified Couette flow. 

We conclude that for particle migration in the stratified Couette flow, the net 

contributions from the wall lift force and the Saffman lift force determine the focusing position.  

5. Particle focusing in a stratified Poiseuille flow 

We now discuss particle migration in a stratified Poiseuille flow.  Here the shear 

gradient lift force also plays an important role in determining the focusing location. 

  One difference between  Poiseuille and Couette flows is that the interface position 

changes with the flowrates of the two liquids in the case of the Poiseuille flow, whereas, it is 

independently fixed in the Couette flow. The interface location/ holdup for the Poiseuille flow 

is dependent on the flowrate ratio ( 1 2/Q Q ) and the viscosity ratio ( 1 2/  ). This relationship of 

the interface location/holdup on flowrate ratio and viscosity ratio is given in the Appendix. The 

non-dimensional variables governing the system are the Reynolds numbers of the two fluids,

1 1 1Re /
f
Q  , 2 2 2Re /

f
Q  ; flowrate ratio (

r
Q ), viscosity ratio ( r ), dimensionless 

particle size (Dp) and holdup (h). The viscosity ratio less than one is considered in analysis. 
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Here, the more viscous fluid is on top of the less viscous fluid and the particle enters the channel 

in the more viscous fluid.  

5.1. Particle migration in single phase Poiseuille flow 

The numerical implementation of the immersed boundary method in the moving 

reference frame was validated with the results  reported by Feng et al.  [23]. Here, the Reynolds 

number is 40 (defined with the maximum velocity) and Dp = 0.25. The lift force curve obtained 

in the present work is shown in FIG. 12. There exist three equilibrium positions to which the 

particle can migrate. The equilibrium position between the center of the channel and the bottom 

(top) wall arises from the balance between the wall repulsion lift force and the shear gradient 

lift force and is obtained as 0.252 (0.748). These two equilibrium positions represented by solid 

circles are stable. There exists an equilibrium position at the center because of the symmetry 

of the flow profile. This focusing position is unstable and is represented by an open circle. 

Particle entering the channel above (below) the unstable equilibrium position moves towards 

the top (bottom) equilibrium position. The locations of these points are the same as those 

reported by Feng et al.  [23].  

The particle always lags the undisturbed local velocity in a Poiseuille flow  [23]. Hence we 

do not discuss the effect of slip velocity while analysing Poiseuille flows since it’s effect does 

not qualitatively change across the channel height. 

  

FIG. 12. Variation of the lift force with the height of the channel for Dp = 0.25 and Re = 40. The stable and 

unstable equilibrium positions are represented as the solid and open circles respectively. 
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5.2. Effect of flowrate ratio 

The particle has three equilibrium positions in Poiseuille flow. When two fluids of 

different viscosities flow parallel to each other, the equilibrium positions change based on the 

flowrate ratio and the viscosity ratio for a given particle and Re2. Variation of the equilibrium 

positions with the flowrate ratio is shown in FIG. 13 for Re2 = 10, r = 0.5, and Dp = 0.2. Here, 

the interface location depends on the flowrate ratio and is depicted as a solid line in FIG. 13.  

The more viscous fluid lies above the interface. The value of Q2 is fixed in our simulation, and 

the flowrate ratio is varied by changing Q1. As the flowrate ratio increases the total flowrate in 

the channel increases which requires a higher driving force to pump the fluids across the 

channel. This results in an increase in the pressure drop which is shown in FIG. 13 as a dashed 

line. The shape of the velocity profile changes with the flowrate ratio in stratified flows. This 

alters the particle equilibrium positions. 

 There exist three equilibrium positions for each flowrate ratio as shown in FIG. 13. 

Two of these are stable positions, represented by the solid circles and one is unstable, 

represented by the open circle. The equilibrium positions are not symmetric about the center 

of the channel as the velocity profile is not symmetric due to viscosity stratification. This 

asymmetry in equilibrium positions can be explained by constructing the lift force curve.    

