
Individual-Based models for adaptive diversification in high-dimensional

phenotype spaces

Iaroslav Ispolatov,1, ∗ Vaibhav Madhok,2, † and Michael Doebeli3, ‡

1 Departamento de Fisica, Universidad de Santiago de Chile,

Casilla 302, Correo 2, Santiago, Chile

2Department of Zoology, University of British Columbia,

6270 University Boulevard, Vancouver B.C. Canada, V6T 1Z4

3Department of Zoology and Department of Mathematics, University of British Columbia,

6270 University Boulevard, Vancouver B.C. Canada, V6T 1Z4

Abstract

Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based

on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to

an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching

points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not con-

verge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-

dimensional phenotype spaces. Even though some analytical results on diversification in complex pheno-

type spaces are available, to study this problem in general we need to reconstruct individual-based models

from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to

construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor

without diversification. We then show that a propensity to diversify can by introduced by adding Gaussian

competition terms that generate frequency dependence while still preserving the same adaptive dynamics.

For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes

the directional evolution along the selection gradient and leads to diversification in phenotypic directions

that are orthogonal to the selection gradient.
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I. INTRODUCTION

Understanding the origin of biological diversity is one of the most fundamental problems in

evolutionary biology. Traditional theories of diversification are based on static fitness landscapes

and geographic isolation [5, 15]. However, it has been realized that ecological interactions lead-

ing to frequency-dependent selection and dynamically changing fitness landscapes can generate

adaptive diversification, a process that occurs without geographic isolation and requires ecological

contact between the newly emerging species [7, 10, 16].

There is a substantial amount of empirical evidence for adaptive diversification in sympatry

[1, 2, 14, 19, 22, 26–31], and a plethora of different models have shown the theoretical feasibil-

ity of adaptive diversification ([10], see also the comprehensive list of papers on Eva Kisdi’s site

mathstat.helsinki.fi/˜kisdi/). In particular, the framework of adaptive dynamics has been exten-

sively used in this context, because it is ideally suited to describe evolution on fitness landscapes

that are changing dynamically due to frequency-dependent interactions, and to identify conditions

that are conducive to adaptive diversification [10, 16, 25]. In essence, adaptive dynamics is a for-

malism for deriving evolutionary trajectories in phenotype space. In most cases, this phenotype

space is one-dimensional and represents scalar traits such as body size or other morphological or

behavioural features. In this case, the conditions for adaptive diversification are very well under-

stood and are based on the concept of evolutionary branching points. These are points in pheno-

type space with two essential properties: first, they are attractors for the evolutionary dynamics,

and second, they are fitness minima. This may seem contradictory at first but becomes intuitively

appealing once one takes into account that fitness landscapes are dynamic. Thus, as long as the

evolutionary trajectory is away from the branching point, the fitness landscape determining the

trajectory has a minimum so that the current phenotypic position of the evolving population is on

one side of this minimum. As the population climbs away from the fitness minimum, the fitness

landscape changes in such a way that the minimum eventually catches up with the trajectory, at

which point the dynamics has reached its equilibrium, while the population sits on a fitness mini-

mum. Because of this, phenotypic mutants on either side of the current position of the population

can invade, resulting in adaptive diversification. For example, if this scenario is modelled with

individual-based models, in which a population is represented as a cloud of points in phenotype

space, then this cloud first converges towards the position in phenotype space corresponding to the

evolutionary branching point, and subsequently splits into two separate clouds that diverge from
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each other, thus yielding and elementary representation of evolutionary diversification. The exis-

tence of evolutionary branching points is a robust feature of adaptive dynamics in low-dimensional

phenotype spaces and has been demonstrated in many different settings [10].

In the majority of models studied to date, adaptive diversification occurs according to the

scheme just described: first the evolutionary trajectory converges to a branching point, and then

the population splits into diverging and coexisting phenotypic branches. For example, it has been

shown that, conditional on convergence to an evolutionary equilibrium, the likelihood of evolu-

tionary branching increases with the dimension of phenotype space [6, 13, 32]. However, it has

recently also been shown that in high-dimensional phenotype spaces, the adaptive dynamics may

never converge to an equilibrium in the first place [12]. In fact, in a general class of competi-

tion models, the likelihood that adaptive dynamics are chaotic approaches 1 if the dimension of

phenotype space is high enough [12]. In particular, such dynamics would never converge to an

evolutionary branching point. A resolution of this apparent paradox has been found in [21], which

shows analytically that sufficiently strong disruptive selection can “overcome” a small but non-

zero selection gradient and produce sustained diversification in the direction perpendicular to the

selection gradient. The analysis in [21] is local in the sense that it describes the initial phase of

evolutionary branching when the resident is moving along an assumed and constant gradient in

one phenotypic direction. Here we study the question of diversification in non-stationary resident

populations when the selection gradient along which the resident is evolving is not assumed, but

is a result of complex interactions in high-dimensional phenotype space. In particular, the trajec-

tory of the resident is not simply given by a constant gradient, but can exhibit more complicated

dynamics, such as cycles and chaos.

