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Abstract In this paper we describe several ideas re-
lated to Differential Fault Attack (DFA) on MICKEY

2.0, a stream cipher from eStream hardware profile. Us-
ing the standard assumptions for fault attacks, we first
show that if the adversary can induce random single

bit faults in the internal state of the cipher, then by

injecting around 216.7 faults and performing 232.5 com-

putations on an average, it is possible to recover the

entire internal state of MICKEY at the beginning of

the key-stream generation phase. We further consider

the scenario where the fault may affect more than one

(at most three) neighbouring bits and in that case we

require around 218.4 faults on an average to mount the

DFA. We further show that if the attacker can solve

multivariate equations (say, using SAT solvers) then

the attack can be carried out using around 214.7 faults

in the single-bit fault model and 216.06 faults for the
multiple-bit scenario.

This is a substantially revised and extended version of the
paper “A Differential Fault Attack on MICKEY 2.0” by S.
Banik and S. Maitra that has been presented in Workshop
on Cryptographic Hardware and Embedded Systems 2013
(CHES 2013), Santa Barbara, California, USA during August
20–23, 2013 and published in LNCS, Vol. 8086, pp. 215–232.
Section 5 is an addition over the conference version showing
further improvement.
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1 Introduction

The stream cipher MICKEY 2.0 [1] was designed by
Steve Babbage and Matthew Dodd as a submission to
the eStream project. The cipher has been selected as

a part of eStream’s final hardware portfolio. MICKEY

is a synchronous, bit-oriented stream cipher designed

for low hardware complexity and high speed. After a

TMD tradeoff attack [17] against the initial version of

MICKEY (version 1), the designers responded with a

tweak to the design by increasing the state size from

160 to 200 bits and altering the values of some control
bit tap locations. These changes were incorporated in
MICKEY 2.0 and these are the only differences between
MICKEY version 1 and MICKEY 2.0. While MICKEY

2.0 uses an 80-bit key and a variable length IV, a mod-

ified version of the cipher, MICKEY-128 2.0 that uses

a 128-bit key [2] was also proposed by the designers.

The name MICKEY is derived from “Mutual Irreg-
ular Clocking KEY-stream generator” which describes

the behavior of the cipher. The state consists of two

100-bit shift registers named R and S, each of which

is irregularly clocked and controlled by the other. The

cipher specification underlines that each key can be

used with up to 240 different IVs of the same length,
and that 240 key-stream bits can be generated from

each Key-IV pair. Very little cryptanalysis of MICKEY

2.0 is available in literature. In fact it has been noted

in [10, Section 3.2] that other than the observation re-

lated to time or power analysis attacks [13] on straight-

forward implementations of the MICKEY family, there

have been no known cryptanalytic advances on these
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ciphers. The work in this paper presents cryptanalytic

result of MICKEY 2.0 in terms of differential fault at-

tack.

Since the work of [8, 9], fault attacks have been

considered as important cryptographic tools to analyse

the strengths of cryptographic primitives. Such attacks

on stream ciphers were first described by Hoch and

Shamir [14]. A typical fault attack [14] involves random
injection of faults (using laser shots/clock glitches [21,
22]) in a device (typically initialized by a secret key)

which changes one or more bits of its internal state. The

adversary then attempts to deduce information about

the internal state (and if possible, the secret key too) us-

ing the output stream from this faulty device. In order

to perform the attack, certain privileges are required

like the ability to re-key the device, control the timing

of the fault etc. The attack becomes impractical and

unrealistic if the adversary is granted too many privi-

leges. In this work we assume the following privileges

from the adversarial point of view that are generally

acceptable in cryptanalytic literature.

1. We assume that the adversary can re-key the cipher

with the original Key-IV and restart cipher opera-

tions multiple times.

2. She has precise control over the timing of the fault

injection.

3. Initially we assume that she can inject a fault that

alters the bit value of one random register location
in either the R or the S register. Later, in Section 4,

we explore the situation when she can inject a fault
that may affect more than one value in contiguous
register locations. We present explicit results consid-
ering the events when upto three contiguous register

locations may be affected in R or S.

4. She is, however, unable to fix the exact location of
the R or S register where she wants to inject the

fault. Obtaining the fault location by comparison of
the fault-free and the faulty key-streams is one of
the challenges while mounting the fault attack.

There are published works where the assumptions made
are quite strong and requires the adversary to have
more control over fault injections, e.g., the works [4,

7,18] consider that the attacker can reproduce multiple

faults in the same (but unknown) locations. A detailed

physical implementation using such fault model is pre-

sented in [7, Section IIIB]. In this work we use a more
relaxed fault model (as in [5] for Grain family) in which
the adversary is not required to fault an unknown reg-

ister location multiple number of times.

Differential fault attack is a special class of fault

attack in which the attacker uses the difference between
fault-free and faulty key-streams to deduce the internal

state or the secret key of the cipher. In case of MICKEY

2.0, the differential attack is possible due to the rather

simplistic nature of the output function (r0+s0) used to
produce key-stream bits. Additionally, there are some

interesting combinatorial properties of the state update

functions in MICKEY that help facilitate the attack

that we shall describe.

The organization of the paper is as follows. In Sec-

tion 2, we present a description of the cipher which is

suitable for our analysis, where we also present some no-

tations that will be henceforth used in the paper. The

complete attack, assuming that the adversary is able to

induce single bit faults in random register locations, is

described in Section 3. In Section 4 we explore the case

when the adversary is able to induce a fault that affects

the bit values of (random) consecutive (upto 3) regis-

ter locations. In Section 5 we propose improvements of

the attack using SAT Solvers. Section 6 concludes the

paper.

2 Our description of MICKEY 2.0 PRGA and

some notations

A detailed description of MICKEY 2.0 is available in [1].

It uses an 80-bit key and a variable length IV, the length

of which may vary between 0 and 80 bits. The physical

structure of the cipher consists of two 100 bit registers

R and S. Both the registers are initialized to the all-
zero state, and the three stages of register update (i)

IV loading, (ii) Key Loading, and (iii) Pre-Clock are

executed sequentially before the production of the first

key-stream bit. Thereafter, during the PRGA (Pseudo

Random bitstream Generation Algorithm), key-stream

bits are produced.

We will now provide an alternate description of this

stage of operation (PRGA) in MICKEY 2.0. Consider

the binary variables a0, a1, a2, a3. Let a0 be defined as

a0 =

{

a2, if a1 = 0

a3, if a1 = 1.

Then it is straightforward to see that a0 can be ex-

pressed as a multivariate polynomial over GF(2), i.e.,

a0 = (1 + a1) · a2 + a1 · a3.