Variation of the total lift force for Re2 = 10, r = 0.5, Dp = 0.2, Qr = 1 and Qr = 9 is shown in 

FIG. 14a and FIG. 14b respectively. The interface location is represented by the dashed line 

and the stable and unstable equilibrium positions are represented by the solid and open circles, 

respectively. The particles entering above (below) the unstable equilibrium position migrate 

towards the top (bottom) equilibrium position. For Qr = 1, one stable equilibrium position (top) 

exists in the high viscous fluid and the unstable and the other stable (bottom) equilibrium 

positions exist in the low viscous fluid. It is seen that the particles present in the high viscous 

fluid will focus only at the equilibrium position in the high viscous fluid since it enters above 

the unstable equilibrium position. The migration of the particles from high viscous fluid to low 

viscous fluid is not possible for Qr = 1. As depicted in FIG. 14b, all three equilibrium positions 

exist in the low viscous fluid for Qr = 9. The particles in the high viscous fluid will cross the 

interface and migrate to the equilibrium position in the low viscous fluid.  

It is observed that as the flowrate ratio increases, the upper focusing position shifts 

downward and the particle migrates away from the top wall. This equilibrium position crosses 

the interface beyond a certain flowrate ratio as shown in FIG. 13. The migration of the particles 
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from the more viscous fluid to the less viscous fluid is governed by the top equilibrium position. 

So, hereafter we focus only on the top equilibrium position as its location determines the 

migration of the particle from the more viscous fluid to the less viscous fluid.  Specifically if 

this lies in the lower fluid then we are assured that all particles entering the channel with the 

more viscous fluid will migrate to the low viscous fluid. 

The numerical results presented here are in qualitative agreement with the experimental 

observations of Gossett et al [28] and Lee et al [31] where the particle migrates from a high 

viscous fluid to a low viscous fluid. As mentioned in Lee et al [31], the flowrate ratio should 

be greater than one for the particle migration to occur from one liquid to the other. This is 

observed in our simulation (see FIG. 13) as well where the particles are shown to migrate to 

the low viscosity liquid beyond a flowrate ratio of 4. We conclude that the numerical results 

presented in this work are in qualitative agreement with the experimental results reported in 

the literature.  

    

FIG. 13. Variation of the equilibrium positions as a function of the flowrate ratio for Re2 = 10, 
r

 = 0.5 and Dp = 

0.2 in a stratified Poiseuille flow. The solid line represents the interface location and the dashed line represents 

the pressure drop. As the flowrate ratio increases, the pressure drop increases and the particle migrates from more 

viscous to the less viscous fluid. 



28 

 

  

FIG. 14. Variation of the total lift force with the channel height for Re2 = 10, 
r

 = 0.5, Dp = 0.2 (a) Qr = 1 and (b) 

Qr = 9 in a stratified Poiseuille flow.The solid and open circles represent stable and unstable equilibrium positions 

respectively. Interface location is represented by the dashed line. 

5.3. Effect of viscosity ratio 

Another parameter which influences the particle migration is the viscosity ratio. The 

shape of the velocity profile changes with the viscosity ratio in stratified flows. This alters the 

particle equilibrium positions. Variation of the top stable equilibrium position with the flowrate 

ratio for different viscosity ratios is shown in FIG. 15. As discussed earlier, as the flowrate 

ratio increases, the particle migrates from the more viscous fluid to the less viscous fluid. There 

exists a critical flowrate ratio beyond which this occurs and this depends on the viscosity ratio. 

For a given flowrate ratio, as the viscosity ratio decreases the velocity gradient increases 

and shear gradient decreases in the more viscous fluid. As a result the wall lift force increases 

and the shear gradient lift force decreases in the more viscous fluid. Hence the particle migrates 

away from the top wall as the viscosity ratio decreases. So a lower flowrate ratio is required 

for the particle separation from the more viscous to the less viscous fluid as viscosity ratio 

decreases as shown in FIG. 15. To conclude, as the viscosity ratio decreases (viscosity of the 

less viscous fluid is decreased), the critical flowrate ratio above which particle transfer across 

the two phases is ensured also decreases.  
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FIG. 15. Variation of the equilibrium position with the flowrate ratio for different viscosity ratios (a) 
r

 = 

0.667 (b) 
r

 = 0.5 (c) 
r

 = 0.4 (d) 
r

 = 0.333 (e) 
r

 = 0.25 (f) 
r

 = 0.2 for Re2 = 10 and Dp= 0.2; the solid line 

represents the interface between two fluids 

5.4. Effect of particle size 

The dependence of the equilibrium position for two different particle diameters is 

shown in FIG. 16 for Re2 = 10 and r
 = 0.667. For Qr = 1, the small particle focuses near the 

top wall as compared with the large particle. As the flowrate ratio increases, the large particle 

focuses towards the wall and the small particle focuses towards the center. This implies that 

the smaller particle requires a lower flowrate for transferring from the more viscous to the less 



30 

 

viscous fluid as shown in FIG. 16. This can be explored in design and operation of size-based 

separation of particles as the critical flowrate ratio across which particles are transferred 

depends on the particle size. Even though the critical flowrate ratio is less for the small particle; 

it requires more time for focusing as the smaller particle has low migration velocity compared 

to the larger particle  [29].  