In the following, we first briefly recall how the conditions for diversification of [21] apply in

scenarios with complicated evolutionary dynamics of the resident. To study the full dynamics of

diversification in such scenarios, we then reconstruct individual-based models from an adaptive

dynamics model that generates complicated trajectories. It is known [3, 4, 8] that adaptive dy-

namics is a particular large-population limit of underlying stochastic, individual-based processes.

What seems to be less appreciated is that there are in fact very many different individual-based

models that yield the same adaptive dynamics. However, these different individual-based mod-

els differ in their propensity to diversify. Here we show that given an adaptive dynamics model,

there is a particular “minimal” individual-based model that never diversifies and that produces

qualitatively the same trajectories as the given adaptive dynamics model. We then show how,
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in light of the conditions for diversification in [21], this minimal model can be altered to gener-

ate adaptive diversification, yet still have the same adaptive dynamics limit. Similar results hold

for partial differential equation (PDE) models, which represent an intermediate limit between the

individual-based and the adaptive dynamics [3, 4]. Our work appears to be one of the first attempts

to study non-equilibrium evolutionary dynamics of complex, high-dimensional phenotypes using

individual-based and PDE models.

II. ADAPTIVE DYNAMICS AND DIVERSIFICATION

As in [12], we study a general class of models for frequency-dependent competition in which

ecological interactions are defined by d-dimensional phenotypes, where d ≥ 1. For example, one

can imagine that a high-dimensional phenotype of individuals is given by the efficiencies of several

metabolic pathways, or my multiple morphological characteristics. The ecological interactions are

determined by a competition kernel α(x,y) and by a carrying capacity K(x), where x,y ∈ R
d are

the d-dimensional phenotypes of competing individuals. The competition kernel α measures the

competitive impact that an individual of phenotype x has on an individual of phenotype y, and in

the sequel we always assume that α(x,x) = 1 for all x. Assuming logistic ecological dynamics,

K(x) is then the equilibrium density of a population that is monomorphic for phenotype x. The

per capita growth rate of a rare mutant phenotype y in the resident x is then given by

f(x,y) = 1−
α(x,y)K(x)

K(y)
(1)

(see [10, 12] for more details). The function f(x,y) is the invasion fitness from which the adaptive

dynamics is derived based on the selection gradients

si(x) ≡
∂f(x,y)

∂yi

∣

∣

∣

∣

y=x

= −
∂α(x,y)

∂yi

∣

∣

∣

∣

y=x

+
∂K(x)

∂xi

1

K(x)
, (2)

The selection gradients define a system of differential equations on phenotype space R
d, which is

given by

dx

dt
= M · s(x). (3)

Here M is the mutational variance-covariance matrix, which generally influences the speed and

direction of evolution. For simplicity, we assume here that this matrix is the unit matrix. For more

details on the derivation of the adaptive dynamics (3) we refer to a large body of primary literature
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(e.g. [8–10, 16, 23]). We note that the adaptive dynamics (3) can be derived analytically as a

large-population limit of an underlying stochastic, individual-based model that is again defined by

the competition kernel α(x,y) and the carrying capacity K(x) [3, 4, 8].

The system of ODEs (3) describes the trajectory of an evolving monomorphic population in

phenotype space R
d. Typically, the goal of an adaptive dynamics analysis is to find equilibrium

attractors for these trajectories, which are called singular points. These are points x∗ in phenotype

space at which the selection gradient vanishes, s(x∗) = 0. However, in general the trajectories may

also exhibit more complicated dynamics, such as limit cycles or chaos. In fact, [12] have argued

that in high-dimensional phenotype spaces, almost all systems of the form (3) will be chaotic.

For scalar traits, i.e., when the dimension of phenotype space is one, the adaptive dynamics

typically converges to a singular point x∗, and it is well known that these points are often evo-

lutionary branching points, i.e., starting points for adaptive diversification. This can be seen by

expanding the invasion fitness function with respect to the mutant coordinate y to second order,

f(x, y) =f(x, x) +
∂f(x, y)

∂y

∣

∣

∣

∣

y=x

(y − x) +
∂2f(x, y)

∂y2

∣

∣

∣

∣

y=x

(y − x)2

2
. (4)

The first term on the right hand side, f(x, x), is zero for all x since the resident population is

assumed to be at the ecological equilibrium. The coefficient of the linear term is the selection

gradient, which vanishes at a singular point by definition. In the neighbourhood of singular points,

∂f(x, y)/∂y|y=x → 0, and the second order term in eq. (4) becomes significant. In particular, if

the singular point is a maximum of the invasion fitness, i. e. ∂2f(x∗, y)/∂y2|y=x∗ < 0, no nearby

mutants can invade and the population remains monomorphic. However, when the invasion fitness

has a minimum at the singular point, i. e. when ∂2f(x∗, y)/∂y2|y=x∗ > 0, the stationary point is

an evolutionary branching point. Evolutionary branching has been studied extensively for scalar

traits ([10, 11, 16, 25]).