The state registers R and S, during the PRGA, are

updated by a call to the CLOCK KG routine, which

in turn calls the CLOCK R and the CLOCK S rou-

tine. In both these routines, the state is updated via

a number of If-Else constructs. As a result of this, the

state update may be equivalently expressed as a series

of multi-variate polynomials over GF(2).

Let r0, r1, . . . , r99, s0, s1, . . . , s99 denote the internal

state at a certain round during the MICKEY PRGA
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and let r′0, r
′
1, . . . , r

′
99, s

′
0, s
′
1, . . . , s

′
99 denote the internal

state at the next round. Then it is possible to write

r′i = ρi(r0, r1, . . . , r99, s0, s1, . . . , s99),

s′i = βi(r0, r1, . . . , r99, s0, s1, . . . , s99),

∀i ∈ [0, 99], where ρi, βi are polynomial functions over

GF(2). The exact forms of ρi, βi are described in Ap-

pendix C.

Before describing the attack, let us fix certain nota-

tions that will be used henceforth.

1. Rt = [rt0, r
t
1, . . . , r

t
99], St = [st0, s

t
1, . . . , s

t
99] is used to

denote the internal states of the R,S registers at

the beginning of the round t of the PRGA. That is,

rti , s
t
i respectively denotes the ith bit of the registers

R,S at the beginning of round t of the PRGA. Note

that rt+1
i = ρi(Rt, St) and st+1

i = βi(Rt, St).
2. The value of the variables CONTROL BIT R and

CONTROL BIT S, at the PRGA round t, are de-

noted by the variables CRt, CSt respectively. These
bits are used by the R,S registers to exercise mu-

tual self control over each other. Note that CRt =
rt67 + st34 and CSt = rt33 + st67.

3. Rt,∆rφ(t0), St,∆rφ(t0) (resp. Rt,∆sφ(t0), St,∆sφ(t0))

are used to denote the internal states of the cipher
at the beginning of round t of the PRGA, when a

fault has been injected in location φ of R( resp. S)

at the beginning of round t0 of the PRGA.

4. zi,∆rφ(t0) or zi,∆sφ(t0) denotes the key-stream bit

produced in the ith PRGA round, after a fault has
been injected in location φ of R or S at the begin-

ning of round t0 of the PRGA. By zi, we refer to the
fault-free key-stream bit produced in the ith PRGA

round.

3 Complete description of the Attack

We start with some technical results that will be used

later.

Lemma 1 Consider the first 100 internal states of the

MICKEY 2.0 PRGA. If rt99 and CRt are known ∀t ∈

[0, 99], then the initial state R0 can be calculated effi-

ciently.

Proof Let the values of rt99 and CRt be known ∀t ∈

[0, 99]. We notice that the functions ρi for all values of
i ∈ [1, 99] are of the form ρi(·) = ri−1+(s34+r67)·ri+αi·

r99, where s34+r67 is the value of CONTROL BIT R.

Also, αi = 1, if i ∈ RTAPS (this is a set of tap loca-

tions related to the design of MICKEY 2.0, see [1]) and

R0 r0 r1 · · · · · · r97 r98 r99 CR0

R1 r0 r1 · · · · · · r97 r98 r99 CR1

...

R97 r0 r1 · · · · · · r97 r98 r99 CR97

R98 r0 r1 · · · · · · r97 r98 r99 CR98

R99 r0 r1 · · · · · · r97 r98 r99 CR99

Known initially Calculated

Fig. 1: Constructing the state R0. Starting from PRGA round
99, any bit calculated at PRGA round i is used to determine
state bits of round i− 1.

is 0 otherwise. Now consider the following equation gov-
erning r9999 :

r9999 = ρ99(R98, S98) = r9898 + CR98 · r
98
99 + α99 · r

98
99.

In the above equation, r9898 is the only unknown and

it appears as a linear term, and so its value can be
calculated immediately. We therefore know the values

of 2 state bits of R98: r
98
99, r9898. Similarly look at the

equations governing r9899, r9898:

r9899 = r9798 + CR97 · r
97
99 + α99 · r

97
99,

r9898 = r9797 + CR97 · r
97
98 + α98 · r

97
99.

As before, r9798 is the lone unknown term in the first

equation whose value is determined immediately. Af-

ter this, r9797 becomes the only unknown linear term in

the next equation whose value too is determined easily.

Thus we know 3 bits of R97: r
97
97+i, i = 0, 1, 2. Contin-

uing in such a bottom-up manner we can successively

determine 4 bits of R96, 5 bits of R95 and eventually all

the 100 bits of R0. (The process is explained pictorially

in Figure 1.) ⊓⊔

Lemma 2 Consider the first 100 internal states of the

MICKEY 2.0 PRGA. If R0 is known and st99, CSt, CRt

are known ∀t ∈ [0, 99], then the initial state S0 of the

register S can be determined efficiently.

Proof Since R0 is known and so is CRt for each t ∈

[0, 99], we can construct all the bits of R1 by calculating

r1i = r0i−1 + CR0 · r
0
i + αi · r

0
99, ∀i ∈ [1, 99],
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R0 r0 r1 · · · · · · r97 r98 r99 CR0 S0 s0 s1 · · · · · · s97 s98 s99 CS0

R1 r0 r1 · · · · · · r97 r98 r99 CR1 S1 s0 s1 · · · · · · s97 s98 s99 CS1

...
...

R97 r0 r1 · · · · · · r97 r98 r99 CR97 S97 s0 s1 · · · · · · s97 s98 s99 CS97

R98 r0 r1 · · · · · · r97 r98 r99 CR98 S98 s0 s1 · · · · · · s97 s98 s99 CS98

R99 r0 r1 · · · · · · r97 r98 r99 CR99 S99 s0 s1 · · · · · · s97 s98 s99 CS99

Known initially Calculated

Fig. 2: Constructing the state S0. Starting from PRGA round 99, any bit calculated at PRGA round i is used to determine
state bits of round i− 1.

and r10 is given by r00 · CR0 + r099. Once all the bits of

R1 are known, all the bits of R2 can be determined by

calculating

r2i = r1i−1 + CR1 · r
1
i + αi · r

1
99, ∀i ∈ [1, 99],

and r20 = r10 · CR1 + r199. Similarly all the bits of the

states R3, R4, . . . , R99 can be calculated successively.

As before, we begin by observing that the functions βi

for all values of i ∈ [1, 99] are of the form

βi(·) = si−1 +λi · (s67 + r33) · s99 + β̂i(si, si+1, . . . , s99),

where s67+ r33 is the value of CONTROL BIT S and

β̂i is a function that depends on si, si+1, . . . , s99 but not

any of s0, s1, . . . , si−1. λi = 1 if FB0i 6= FB1i (these

are bit-sequences related to the design of MICKEY 2.0,

see [1]) and is 0 otherwise.