This slow migration phenomenon of small particles can be seen in the particle path 

lines. Path lines of two different size particles are depicted in FIG. 17 for Re2 = 10, Qr = 9 and 

r
 = 0.667. Both particles start at H = 0.8 and their positions are tracked with time. As shown 

in FIG. 17, the large particle reaches its equilibrium position much faster than the small particle. 

This difference arises as the smaller size particle has low migration velocity and hence it 

requires more time to reach the equilibrium position. While designing a particle separator based 

on size, the length of the microchannel is hence a design variable and is usually chosen such 

that only larger particles are focused  [53]. 

 

FIG. 16. Variation of the equilibrium position with the flowrate ratio for different particle diameters for Re2 = 10 

and 
r

 = 0.667 and the solid line represents the interface between two fluids. 
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FIG. 17. Path lines of two different size particles in a stratified Poiseuille flow for Re2 = 10, 
r

 = 0.667 and Qr = 

9. The small particle migrates slowly compared with the larger one hence required more time or length to reach 

the equilibrium position 

5.5. Critical flowrate ratio 

It is seen from the analysis that there exists a critical flowrate ratio beyond which the 

particle     migrates from one fluid to the other. Variation of the critical flowrate ratio (Qr,cr) 

with the viscosity ratio for different particles diameters is shown in FIG. 18. The critical 

flowrate ratio decreases on reducing the viscosity ratio as discussed in Section 5.3. This critical 

flowrate ratio strongly depends on the particle size. A smaller particle needs a lower flowrate 

ratio for migrating from the more viscous fluid to the less viscous fluid. However it would 

require a longer time or length of the channel. An empirical correlation from our analysis 

capturing the dependence of the critical flowrate ratio on the viscosity ratio, and the particle 

size was developed for the parameter range analysed in FIG. 18. This is  

 0.97 0.55
, 

rr cr p
Q D  (39) 

This relationship will help experimentalists choose operating conditions such as the 

flowrate ratio for a fixed viscosity ratio for particle migration from one fluid to the other.  
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FIG. 18.  Variation of the critical flowrate ratio beyond which the particle migrates with viscosity ratio for 

different particle diameters for Re2 = 10 

6. Summary and Conclusions 

In this work, we have numerically studied the migration of a particle from one fluid to 

another fluid. The two fluids have different viscosities and flow parallel to each other in a 

stratified flow. Particle migration in a stratified Couette flow and Poiseuille flow is analyzed. 

This work has applications in development of membrane-less separation devices for removing 

particles from a suspension. 

The primary forces acting on the particle in a stratified Couette flow are the wall 

repulsion force, the Saffman lift force due to slip velocity (relative velocity) and these 

determine the equilibrium position. The Magnus lift force due to the particle rotation is 

negligible across the channel and does not play a significant role. The particle equilibrium 

position lies in the less viscous fluid if a sufficiently high hold up of this fluid is maintained. 

The shear gradient lift force plays an important role in particle migration in stratified 

Poiseuille flows because of the curvature of the velocity profile. Here, the interface location 

between the two fluids changes with the flowrate ratio for a given viscosity ratio. There exists 

a critical flowrate ratio beyond which the particle migrates from the more viscous fluid to the 

less viscous fluid. This critical flowrate ratio increases with viscosity ratio. This critical 
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flowrate ratio alsodecreases with particle size. The results presented here, can be used to obtain 

operating parameters to efficiently separate particles from one fluid to the other. 

In our simulations, we have determined the equilibrium position of a single particle. 

Our analysis shows that the equilibrium position is not very sensitive to the size of the particles. 

However the difference in the migration velocity can be exploited to separate particles based 

on size. Specifically larger particles focus faster and require shorter channel lengths as 

compared to smaller particles.  