An extension of these arguments to high-dimensional phenotype spaces reveals two interesting

trends. On the one hand, the conditions for evolutionary branching at a singular point, i.e., at an

equilibrium of the adaptive dynamics, are progressively easier to satisfy for increasing dimension-

ality [6, 13, 32]. On the other hand, and as mentioned before, the fraction of trajectories that con-

verge to a singular point decreases and essentially vanishes for very high-dimensional phenotypes,

as more and more trajectories become chaotic [12]. Thus, adaptive diversification by means of

convergence to evolutionary branching points and subsequent diversification becomes less likely

in high-dimensional phenotype spaces, and the possibility of non-equilibrium adaptive dynamics
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makes it necessary to study diversification not just from evolutionary branching points, but more

generally from any point on an evolutionary trajectory. Indeed, [21] have studied this problem

analytically under the assumption that the resident is under directional selection in a particular

phenotypic direction.

To see how the analysis of [21] applies in cases with complicated evolutionary trajectories,

consider the multidimensional generalization of the expansion of the invasion fitness (4),

f(x,y) =f(x,x) +

(

∂f(x,y)

∂yi
, ...,

∂f(x,y)

∂yd

)

y=x

(y − x) +
1

2
(y − x)TH(x)(y − x), (5)

where H(x) is the Hessian matrix of second derivatives of the invasion fitness function with respect

to the mutant trait value y, evaluated at the resident trait value x:

H(x) =













∂2

∂y1∂y1
f(x,y)

∣

∣

∣

y=x
... ∂2

∂y1∂yd
f(x,y)

∣

∣

∣

y=x

... ... ...

∂2

∂yd∂y1
f(x,y)

∣

∣

∣

y=x
... ∂2

∂yd∂yd
f(x,y)

∣

∣

∣

y=x













(6)

As in the one-dimensional case, the selection gradient, which determines the evolutionary tra-

jectory, is the linear term in (5). However, the linear term is not relevant for the remaining d − 1

dimensions that are orthogonal to the selection gradient. In this orthogonal subspace, the quadratic

terms determine whether invasion is possible. Specifically, the interplay between the eigenvalues

of the Hessian matrix H(x) and the selection gradient determine the curvature of the invasion fit-

ness in the directions that are orthogonal to the direction in which the population is evolving [21].

In particular, if H(x) is negative definite, then the fitness function, viewed as a function on the

subspace that is orthogonal to the selection gradient, has a maximum at the current resident, and

only mutant phenotypes that have a component in the direction of the selection gradient can in-

vade. Thus, in this case no diversification is expected, and instead the evolving population simply

follows the trajectory determined by the selection gradient. However, if the Hessian matrix has an

eigenvector that has a positive eigenvalue and a non-zero projection onto the orthogonal subspace,

then there are directions in phenotype space that are orthogonal to the selection gradient and along

which the diversification is possible. The precise conditions for diversification in terms of the

curvature of the invasion fitness in the direction orthogonal to the selection gradient and the mag-

nitude of the selection gradient have been investigated in [21]. Roughly speaking, diversification

occurs if the eigenvalues of the orthogonal Hessian are positive enough.

It is important to note that if the population evolves on a non-equilibrium trajectory due to the

first order term in (5), then the direction of the selection gradient continually changes, and hence
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so does the subspace that is orthogonal to the selection gradient. In particular, phenotypic direc-

tions along which the invasion fitness has a minimum may change over time, which may impede

diversification, as the conditions for diversification may be satisfied only temporary. Neverthe-

less, it seems clear that in principle, the rather restrictive conditions for adaptive diversification in

scalar traits, requiring the adaptive dynamics to converge to a branching point, can easily be cir-

cumvented in high-dimensional phenotype spaces, in which diversification can occur in directions

that are orthogonal to the current direction of evolution. Below we use individual-based models

to confirm that the essential positivity of the local curvature of the Hessian of the invasion fitness

is indeed necessary and sufficient for adaptive diversification during non-equilibrium evolutionary

dynamics.