Now consider the following equation governing s9999:

s9999 = β99(R98, S98) = s9898 + λ99 · CS98 · s
98
99 + β̂99(s

98
99).

In the above equation s9898 is the only unknown and it

appears as a linear term, and so its value can be cal-
culated immediately. We therefore know the values of

the 2 state bits of S98: s
98
99, s9898. Similarly consider the

equations involving s9899, s9898 :

s9899 = s9798 + λ99 · CS97 · s
97
99 + β̂99(s

97
99),

s9898 = s9797 + λ98 · CS97 · s
97
99 + β̂98(s

97
98, s

97
99).

As before, s9798 is the lone unknown term in the first

equation whose value can be determined immediately.

After this, s9797 becomes the only unknown linear term

Table 1: The functions θi

i θi(·)

0 r0 + s0

1 r0 · r67 + r0 · s34 + r99 + s99

2 r0 · r66 · r67 + r0 · r66 · s34 + r0 · r67 · r99+
r0 · r67 · s33 + r0 · r67 · s34 · s35 + r0 · r67 · s34+
r0 · r67 + r0 · r99 · s34 + r0 · s33 · s34 + r0 · s34 · s35+
r33 · s99 + r66 · r99 + r67 · r99 · s34 + r98 + r99 · s33+
r99 · s34 · s35 + r99 · s34 + r99 + s67 · s99 + s98

in the next equation whose value can also be obtained

easily. Thus we know 3 bits of S97: s
97
97+i, i = 0, 1, 2.

Continuing in such a bottom-up manner, we can suc-

cessively determine 4 bits of S96, 5 bits of S95 and even-

tually all the 100 bits of S0. (The process is explained

pictorially in Figure 2.) ⊓⊔

3.1 Faulting specific bits of R,S

The output key-stream bits zt, zt+1, . . . can also be ex-

pressed as polynomial functions over Rt, St. We have

zt = rt0 + st0 = θ0(Rt, St),

zt+1 = rt+1
0 + st+1

0

= ρ0(Rt, St) + β0(Rt, St) = θ1(Rt, St),

zt+2 = rt+2
0 + st+2

0

= ρ0(Rt+1, St+1) + β0(Rt+1, St+1) = θ2(Rt, St).

The exact forms of θ0, θ1, θ2 are given in Table 1.

In the rest of this section we will assume that the ad-

versary can (a) re-key the device containing the cipher
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with the original Key-IV, (b) apply faults to specific bit

locations in the R,S registers and (c) exercise control
over the timing of fault injection. Note that (b) is a

stronger assumption, but we do not need it in our at-

tack. We are using this assumption here to build a sub-

routine. In the next sub-section we shall demonstrate

how the adversary can partially identify the location of

any fault injected at a random position by comparing
the faulty and fault-free key-streams.

We observe the following differential properties of

the functions θ0, θ1, θ2.

– θ1(. . . , r67, . . .) + θ1(. . . , 1 + r67, . . .) = r0,

– θ1(r0, . . .) + θ1(1 + r0, . . .) = s34 + r67,
– θ2(. . . , s99) + θ2(. . . , 1 + s99) = s67 + r33.

These differential properties have the following imme-
diate implications.

zt+1 + zt+1,∆r67(t) = rt0 (1)

zt+1 + zt+1,∆r0(t) = CRt (2)

zt+2 + zt+2,∆s99(t) = CSt (3)

The above equations hold for all the values of t =
0, 1, 2, . . .. This implies that if the adversary is able to

re-key the device with the original Key-IV pair multi-

ple times and apply faults at the PRGA rounds t =

0, 1, 2, 3, . . . , 100 at precisely1 the R register locations

0, 67 and the S register location 99, then by observ-

ing the difference between the fault-free and faulty key-

stream bits, she would be able to recover the values of

rt0, CRt, CSt for all values of t = 0, 1, 2, . . . , 100. The

fault at each register location must be preceded by re-

keying.

3.1.1 Determining the other bits

Hereafter, the values st0 for all t = 0, 1, 2, . . . , 100 may

be found by solving: st0 = zt + rt0. Since β0(·) = s99,

this implies that st+1
0 = st99, ∀t = 0, 1, 2, . . .. Therefore,

calculating the values of st0, ∀t ∈ [1, 100] is the same

as calculating st99, ∀t ∈ [0, 99]. The values of rt99, ∀t ∈

[0, 99] are obtained as follows. Consider the equation

for zt+1:

zt+1 = θ1(Rt, St) = rt0 · r
t
67 + rt0 · s

t
34 + rt99 + st99

= CRt · r
t
0 + rt99 + st99, ∀t ∈ [0, 99].

Here, rt99 is the only unknown linear term in these equa-

tions and hence its value too can be determined imme-

diately. At this point, we have the following state bits

with us:

[rt0, rt99, CRt, st0, st99, CSt], ∀t ∈ [0, 99].

1 We would again like to point out that our actual attack
does not need precise fault injection at all locations of R, S.
This will be explained in the next sub-section.

Now by using the techniques presented in Lemma 1, we

can determine all the bits of the state R0. Thereafter
using Lemma 2, one can determine all the bits of S0.

Thus we have recovered the entire internal state at the

beginning of the PRGA.

3.2 How to identify the random locations where faults

are injected

In this subsection we will show how the adversary can

identify the locations of randomly applied faults to the

registers R and S. Although it will not be possible to

conclusively determine the location of faults applied to

each and every location of R and the S registers, we

will show that the adversary can, with some probabil-

ity, identify faulty streams corresponding to locations

0, 67 of R and 99 of S. The adversary will then use the

techniques described in Subsection 3.1 to complete the

attack.

To help with the process of fault location identifica-

tion, we define the first and second Signature Vectors

for the location φ of R as

Ψ1
rφ
[i] =

{

1, if zt+i = zt+i,∆rφ(t) for all Rt, St,
0, otherwise.

Ψ2
rφ
[i] =

{

1, if zt+i 6= zt+i,∆rφ(t) for all Rt, St,
0, otherwise.

for i = 0, 1, 2, . . . , l − 1. Here l ≈ 40 is a suitably

chosen constant.

Remark 1 The value of l should be large enough so that

one can differentiate, with probability almost 1, 100
randomly generated bit sequences over GF(2) by com-

paring the first l bits of each sequence. This requires
the value of l to be at least 2 · log2 100 ≈ 14. We take

l = 40, as computer simulations show that this value of

l is sufficient to make a successful distinction with high

probability.

Similarly one can define Signature Vectors for any lo-

cation φ the register S.

Ψ1
sφ
[i] =

{

1, if zt+i = zt+i,∆sφ(t) for all Rt, St,

0, otherwise.