To the best knowledge of the authors, this is the first modeling work performed to study 

particle migration in a 2D stratified flow. This study can be extended to analyze particle 

migration in a 3D stratified flow. These 3D simulations would be able to capture the inflection 

point focusing, which was experimentally observed by Lee et al.  [31]. 

APPENDIX 

Calculation of interface location in the stratified Poiseuille flows 

Here, we present a 2D model for predicting the fully developed velocity profile and the 

interface location as a function of the flowrate ratio (Qr = Q1/Q2) and the viscosity ratio (r = 

1/2). A schematic of the co-current flow of the two fluids is shown in FIG. 1b. Assuming the 

fluid flow as steady, laminar, fully developed and pressure driven, the equations governing the 

fluid flow in the two layers in dimensional form are 

 

∇. u1′ = 0, ∇. u2′ = 0, μ1 ∂u1′∂y′ = ∆pL′  

μ2 ∂u2′∂y′ = ∆pL′  

(A1) 

Subject to the boundary conditions 

 u1′ = 0 at y′ = 0 u2′ = 0 at y′ = H′ u1′ = u2′  at y′ = h′ μ1 ∂u1′∂y′ = μ2 ∂u2′∂y′  at y′ = h′ (A2) 

The solution to this system results in the following flow field is obtained 
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 u1′ = ∆p2μ1L′ y′(W1 − y′) (A3) 

 u2′ = ∆p2μ2L′ (H′ − y′)(y′ − W2) (A4) 

The flowrates of the two fluids are given as 

 Q1 = ∆p12μ1L a (A5) 

 Q2 = ∆p12μ2L b (A6) 

where, the constants are defined as, 

 

W1 = H′ + W2 W2 = (1 − μr)h′(H′ − h′)(μr − 1)h′ + H′  a = 3W1h′2 − 2h′3 b = H′3 − 3W2H′2 − 3H′h′2 + 6H′h′W2 + 2h′3 − 3W2h′2 and μr = μ1/ μ2 

(A7) 

 

Now, the ratio of the flowrates is   

 
Q1Q2 = 1μr ab (A8) 

Equation (A8) can be solved using non-linear solver in Wolfram Mathematica to 

obtain the interface location at different flowrate ratios and the viscosity ratios. 

Supplementary Material 

The supplementary material details and compares two ways of determining equilibrium 

positions. 
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Determination of equilibrium position 

There are two  ways to find the equilibrium position to which the particle migrates and gets focused 

. In the first method, the particle position is tracked with  time and the final focusing point is 

obtained. Here only stable equilibrium positions are obtained and once the particle reaches the 

equilibrium position, it remains there. Two particle pathlines starting from different initial 

positions for Re = 40, r = 0.5, h = 0.5, and Dp = 0.2 are shown in FIG. 1 for Couette flow.The 

initial positon of the particles is  H = 0.45 and H = 0.7 and the final  equilibrium position reached 

is  0.325 in both cases. For all initial positions the particle focuses at this equilibrium position 

given enough time. 

 

FIG. 1. Particle pathlines for Re = 40, r = 0.5, h = 0.5, and Dp = 0.2. The particles are placed at H = 0.4 and H = 0.7, 

and positions are tracked with the time till they reach the equilibrium position 

In the second method, instead of tracking the particle position, the force exerted on the particle in 

the lateral direction is calculated by fixing the particle in the lateral direction. The force in the 

lateral direction experienced by the particle is called the lift force and is zero at the equilibrium 

position. The lift force variation along the transverse direction for Re = 40, r = 0.5, h = 0.5, and 

Dp = 0.2 is shown in FIG. 2.  The lift force is zero at 0.325 confirming that the two methods yield 

the same equilibrium position.  

 



 

FIG. 2. Variation of the lift force with the channel height for Re = 40, r = 0.5, h = 0.5, and Dp = 0.2. The lift force 

is zero at the equilibrium position. 

The pathline of the particles yields only the stable equilibrium positions. It is a computationaly 

intensive approach. The lift force curve can predict both stable and unstable equilibrium positions. 

It is computationally efficient since we can use a variable mesh size without having to remesh the 

system in a moving reference frame. In view of the advantages of the lift force curve approach, we 

choose this method in this paper. 

 