III. RECONSTRUCTING INDIVIDUAL-BASED MODELS WITH DIFFERENT PATTERNS OF

DIVERSIFICATION

Our main goal is to construct individual-based models that correspond to a given adaptive

dynamics (3). In individual-based models, a population is represented by a “cloud” of points

that moves through phenotype space over time. The points in the cloud are the individuals, each

of which is assigned a birth rate and a death rate at any given point in time. The evolutionary

dynamics unfolds through an algorithm according to which individuals with higher birth rates

are more likely to give birth, and individuals with higher death rates are more likely to die. For

birth events, the simplest assumption is asexual reproduction, and when individuals give birth, the

offspring has a phenotype that is similar to the phenotype of the parent. There are various ways of

implementing such algorithms, and the one used below is described in the Supplementary Online

Materials (SOM). We refer to the literature for a more detailed description of such algorithms (e.g.

[3, 4, 10]). In such individual-based models, a monomorphic population corresponds to a single

compact cloud, and diversification occurs when an evolving population splits into two clusters

in phenotype space. Thus, after diversification, there are multiple coexisting clouds of points in

phenotype space, each representing a descendent lineage.

An alternative way to describe the evolving population is by using partial differential equations

(PDE’s) for the dynamics of population distributions in phenotype space (see SOM). In that case,

diversification corresponds to the formation of multiple modes in the evolving distribution. in fact,

these deterministic models are themselves large-populations limits of the individual-based models,
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but they are more general than the adaptive dynamics limit in the sense that fewer assumptions are

necessary to derive the PDE limit. This has been nicely described in [4]. Due to computational

limitations of numerical solutions of PDE’s, solving the PDE models is currently only feasible in

relatively low-dimensional phenotype spaces.

When constructing either-individual based models or PDE models that correspond to a given

adaptive dynamics (3), a fundamental problem arises. The adaptive dynamics (3) is determined

by the selection gradient (2), which is in turn determined by the derivatives of the invasion fitness

function (1), and hence by the derivatives of the competition kernel and the carrying capacity. Be-

cause taking derivatives does obviously not yield a one-to-one correspondence, there are infinitely

many invasion fitness functions with different competition kernels and carrying capacities that

have the same derivatives, and hence yield the same adaptive dynamics. Since both individual-

based models and PDE models require knowledge of the full competition kernel and carrying ca-

pacity (see SOM), this implies that there are infinitely many different such models that correspond

to the same adaptive dynamics (3). Importantly, while yielding the same adaptive dynamics, the

different competition kernels and carrying capacities produce different patterns of diversification.

A. The “minimal” individual-based model

To illustrate the above points, we reconstruct individual-based models from a given adaptive

dynamics model by writing the adaptive dynamics equations (2, 3) as

dxi

dt
= −

∂α(x,y)

∂yi
∣

∣y=x

+
∂ ln[K(x)]

∂xi

≡ wi(x) + ui(x), (7)

where we denote by wi(x) and ui(x) the terms coming from the competition kernel and the carry-

ing capacity, respectively.

We first note that the part of the selection gradient that is due to the carrying capacity function

(i.e., the ui(x) terms) essentially generate a hill climbing process on the function K(x). As in [12]

we assume that this hill-climbing process is of the simplest possible form by assuming that the

carrying capacity function is given by the unimodal function

K(x) = K0 exp

(

−
∑

i

x4

i /4

)

. (8)

This implies that the terms ui(x) = −x3

i correspond to a stabilizing component of selection, with

x = 0 being the optimal phenotype, because this phenotype corresponds to the highest carrying
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capacity.

Under these assumptions, we first show that regardless of the specific form of the wi(x)-terms

in (7), there is a “minimal” competition kernel for which the Hessian matrix of the invasion fitness

is always negative definite and hence the evolving population should remain monomorphic in the

individual-based model.

Specifically, we define the minimal competition kernel as

α(x,y) = exp
(

d
∑

i=1

wi(x)(xi − yi)
)

, (9)

where the wi(x) are taken from the adaptive dynamics (7). It is easy to see that the adaptive

dynamics corresponding to this competition kernel, as well as to the carrying capacity (8), is given

by (7) as desired. Moreover, with this competition kernel, we calculate the elements of the Hessian

(7) of the invasion fitness function (2) as

H(x)ij =− wi(x)wj(x) + wi(x)uj(x) + wj(x)ui(x)− ui(x)uj(x) +
1

K(x)

∂2K(x)

∂xi∂xj

(10)

This matrix and can be written more succinctly as

H(x) =−











w1 − u1

...

wd − ud











(

w1 − u1, ..., wd − ud

)

+
HK(x)

K(x)
, (11)

where HK(x) is the Hessian of the carrying capacity, which is by assumption negative definite

(and where we have omitted the argument x from the terms wi(x) and ui(x)).

The first term in (11) is a rank 1 matrix and its only non-zero eigenvalue λ is negative:

λ = −
d
∑

i

[wi(x)− ui(x)]
2. (12)

As consequence, with the minimal competition kernel the Hessian of the invasion fitness func-

tion minimal competition kernel is always negative definite, independent of the current resident

phenotype, and hence diversification is not expected anywhere along the trajectory of the adaptive

dynamics.