Ψ2
sφ
[i] =

{

1, if zt+i 6= zt+i,∆sφ(t) for all Rt, St,

0, otherwise.

The task for the fault location identification routine

is to determine the fault location φ of R (or S) by ana-

lyzing the difference between the sequences zt, zt+1, . . .

and zt,∆rφ(t), zt+1,∆rφ(t), . . . (or zt,∆sφ(t), . . .) by using
the Signature Vectors Ψ1

rφ
, Ψ2

rφ
(or Ψ1

sφ
, Ψ2

sφ
). Note that

the ith bit of Ψ1
rφ

is 1 if and only if the (t + i)th key-

stream bits produced by Rt, St and Rt,∆rφ(t), St,∆rφ(t)
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are the same for all choices of the internal state Rt, St

and that ith bit of Ψ2
rφ

is 1 if the above key-stream bits
are different for all choices of the internal state.

The concept of Signature Vectors to deduce the lo-

cation of a randomly applied fault was introduced in [4].

However the analysis of [4] cannot be reproduced for

MICKEY 2.0, since a lot of different register locations

have the same Signature Vector. However one can ob-

serve the following which are important to mount the

attack.

Theorem 1 The following statements hold for the Sig-

nature Vectors Ψ1
rφ
, Ψ2

rφ
, Ψ1

sφ
, Ψ2

sφ
of MICKEY 2.0.

A. Ψ1
rφ
[0] = 1, ∀φ ∈ [1, 99] and Ψ2

r0
[0] = 1.

B. Ψ1
rφ
[0] = Ψ1

rφ
[1] = 1, ∀φ ∈ [1, 99] \ {67, 99}.

C. Ψ2
r99

[1] = 1, and Ψ2
r67

[1] = 0.
D. Ψ1

sφ
[0] = 1, ∀φ ∈ [1, 99] and Ψ2

s0
[0] = 1.

E. Ψ1
sφ
[0] = Ψ1

sφ
[1] = 1, ∀φ ∈ [1, 99] \ {34, 99}.

F. Ψ2
s99

[1] = 1, and Ψ2
s34

[1] = 0.

Proof We present the proof for Case A. The proofs for

the remaining cases are similar and those are available

in Appendix A.

A. We have

zt + zt,∆r0(t) = θ0(Rt, St) + θ0(Rt,∆r0(t), St,∆r0(t))

= (rt0 + st0) + (1 + rt0 + st0)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
r0
[0] = 1. Also θ0 is not a function of any ri, si

for i ∈ [1, 99] and so

θ0(Rt,∆rφ(t), St,∆rφ(t)) = θ0(Rt, St) ∀φ ∈ [1, 99]

and so we have

zt + zt,∆rφ(t) = θ0(Rt, St) + θ0(Rt,∆rφ(t), St,∆rφ(t))

= 0, ∀φ ∈ [1, 99], ∀Rt, St ∈ {0, 1}100.

So, Ψ1
rφ
[0] = 1 for all φ ∈ [1, 99].

Thus the proof. ⊓⊔

Now, consider the attack scenario in which the ad-

versary is able to re-key the device with the same Key-

IV multiple number of times and inject a single fault at

a random location of register R at the beginning of any

particular PRGA round t ∈ [0, 100] and obtain faulty

key-streams. She continues the process until she obtains

100 different faulty key-streams corresponding to 100

different fault locations in R and for each t ∈ [0, 100]

(as mentioned earlier this is done by comparing the first

l bits of each faulty key-stream sequence). Assuming

that every location has equal probability of getting in-

jected by fault, the above process on an average takes

around 100 ·
∑100

i=1
1
i
≈ 29.02 faults [12] and hence re-

keyings for each value of t ∈ [0, 100] and hence a total
of 101 · 29.02 ≈ 215.68 faults. The process has to be re-

peated for the S register, and so the expected number

of faults is 2 · 215.68 = 216.68.

If we define the vectors Zt = [zt, zt+1, . . . , zt+l−1]
and ∆rφZt = [zt,∆rφ(t), zt+1,∆rφ(t), . . . , zt+l−1,∆rφ(t)],

then the adversary at this point has knowledge of the
100 differential key-streams ηt,rφ = Zt+∆rφZt for each

value of t ∈ [0, 100]. The adversary, however, does not

know the exact fault location corresponding to any dif-
ferential stream, i.e., she has been unable to assign fault
location labels to any of the differential streams. With
this information in hand, we shall study the implica-

tions of the observations A to F.

Implication of A: For any t ∈ [0, 100], Ψ2
r0
[0] = 1

guarantees that there is at least one differential stream

with ηt,rφ [0] = 1 whereas Ψ1
rφ
[0] = 1, ∀φ ∈ [1, 99] guar-

antees that that there is exactly one differential stream

with this property. This implies that out of the 100 dif-
ferential streams for any PRGA round t the one and

only differential stream with this property must have
been produced due to a fault on the 0th location in R.

Labelling of this stream helps us determine the values
of CRt for all t ∈ [0, 100] from Eqn. (2).

Implication of B, C: Once the differential stream cor-
responding to the 0th location has been labelled we now

turn our attention to the remaining 99 streams. State-

ment B guarantees that of the remaining 99 streams at

least 97 have the property:

(P1) ηt,rφ [0] = ηt,rφ [1] = 0.

Statement C guarantees that the number of streams
with the property:

(P2) ηt,rφ [0] = 0, ηt,rφ [1] = 1,

is at most 2 and at least 1. If the number of streams
that satisfy (P1) is 98 and (P2) is 1, then the lone
stream satisfying (P2) must have been produced due

to fault on location 99 of R. This immediately implies

that ηt,r67 [1] = 0 which by Eqn. (1) in turn implies that

rt0 = 0. Else if the number of streams satisfying (P1) is

97 and (P2) is 2 then it implies that the streams satisfy-

ing (P2) were produced due to faults in location 67, 99
of R. This implies ηt,r67 [1] = rt0 = 1.

Repeating the entire process on Register S, one can

similarly obtain the vectors ∆sφZt and the differential

streams ηt,sφ = Zt+∆sφZt for all values of t ∈ [0, 100].
As before the streams ηt,sφ are unlabeled. Let us now

study the implications of D, E, F.
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Implication of D: For any t ∈ [0, 100], Ψ2
s0
[0] = 1

guarantees that there is at least one differential stream
with ηt,sφ [0] = 1 whereas Ψ1

sφ
[0] = 1, ∀φ ∈ [1, 99] guar-

antees that that there is exactly one differential stream

with this property. This implies that out of the 100 dif-

ferential streams for any PRGA round t the one and
only differential stream with this property must have

been produced due to a fault on the 0th location in S.

Implication of E, F: Once the differential stream

corresponding to the 0th location has been labelled we

now turn our attention to the remaining 99 streams.

The statement E guarantees that of the remaining 99
streams at least 97 have the property

(P3) ηt,sφ [0] = ηt,sφ [1] = 0.

Statement F guarantees that the number of streams

with the property

(P4) ηt,sφ [0] = 0, ηt,sφ [1] = 1,

is at most 2 and at least 1.

Case 1. If the number of streams that satisfy (P3) is 98

and (P4) is 1 then the lone stream satisfying (P4)

must have been produced due to fault at location

99 of S. Once the stream corresponding to location

99 of S had been labelled, we can use Eqn (3) to

determine CSt = ηt,s99 [2].
Case 2. If the number of streams satisfying (P3) is 97

and (P4) is 2 then it implies that the streams satisfy-

ing (P4) had been produced due to faults in location

34, 99 of S.

(i) Now if the bit indexed 2 of both these vectors

are equal then we can deduce CSt = ηt,s99 [2] =
ηt,s34 [2].

(ii) A confusion occurs when ηt,s99 [2] 6= ηt,s34 [2]. In

such a situation we would be unable to conclu-

sively determine the value of CSt.

Assuming independence, we assume that Cases 1, 2

have equal probability of occurrence. Given that Case

2 occurs, we can also assume that one of 2(i), 2(ii) oc-

curs with equal probability. Therefore, the probability

of confusion, i.e., the probability that we are unable to
determine the value of CSt for any t can be estimated

as 1
2 ·

1
2 = 1

4 . Let γ denote the number of t ∈ [0, 100] such

that CSt cannot be conclusively determined then γ is

distributed according to γ ∼ Binomial(101, 1
4 ). There-

fore the expected value of γ is E(γ) = 101 · 1
4 = 25.25.

Also the probability that

P (γ > 35) =

101
∑

k=36

(

101

k

)(

1

4

)k (
3

4

)101−k

≈ 0.01.

In such a situation, the adversary must guess the γ

number of bit values of CSt to perform the attack,
which implies that the adversary must perform the cal-

culations in Section 3.1 and Lemma 1, Lemma 2 a total

of 2γ times to complete the attack. For the correct value

of the guesses, the calculated state R0, S0 will produce
the given fault-free key-stream sequence. We present a

complete description of the attack in Algorithm 1.

Generate and record the fault-free key-stream z0, z1, z2, . . .
for some Key-IV K, IV
t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆rφ
Zt

have not been obtained do
Re-key the cipher with Key-IV K, IV ;
Inject a fault at a random unknown location
φ ∈ [0, 99] in R at PRGA round t;
Record the faulty key-stream sequence ∆rφ

Zt;

end

t← t + 1;
end

Calculate rt
0
, CRt, ∀t ∈ [0, 100] using A, B, C;

t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆sφ
Zt

have not been obtained do
Re-key the cipher with Key-IV K, IV ;
Inject a fault at a random unknown location
φ ∈ [0, 99] in S at PRGA round t;
Record the faulty key-stream sequence ∆sφ

Zt;

end

t← t + 1;
end

Using D, E, F calculate CSt, for all such t ∈ [0, 100] for
which there is no confusion;
Let the number of undecided CSt bits be γ;
for Each of the 2γ guesses of the undecided CSt’s do

Use techniques of Subsection 3.1 to compute
rt
0
, rt

99
, CRt, st

0
, st

99
, CSt, ∀t ∈ [0, 99];

Use Lemma 1, Lemma 2 to compute R0, S0;
if R0, S0 produce the sequence z0, z1, z2, . . . then

Output the required state R0, S0;
end

end

Algorithm 1: Fault Attack against MICKEY 2.0

3.3 Issues related to the length of the IV

It is known that MICKEY 2.0 employs a variable length

IV of length at most 80. So if v is the length of the

IV then the cipher will run for v+80 (Key loading) +

100 (Preclock) clock rounds before entering the PRGA

phase. Our attack requires that the first faults are to be

injected at the beginning of the PRGA. In order to do

that the adversary must know the value of v. This not

a strong assumption as IVs are assumed to be known.

However even if the adversary does not know the IV or

its length the attack can be performed. Since 0 ≤ v ≤ 80

must be satisfied, the strategy of the adversary who

does not know the value of v will be as follows. She will

inject the first set of faults at clock round 260 which
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corresponds to the PRGA round p = 260 − 180 − v =

80− v. After performing the attack, the adversary will
end up constructing the internal state Rp, Sp instead of

R0, S0. Finding the value of p by looking at the fault-

free key-stream sequence is straightforward. However,

finding R0, S0 is a slightly stronger result because, as
reported in [17], there is a finite entropy loss for each

state update operation in the MICKEY PRGA.

3.4 Complexity of the Attack

As mentioned in Section 3.2, the attack requires the ad-

versary to obtain 100 different faulty key-streams cor-

responding to all the fault locations in R for PRGA

rounds t ∈ [0, 100]. This requires 101 · 100 ·
∑100

i=1
1
k
≈

215.68 faults on an average. The same process must be

repeated for the register S and hence the expected num-

ber of total faults is 216.68. The computational overload

comes from guessing the γ bits of CSt which cannot be

found by observing the differential key-streams. This re-
quires a computational effort proportional to 2γ . Since

γ is distributed according to Binomial(101, 1
4 ), the ex-

pected value of γ is 25.25. The expected value of the

computation complexity is therefore given by

E(2γ) =

101
∑

k=0

(

101

k

)(

1

4

)k (
3

4

)101−k

2k ≈ 232.5.

4 Case of Multiple bit faults

In this section we explore the situation in which the
adversary is unable to induce a single bit flip of the in-
ternal state every time she injects a fault. We assume

that the injection of fault may affect the bit values of

at most three consecutive locations of the state (indeed

this can be extended further, but the analysis will be-

come very tedious). This gives rise to three situations

(a) the attacker flips exactly one register bit (100 possi-
bilities), (b) she flips 2 consecutive locations i, i+1 of R

or S (99 possibilities), (c) she flips 3 consecutive loca-

tions i, i+1, i+2 of R or S (98 possibilities). Studying

such a model makes sense if we attack an implemen-
tation of MICKEY where the register cells of the R

and S registers are physically positioned linearly one

after the other. Now, this attack scenario gives rise to
100 + 99 + 98 = 297 different instances of faults due
to any single fault injection, and we will assume that

all these instances are equally likely to occur. As be-

fore we will assume that the adversary can re-key the

device with the original Key-IV and obtain all the 297

faulty streams for any PRGA round t ∈ [0, 100] by ran-

domly injecting faults in either the R or S register.