As an example, consider the adaptive dynamics studied in [12],

dxi

dt
=

d
∑

j=1

bijxj +
d
∑

j,k=1

aijkxjxk − x3

i , i = 1, . . . , d. (13)
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where bij and aijk are arbitrary coefficients. The corresponding minimal competition kernel is

derived from these coefficients as

α(x,y) = exp

[

d
∑

i,j=1

bijxj(xi − yi) +
d
∑

i,j,k=1

aijkxjxk(xi − yi)

]

, (14)

while the carrying capacity is given by (8) as before. The prediction is that no matter what adaptive

dynamics the coefficients bij and aijk generate, the corresponding individual-based model obtained

from the competition kernel (14) and the carrying capacity (8) do not show diversification and

produce clouds of points that move roughly along the same trajectories as the adaptive dynamics

model (13).

Our extensive simulations of individual-based models for many different choices of the coef-

ficients bij and aijk support this prediction. Examples are shown in Figures 1-3 for two salient

non-equilibrium behaviours of the adaptive dynamics: a periodic attractor and a chaotic attractor.

In both cases, the figures show the comparison of the adaptive dynamics (13) with the correspond-

ing individual-based model. Even though the individual-based simulation do of course not remain

strictly monomorphic, they also do not break up into distinct clusters. Instead the phenotypic vari-

ance remains constrained to a single cohesive cluster, and the trajectory of the center of mass of

this evolving cluster follows the adaptive dynamics trajectory. Naturally, due to stochasticity of

the individual-based solution, the center of mass trajectory is inevitably noisy. Nevertheless, the

size, shape, and the direction of motion of the individual-based trajectory correspond to those of

the adaptive dynamics solution. For chaotic adaptive dynamics, this is a notable finding, as it was

not at all clear a priori whether it is possible to find individual-based models that follow a chaotic

trajectory without loss of cohesiveness and concomitant increase of phenotypic variance.

A similar comparison can be performed for the adaptive dynamics and the corresponding PDE

model, although this is currently only feasible for dimensions d ≤ 3. In such cases, the results

are the same: the PDE model with the minimal competition kernel does not diversify, i.e., the

phenotype distribution remains unimodal, and the movement of the mode of these distribution in

phenotype space tracks the trajectory of the corresponding adaptive models. This is illustrated in

the right panels of Figures 1 and 2.
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FIG. 1: An example of periodic adaptive dynamics in a 2-dimensional phenotype space (left

panel), the trajectory of the center of mass of the corresponding minimal individual-based model

(center panel and the first video (online only) in the second row ), and the trajectory of the center

of mass of the corresponding minimal PDE model (right panel and the second video (online only)

in the second row ) for a 2-dimensional system. Projections of the trajectories onto the first two

phenotypic components are shown. The coefficients in the competition kernel (14) are given in

the file “coeff2.dat” in SOM.

B. Diversification with Gaussian competition kernels

As mentioned before, the choice of competition kernel (9) for the given adaptive dynamics (7)

is by far not unique: Specifically, consider the set of competition kernels of the form

α(x,y) = exp

[

d
∑

i,j,k

(Aijkxixjxk +Bijkyixjxk + Cijkyiyjxk +Dijkyiyjyk + Eijxixj + Fijyixj +Gijyiyj)

]

,

(15)

11



-1 -0.5 0 0.5

X
1

-0.5

0.0

0.5

1.0

X
2

-1 -0.5 0 0.5

X
1

-0.5

0.0

0.5

1.0

X
2

-1 -0.5 0 0.5

X
1

-0.5

0.0

0.5

1.0

X
2

FIG. 2: An example of chaotic adaptive dynamics in a 3-dimensional phenotype space (left

panel), the trajectory of the center of mass of the corresponding minimal individual-based model

(center panel and the first video (online only) in the second row ), and the trajectory of the center

of mass of the corresponding minimal PDE model (right panel, and the second video (online

only) in the second row, only a small part of the attractor is reproduced since the PDE integration

is very computationally extensive). Projections of the trajectories onto the first two phenotypic

components are shown. The coefficients in the competition kernel (14) are given in the file

“coeff3.dat” in SOM.

where the sets of coefficients {Aink}, {Bink}, {Cink}, {Dink}, {Eij}, {Fij}, and {Gij} are subject

to the following constraints:

Aijk +Bijk + Cijk +Dijk = 0 for all i, j, k

Eij + Fij +Gij = 0 for all i, j

and

aijk = −(Bijk + (Cijk + Cjik) + (Dijk +Djik +Djki))

bij = −(Fij + (Gij +Gji)),

12
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FIG. 3: An example of chaotic adaptive dynamics in a 4-dimensional phenotype space (left

panel) , the trajectory of the center of mass of the corresponding minimal individual-based model

(right panel and the video (online only) in the second row ). Projections of the trajectories onto

the first two phenotypic components are shown. The coefficients in the competition kernel (14)

are given in the file “coeff4.dat” in SOM.

where aijk and bij are the coefficients determining the adaptive dynamics (13). Then the first two

of the above constraints ensure that α(x,x) = 1, and the third set of constrains ensures that the

competition kernel (15), together with the carrying capacity (8), generates the adaptive dynamics

(13).