For each PRGA round, the attacker thus needs around

297 ·
∑297

i=1
1
i
≈ 210.7 faults. Thus the fault requirement

for the register R is 101 · 210.7 = 217.4. The process has

to be repeated for the S register and so the total fault

requirement is 2 · 217.4 = 218.4.

Let Φ = {φ1, φ2, . . . , φk} denotes the set of indices

of k (k ≤ 3) continuous locations in the R (or S) reg-
ister. The notations Rt,∆rΦ(t0), St,∆rΦ(t0), Rt,∆sΦ(t0),

St,∆sΦ(t0), zi,∆rΦ(t0), ∆rΦZt, ηt,rΦ , Ψ1
rΦ

[i], Ψ2
rΦ

[i], and

Ψ1
sΦ

[i], Ψ2
sΦ

[i] will be used in their usual meanings in

the context of multiple faults at all locations in Φ.

To begin with, in the single bit fault case, the attack

depends on the successful identification of the faulty

streams produced due to faults in locations 0, 67 of R

and 99 of S. In the multiple bit fault case too, the suc-

cess of the attack depends on the identification of faulty

streams that have been produced due to faults in these

locations. We will deal each of these situations sepa-
rately.

4.1 The bit r0 is affected.

This could happen in 3 ways: a) r0 alone is toggled, b)

r0, r1 are toggled, c) r0, r1, r2 are toggled. Let us state

the following technical result.

Proposition 1 Ψ1
rΦ

[0] = 1, ∀Φ such that 0 /∈ Φ, but

Ψ2
rΦ

[0] = 1, ∀Φ that contain 0.

Proof Since θ0 is a function of r0, s0 only we will have

zt + zt,∆rΦ(t) = θ0(Rt, St) + θ0(Rt,∆rΦ(t), St,∆rΦ(t))

=

{

0, if 0 /∈ Φ,

1, if 0 ∈ Φ

Hence the result. ⊓⊔

This implies that any faulty stream with its first

bit different from the fault-free first bit must have been

produced due to a fault that has affected r0 and vice

versa. Thus 3 out of the 297 faulty streams have this
property and they can be identified easily. Furthermore
since θ1(Rt, St)+θ1(Rt,∆rΦ(t), St,∆rΦ(t)) = st34+rt67 =

CRt ∀Φ containing 0, the second bit in the all these

faulty streams are equal and the difference of this bit

with the second fault-free bit gives us the value of CRt.

4.2 The bits r67 and r99 are affected.

r67 could be affected in 6 ways : a) r67 alone is tog-
gled, b) r66, r67 are toggled, c) r67, r68 are toggled, d)

r65, r66, r67 are toggled, e) r66, r67, r68 are toggled and
f) r67, r68, r69 are toggled. Also note that r99 could be
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affected in 3 ways: a) r99 is toggled, b) r98, r99 are tog-

gled and c) r97, r98, r99 are all toggled. Again we state
the following propositions.

Proposition 2 Ψ1
rΦ

[0] = Ψ1
rΦ

[1] = 1, ∀Φ such that the

indices 0, 67, 99 /∈ Φ.

Proposition 3 If 99 ∈ Φ then Ψ2
rΦ

[1] = 1. If 67 ∈ Φ

then Ψ2
rΦ

[1] = 0.

Proof Note that θ0 is a function of only r0, s0 and θ1 is
a function of r0, r67, r99, s34, s99 only.

zt+1 + zt+1,∆rΦ(t) =















0, if 0, 67, 99 /∈ Φ, (G)

CRt, if 0 ∈ Φ, (H)
rt0, if 67 ∈ Φ, (K)

1, if 99 ∈ Φ. (L)

Hence the result. ⊓⊔

In the above, (G) implies that out of the remaining 294

differential streams at least 294− 6− 3 = 285 satisfy

(P5) ηt,rΦ [0] = ηt,rΦ [1] = 0

and (L) implies that the number of differential streams

with the property

(P6) ηt,rΦ [0] = 0, ηt,rΦ [1] = 1

is at least 3. A direct implication of (K) is that if the

number of differential streams satisfying (P5) is 285 and

(P6) is 9 then rt0 = 1 and on the other hand if, the num-

ber of streams satisfying (P5) is 291 and (P6) is 3 then
rt0 = 0. These are exclusive cases, i.e., the number of

streams satisfying (P5) can be either 285 or 291. Since

the values of rt0, CRt for all t ∈ [0, 100] are now known,

the attacker can now use the techniques of Section 3.1

and Lemma 1 to calculate the entire initial state R0.

4.3 The bits s0, s34 and s99 are affected.

Following previous descriptions, we know that there are

respectively 3, 6, 3 possibilities of faults affecting s0, s34,

s99. Again, we present the following technical results

before describing the attack.

Proposition 4 Ψ1
sΦ

[0] = 1, ∀Φ such that 0 /∈ Φ, but

Ψ2
sΦ

[0] = 1, ∀Φ that contain 0.

Proposition 5 Ψ1
sΦ

[0] = Ψ1
sΦ

[1] = 1, ∀Φ such that the

indices 0, 34, 99 /∈ Φ.

Proposition 6 If 99 ∈ Φ then Ψ2
sΦ

[1] = 1. If 34 ∈ Φ

then Ψ2
sΦ

[1] = 0.

Proof The proof is similar to those of previous propo-
sitions. Since θ0 is a function of only r0, s0 and θ1 is a

function of r0, r67, r99, s34, s99 only, we have

zt + zt,∆sΦ(t) = θ0(Rt, St) + θ0(Rt,∆sΦ(t), St,∆sΦ(t))

=

{

0, if 0 /∈ Φ,

1, if 0 ∈ Φ

zt+1 + zt+1,∆sΦ(t) =







0, if 34, 99 /∈ Φ, (M)
rt0, if 34 ∈ Φ, (N)

1, if 99 ∈ Φ. (O)

⊓⊔

Proposition 4 proves that there are exactly 3 differ-

ential streams out of 297 which have ηsΦ [0] = 1. Fur-

ther, (M) implies that of the remaining 294 streams, at

least 294− 3− 6 = 285 satisfy

(P7) ηt,sΦ [0] = ηt,sΦ [1] = 0

and (O) implies that the number of streams that satisfy

(P8) ηt,sΦ [0] = 0, ηt,sΦ [1] = 1

is at least 3.

4.3.1 CASE I.

If the number of streams that satisfy (P7) is 291 and

(P8) is 3 then the streams satisfying (P8) must have

been produced due to the faults affecting s99. For these

streams ηsΦ [2] is given by:

zt+2 + zt+2,∆sΦ(t) =







CSt, if Φ = {99},

1 + CSt, if Φ = {98, 99}

1 + CSt. if Φ = {97, 98, 99}

So, for 2 of these 3 streams we have ηsΦ [2] = 1 + CSt.

Hence, our strategy will be to look at the bit indexed 2

of these 3 streams. Two of them will be equal and we

designate that value as 1 + CSt.

4.3.2 CASE II.

If the number of streams that satisfy (P7) is 285 and

(P8) is 9 then the streams have been produced due

to faults that have affected s34 and s99. We have the

identity
∑

Φ: 34∈Φ

ηt,sΦ [2] = rt0 · r
t
67 · s

t
34 + rt99 · s

t
34.

Therefore, the sum of the bits indexed 2 of all the dif-

ferential streams that satisfy (P8) is
∑

Φ: 34 or 99∈Φ

ηt,sΦ [2] = CSt + rt0 · r
t
67 · s

t
34 + rt99 · s

t
34.
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At this time the entire initial state of the register R and

all the values of CRt for t ∈ [0, 100] are known to us.
Hence, by Lemma 2, all values of rti for all t > 0 can

be calculated by clocking the register R forward. Also,

since CRt = rt67+st34 is known, st34 = CRt+rt67 can be

calculated easily. Therefore, in the previous equation,

CSt becomes the only unknown and thus its value can

be calculated immediately.

At this point of time we have rt0, CRt, CSt for all

values of t = 0, 1, 2, . . . , 100. Now using the techniques
of Section 3.1 and Lemmata 1, 2, we will be able to

determine the entire initial state R0, S0. Note that us-

ing this fault model although the fault requirement in-

creases, the adversary does not have to bear the ad-

ditional computational burden of guessing γ values of

CSt.

5 Improvement Using SAT Solver

The main idea of algebraic cryptanalysis is to solve mul-

tivariate polynomial systems that describe a cipher and

this has been successfully exploited in DFA also. For a

very brief introduction in this, one may refer [19, Sec-
tion 5]. The DFA on Trivium [19] requires only 2 faults.
Our very recent work on DFA against Grain family [20]
also shows that the number of faults can be reduced

significantly (not more than 10). With this motivation,

we tried to exploit similar ideas for fault attacks against

MICKEY 2.0. Our analysis shows improvements over

our result in Section 3.4; however, not as significant as
what could be achieved for Trivium or Grain family.
Nevertheless, we identify several other combinatorial

patterns towards the improved DFA against MICKEY

2.0 in this section. We will start with the following sim-

ple technical result.

Lemma 3 Suppose rt0 = 0 for some t ∈ [0, 99]. Then
the location of a random fault can be identified deter-

ministically when it injects the 99th location of R.

Proof This follows from Theorem 1B, 1C. We have

already seen in Section 3.2, that for any t, if rt0 = 0,
then the number of differential streams satisfying (P2)

is exactly 1. It follows from Theorem 1B, 1C, that
this differential stream must have been produced due
to fault on location 99 of R. ⊓⊔

Now we will prove another result when rt0 = 1.

Lemma 4 Suppose rt0 = 1 for some t ∈ [0, 99]. Then

to decide that rt0 is indeed 1 and furthermore to find the

value of CRt, one needs to inject around 183.33 faults

on average.

R0
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CR0

R1
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CR1

...

Ra−2
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CRa−2

Ra−1
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CRa−1

Ra
r0 r1 · · · r99−a r100−a · · · r97 r98 r99 CRa

Known initially Calculated

Fig. 3: Constructing the last a bits of the state R0.

Proof From Theorem 1A, 1B, 1C and their implica-
tions, it is clear that if rt0 = 1, then the number of

differential streams satisfying (P2) is 2 (produced due
to faults on locations 67, 99 of R) and if rt0 = 0, then
the number of differential streams satisfying (P2) is 1.

Hence for any t, in the process of applying random

faults, as soon as the attacker obtains 2 streams sat-

isfying (P2), she can conclude that rt0 = 1.

Also from the implication of Theorem 1A, we know

that finding CRt requires the faulty key-stream from

location 0 of R. So, for any fixed t, if rt0 = 1, then

deducing rt0 and CRt requires faulty key-streams from

locations 0, 67, 99 of R only. By injecting random faults,
the attacker can expect to inject these 3 locations by

applying 100+ 100
2 + 100

3 = 183.33 random faults. Hence

the result. ⊓⊔

Note that, this is much less than the 29.02 faults re-

quired to obtain the 100 distinct faulty key-streams cor-

responding to each fault location in R as discussed in

Section 3.2.

Hence when rt0 = 1, we do not need to inject fault at

every location of Rt to find the value of rt0 and CRt. On
the other hand when rt0 = 0, using Lemma 3, we can

identify the faulty key-stream resulting from fault on

location 99 of R. We will use these faulty key-streams

as location of fault is known in our attack.

We will now state a more general form of Lemma 1.

Lemma 5 Let a ∈ [0, 99] be an integer. If we assume

that rt99 and CRt are known ∀t ∈ [0, a], then the state

bits r099−a, r
0
100−a, . . . , r

0
99 of the initial state R0 may be

calculated efficiently.

Proof The proof is exactly similar to that of Lemma 1.

In Lemma 1, we started with 1 bit of R99, i.e., r
99
99, and

then worked backwards to calculate the last 2 bits of
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R98, 3 bits of R97 and in this manner the entire of R0.

In this case we will start with 1 bit of Ra, i.e., r
a
99 and

backtrack to calculate the last 2 bits of Ra−1, 3 bits of

Ra−2 and in this manner the bits r099−a, r
0
100−a, . . . , r

0
99

of R0. The process is explained pictorially in Figure 3.

⊓⊔

We will now investigate the situation when attacker
injects faults at each round t ∈ [0, a]. Using Theo-

rem 1 and its implications, the attacker can deduce the
values of rt0 and CRt ∀ t ∈ [0, a]. She can then find

the values of rt99, ∀ t ∈ [0, a], using the arguments of

Section 3.1.1. Then using Lemma 5, she can compute
r099−a, r

0
100−a, . . . , r

0
99. Now, let us write the state R0 as

[r00, x1, . . . , x98−a, r
0
99−a, r

0
100−a, . . . , r

0
99],

where xi’s are unknown for 1 ≤ i ≤ 98 − a and r0i are

known for i = 0 and 99− a ≤ i ≤ 99. We can write the
state S0 as

[y0, y1, . . . , y99],

where yi’s are unknown for 0 ≤ i ≤ 99.

We will now describe the technique to formulate
multivariate equations in xi, yi over GF(2) which we

will solve using a SAT Solver. We will formulate equa-

tions for the fault-free key-stream bits first. We have

already seen that the state bits of R1, S1, R2, S2, . . . ,

Rk, Sk, . . . can be expressed as polynomials over the

state bits of R0, S0. However, the algebraic degree and

complexity of these polynomials increase exponentially

with increasing k. So much so that we could not com-

pute the form of these polynomials for k > 4 on a

normal Desktop PC. To circumvent this situation, we

take resort to introducing new variables at every PRGA

round of the cipher.