It is clear from these considerations that there are very many different competition kernels that

give rise to the same adaptive dynamics. (In fact, the dimension of the space of order-3 competition

kernels giving rise to one and the same adaptive dynamics model is 2d3 + d2.)

Here we are interested in those competition kernels corresponding to a given adaptive dynam-

ics that would give rise to adaptive diversification. It has long been suggested that a general

mechanism to generate and maintain diversity is for competition to be strongest between similar
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phenotypes [7, 10, 24]. This is typically described by Gaussian competition kernels, which re-

flect the biologically plausible assumption that the strength of competition between individuals

decreases with with phenotypic distance.

In the present context, and starting with a given adaptive dynamics (13), we can incorporate

Gaussian competition by multiplying the minimal competition kernel (9) with a Gaussian term,

resulting in a competition kernel of the form

α(x,y) = exp

[

d
∑

i=1

wi(x)(xi − yi)−
(xi − yi)

2

2σ2

i

]

. (16)

Note that this competition kernel is a particular case of the general form (15) (with {D} = 0 and

a suitable choice of coefficients {A}, {B}, {C}, {E}, {F}, and {G}). Again, together with the

carrying capacity (8), this competition kernel results in the general adaptive dynamics (13). But

now the Hessian of the invasion fitness function has an additional positive diagonal component

given by the σ−2

i ,

H(x) =−











w1 − u1

...

wd − ud











(

w1 − u1, ..., wd − ud

)

+











σ−2

1
... 0

... ... ...

0 ... σ−2

d











+
HK(x)

K(x)
. (17)

This positive definite diagonal component is independent of the current resident phenotype,

and hence in any phenotype space with dimension d ≥ 2, there are directions in phenotype space

orthogonal to the current selection gradient along which there is a disruptive component of se-

lection. For sufficiently small variances σk of the Gaussian components, there will therefore be a

tendency towards diversification. For any given point on an evolutionary trajectory, i.e., for any

given resident phenotype, the conditions for diversification are of course not only determined by

the positive definite component of the Hessian, but also by the remaining terms in (17) and the

selection gradient (7). However, if the σk of the Gaussian components are sufficiently small, the

diversification conditions are likely to persist for a sufficient amount of time to make diversification

possible along non-equilibrium evolutionary trajectories.

Whether evolutionary branching can occur under these conditions can be checked by using the

adaptive dynamics (13) from [12] as a starting point and constructing the corresponding individual-

based model using the the competition kernel (16) and the carrying capacity (8). For simplicity,

we assumed that the variance of the Gaussian component σk = σ was the same in all phenotypic

directions, and our extensive simulations indicate that adaptive diversification indeed occurs when-

ever σ is small enough. Figure 4 illustrates how the typical interparticle separation, quantified as
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FIG. 4: Time dependence of the total standard deviation of the particles’ coordinates defined as

σtotal ≡
√

∑d

i=1
〈(xi − 〈xi〉)2〉 for the 3-dimensional chaotic system as in Fig. 2 (bottom line),

and with a Gaussian competition term (16) with the width σ = 0.65 (top line, red online). Here

〈. . .〉 stands for an average over all particles present in the system. Three snapshots for the

Gaussian competition kerne illustrate the initial, single-cluster stage at t = 40, intermediate

diversification at t = 1000, and the well-developed steady-state diversification at t = 20000 are

shown in inserts. The time evolution that has led to these snapshots can be seen in video in Fig. 6.

the “total standard deviation” σtotal ≡
√

∑d

i=1
〈(xi − 〈xi〉)2〉, becomes noticeably larger for the

individual-based model with the Gaussian competition kernel (16) compared to the same model

without the Gaussian term. The diversification in the models defined in Figs. 1-3 but with the

Gaussian competition kernel is further illustrated by videos in Figs. 5-7. The corresponding PDE

solutions also exhibit diversification, which is shown in videos in the right panels in Figs. 5,6.

As mentioned, the Gaussian competition kernel (16) is a special case of the general competition
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FIG. 5: (Online video) Diversification of the individual-based model (left panel) and the PDE

solution (right panel) of the 2-dimensional periodic system presented in Fig. 1 but with a

Gaussian competition term (16) with the width σ = 0.65.

FIG. 6: (Online video) Diversification of the individual-based model (left panel) and the PDE

solution (right panel) of the 3-dimensional chaotic system presented in Fig. 2 but with a Gaussian

competition term (16) with the width σ = 0.65.

FIG. 7: (Online video) Diversification of the individual-based model of the 4-dimensional chaotic

system presented in Fig. 3 but with a Gaussian competition term (16) with the width σ = 0.5.
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kernel (15), and there are potentially many more sets of coefficients in (15) that generate the same

adaptive dynamics (13) but lead to diversification in the corresponding individual-based models.

Our goal here was not to enumerate all forms of α that can produce evolutionary branching, but

rather to show that a particular form of competition kernel generates models that do not diversify

and follow the adaptive dynamics trajectories, while competition kernels incorporating sufficiently

strong frequency-dependence leads to robust and persistent diversification in systems with non-

stationary adaptive dynamics.

IV. CONCLUSIONS

Recent advances in understanding the evolution of complex multidimensional phenotypes were

mainly limited to the adaptive dynamics framework [12, 13, 20, 32] or to the the quantitative ge-

netics framework [6, 18]. Neither of these frameworks lends itself directly to the study of the

evolutionary dynamics of diversification and subsequent co-evolution of coexisting phenotypic

clusters, as adaptive dynamics assumes monomorphic populations, while quantitative genetics

models typically assume Gaussian phenotypic distributions. Here we have made an attempt to

go beyond these approximations by studying stochastic, individual-based model as well as deter-

ministic PDE models for adaptive diversification under non-equilibrium evolutionary dynamics.

We considered a general class of models for evolution due to frequency-dependent competition.

Starting with a given adaptive dynamics model in d-dimensional phenotype space (d ≥ 1) with

potentially complicated dynamics, we constructed individual-based models that give rise to this

adaptive dynamics model in the limit of large populations, and rare and small mutations. Without

the assumption of small and rare mutations, the individual-based models give rise to determinis-

tic PDE models in the large population limit [3, 4], which in turn give rise to the given adaptive

dynamics model in the limit of small variance of the evolving phenotypic distributions.

Our analysis generated two basic conclusions:

• For a given adaptive dynamics in multidimensional phenotype space there is a corresponding

“minimal” individual-based model whose fitness Hessian is always negative definite; as

a consequence, this minimal individual-based model does not diversify, and instead the

population remains confined to a single cluster whose centre of mass follows the trajectory

of the corresponding adaptive dynamics model, regardless of the nature of the attractor of

the adaptive dynamics.
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• Multiplying the minimal competition kernel by a Gaussian term with a sufficiently small

width yields the same adaptive dynamics, but causes adaptive diversification in the

individual-based model, in which multiple coexisting clusters emerge. Again this holds re-

gardless of the nature of the attractor of the given adaptive dynamics. In particular, adaptive

diversification is possible from a complicated evolutionary trajectory.

Similar statements hold for the corresponding PDE models. In particular, diversification is

possible in the absence of evolutionary equilibrium attractors in phenotype space, and in high-

dimensional phenotype spaces diversification can in principle occur in any direction that is or-

thogonal to the selection gradient. These findings considerably widen the scope of adaptive di-

versification as a general evolutionary principle. We have also shown that the correspondence

between individual;-based and PDE models on the one hand, and adaptive dynamics models on

the other hand, is not unique: there are very many different individual-based and PDE models that

give rise to the same canonical equation [8] for the monomorphic adaptive dynamics. Accord-

ing to the analysis in [21], diversification along complicated trajectories in these models should

depend on the components of the Hessian matrix of second derivatives of the invasion fitness func-

tion that are orthogonal to the selection gradients, and our results corroborate this. In particular,

different “full” models reconstructed from a given adaptive dynamics have different orthogonal

Hessians and different diversification properties. At one end of this set of full models are the min-

imal models, which generate a negative definite orthogonal Hessian, and therefore do not show

diversification. The other extreme is the Gaussian model, which can be defined to have Hessians

with positive eigenvalues in all orthogonal directions, regardless of the current resident phenotype.

Consequently, these reconstructed “Gaussian” models have a high propensity to diversify.

It is interesting to note that the minimal models reproduce the adaptive dynamics attractor even

if this attractor is chaotic. Due to the intrinsic sensitivity and complexity of chaotic systems, it

was not clear a priori that this is possible. For the Gaussian models presented here we made

the simplifying assumption that competition between similar phenotypes is equally strong in all

phenotypic directions. In reality, Gaussian competition could act only in a subset of phenotypic

directions, and then one would expect diversification to primarily occur in this subset. Also, we

assumed all off-diagonal elements in the Hessian portion of the competition kernel to be 0, which

corresponds to assuming that there are no interactions between the phenotypic components with

regard to the Gaussian component of competition. It is known that such interactions promote

diversification in equilibrium models [6, 13, 32], and it is an interesting direction for future work
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to analyze whether similar results hold for diversification in non-equilibrium models.

Our simulation results indicate that diversification often leads to coexistence of multiple pheno-

typic clusters, and a very interesting question for future work concerns the effect of diversification

on the complexity of the co-evolutionary dynamics of these coexisting clusters. So far, we have

seen examples of both destabilization and stabilization due to adaptive diversification: popula-

tions converging to an equilibrium when monomorphic can embark on non-equilibrium dynamics

after diversification; and the opposite can happen as well, so that populations moving on a com-

plicated attractor when monomorphic converge to a multi-cluster evolutionary equilibrium after

diversification.

It seems clear that in general, many different phenotypic properties can contribute to ecological

interactions, resulting in potentially complicated selection pressures in high-dimensional pheno-

type spaces. Our previous work has highlighted both the increased propensity for evolutionary

branching in such spaces [13], and the increased propensity towards complicated evolutionary

trajectories [12]. Here we have extended this perspective to studying the full dynamics of diver-

sification in high-dimensional phenotype spaces in stochastic, individual-based models as well as

PDE models. When these evolving systems diversify, the resulting coevolutionary dynamics of co-

existing phenotypic clusters may often be even more complicated and unpredictable, thus further

challenging the prevailing view of evolution as an optimization and equilibrium process. We hope

that our work will contribute to the discussion about the importance of adaptive diversification as

a mechanism for generating biological diversity. Finally, we think that studying individual-based

and PDE models of diversification in high dimensional spaces can also be relevant for tackling

important questions in cultural evolution, such as the origin and evolution of different religions,

languages, and other cultural traditions [10].
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Appendix A: Supplementary online materials

Here we describe how we simulate the individual-based and PDE models introduced in the

main text. Both models are defined by the competition kernel

α(x,y) = exp

[

d
∑

j,j=1

bijxj(xi − yi) +
d
∑

i,j,k=1

aijkxjxk(xi − yi)+
d
∑

i=1

(xi − yi)
2

2σ2

i

]

, (A1)

and the carrying capacity

K(x) = K0 exp

(

−
d
∑

i

x4

i /4

)

. (A2)

Since we are mainly interested in non-equilibrium dynamics, the sets of coefficients {a} and {b}

and the initial conditions x0 were selected as described in [12], so that the corresponding adaptive

dynamics, given by Eq. 13 in the Main Text, was either cyclic, quasiperiodic or chaotic.

1. Individual-based simulation

Individual-based realizations of the model were based on the Gillespie algorithm [17] and con-

sisted of the following steps:

1. The system is initialized by creating a set of K0 ∼ 103 − 104 individuals with phenotypes

xα ∈ Rd localized around the initial position x0 with a small random spread |xα −x0 | ∼

10−3.

2. Each individual α has a constant reproduction rate ρα = 1 and a death rate δα =
∑

β 6=α A(xα,x β)/K(xα), as defined by logistic ecological dynamics.

3. The total update rate is given by the sum of all individual rates U =
∑

α(ρα + δα).

4. The running time t is incremented by a random number ∆t drawn from the exponential

distribution P (∆t) = U exp(−∆tU).

5. A particular birth or death event is randomly chosen with probability equal to the rate of this

event divided by the total update rate U . If a reproduction event is chosen, the phenotype

of an offspring is offset from the ancestral one by a small mutation randomly drawn from a

uniform distribution with amplitude µ = 10−3 − 10−2.
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6. The individual death rates δα and the total update rate U are updated to take into account the

addition or removal of an individual.

7. Steps 4-6 are repeated until t reaches a specified end time.

2. Partial differential equation models

A deterministic large-population limit of the individual-based model is obtained as the partial

differential equation (PDE)

∂N(x, t)

∂t
= N(x, t)

(

1−
∫

α(y,x)N(y, t)dy

K(x)

)

+D

d
∑

i=1

∂2N(x, t)

∂x2

i

, (A3)

where N(x, t) is the population distribution at time t [3]. The second term of the right hand

side is a diffusion term that describes mutations, with the diffusion coefficient typically set to

D ∼ 10−4 − 10−3. The form and size of the single-cluster trajectory was usually known from

the adaptive dynamics solution. Hence, to numerically solve the PDE model (A3) we chose a

finite lattice resolution of phenotype space nodes at least twice larger than the adaptive dynamics

attractor. The number of bins L in each dimension of this lattice is strongly limited by memory

limitations: An efficient implementation requires computing and storing an array of Ld×Ld values

of the competition kernel α(yi,xj) for the pairwise interactions between all sites i and j. With

L = 25 − 30 to achieve a reasonable spatial resolution, the memory constraint makes the PDE

implementation feasible only for d = 2, 3.
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