In the first round of PRGA, we introduce 200 new
variables u1

i and v1i for 0 ≤ i ≤ 99, where u1
i corre-

sponds to the state R1 and v1i corresponds to S1. Hence

we formulate 201 new equations which are

1. z0 = r00 + y0
2. u1

i = ρi(r
0
0, . . . , x99−a, r100−a, . . . , r99, y0, . . . , y99)

3. v1i = βi(r
0
0, . . . , x99−a, r100−a, . . . , r99, y0, . . . , y99).

Hence, the states R1 and S1, obtained after running one

round of PRGA, becomes

[u1
0, . . . , u

1
99] and [v10 , . . . , v

1
99]

respectively. This technique is repeated in each succes-

sive round accompanied by the introduction of 200 new

variables. As MICKEY’s state update function is highly

non linear, this approach enables us to compute the

symbolic forms (via a series of equations) of any PRGA

state RT , ST . Instead, if at each round k > 0, the vari-

ables uk
i , v

k
i were replaced by their equivalent algebraic

expressions in xi, yi, this would never have been pos-

sible efficiently. By introducing new variables, after T
rounds, we have a total of 201T equations.

We will now formulate equations generated due to

faulty key-stream bits. The attacker can determine any
faulty key-stream conclusively when it has been pro-
duced due to fault at location 0 of R. So after T rounds,

we have a total of T faulty key-stream sequences gen-

erated due to fault on 0th location of R. To use these

faulty key-streams, we proceed as follows. Consider the
case when an injected fault has toggled the location 0

of R at t = 0. We denote this faulty state by the vector

[1 + r00, x1, . . . , x98−a, r
0
99−a, r

0
100−a, . . . , r

0
99] and

[y0, y1, . . . , y99].

As before we use 200 new variables u1
i , v

1
i to the next

faulty state. So we again get 201 new equations

1. z0,∆r0(0) = 1 + r00 + y0
2. u1

i = ρi(1 + r00, . . . , x99−a, r100−a, . . . , r99, . . . , y99)
3. v1i = βi(1 + r00, . . . , x99−a, r100−a, . . . , r99, . . . , y99).

As before, we repeat the above for T ′ rounds with 200

new variables in each round. Again, this results in a

total of 201T ′ equations. The process can be repeated

for fault at any round t ∈ [0, T ]. New equations and

variables are formulated accordingly in each case.

Again from Lemma 3, we know that ∀ t, we can

identify any faulty key-stream sequence produced due

to fault on location 99 of R, when rt0 = 0. So whenever

rt0 = 0, we can formulate more equations. For example

if r00 = 0, we start with the state

[r00, x1, . . . , x98−a, r
0
99−a, r

0
100−a, . . . , 1 + r099] and

[y0, y1, . . . , y99],

and thereafter form equations by the introduction of

new variables in each round.

5.1 Experiments

We assume all except the first 25 bits bits of R0 have

been found out by injecting faults and thereafter using

Lemma 5, i.e., we take a = 75. We need to find S0 which
contains 100 unknown bits. To restrict the total number

of equations, we use only first 38 key-stream bits, i.e.,

we take T = 38. We also use faulty key-stream bits for

only first T ′ = 12 rounds when the location of a faulty

key-stream can be conclusively identified. We feed the

equation so formed into the SAT Solver Cryptominisat-

2.9.5 [23] available with SAGE 5.7 [24]. The solver is
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able to find the remaining 125 unknown bits in 1345.80

seconds on an average (averaged over 100 trials) on a
PC powered by an Intel Dual Core Processor, with a
CPU speed of 1.83 GHz and 2 GB RAM.

Fault Requirement: Since a = 75, we need to ap-

ply faults in the first 75 PRGA rounds. Among the 75
rounds, we can assume value of rt0 will be 1 at expected
75
2 times. Whenever rt0 = 1, by Lemma 4, only 183.33

faults are sufficient. So expected number of faults re-
quired in our attack is

75

2
· 100

100
∑

i=1

1

i
+

75

2

(

100 +
100

2
+

100

3

)

≈ 214.68.

Thus we have a four-fold improvement in the number of

faults compared to Section 3.4, where expected number

of fault was 216.68. This is the improvement achieved

when we solve non-linear equations using a SAT solver.

5.2 Multiple bit faults

From the discussion in Section 4, it is clear that the
attacker can not conclusively determine whether a given
faulty key-stream has been produced due to a single

bit or a multiple bit fault. Hence the attacker cannot

use faulty key-streams to formulate equations. The best

she can do is as follows. Find a bits of R0 by applying

faults and then find the remaining bits of R0, S0 by

formulating equations for the fault-free key-stream bits.

By extensive experimentation, we have found that to

obtain a solution in reasonable time, the value of a has

to be 100, i.e., we need to find out the entire state of

R0 before using the SAT solver. Using the technique of

formulating equations using extra variables, which was

described in the previous subsection, we were able to

find the entire S0 using the SAT Solver, within 1206.18
seconds on an average (averaged over 100 trials).

Fault Requirement: The number of different Φ for

which 0 ∈ Φ is 3. Assuming rt0 = 1, among the re-

maining 297 − 3 = 294 different faulty key-streams, 9

would satisfy (P6). Of these 9, three are due to fault

on location 99 and six are due to location 67. However

when rt0 = 0, the number of streams satisfying (P6) is
only 3. Hence for any t, as soon as the attacker can ob-

tain four different key-streams satisfying (P6), she can

conclude rt0 = 1. Hence when rt0 = 1, it can be proved

that the attacker requires 187.25 faults on average (See

Appendix B for a theoretical justification of this figure)

to deduce the value of rt0 and CRt.

On the other hand if rt0 = 0, there is a total of

291 different faulty streams which satisfy (P5) and only

3 which satisfy (P6). Now in the process of applying

random fault and resetting, as soon as we obtain 286

streams that satisfy (P5), we can conclude that rt0 = 0.
Hence in this case, the expected number of faults is

approximately 297 ·
∑291

i=6
1
i
= 1178.77.

Thus, the expected number of faults required to find

R0 is
100

2

(

187.2 + 1178.77

)

≈ 216.06.

This is more than four-fold improvement over the 218.4

faults reported in Section 4.

6 Conclusion

A differential fault attack against the stream cipher

MICKEY 2.0 is presented. The work is one of the first
cryptanalytic attempts against this cipher and requires
reasonable computational effort. The attack works due

to the simplicity of the output function and certain reg-

ister update operations of MICKEY 2.0 and would have

been thwarted had these been of a more complex na-

ture. It would be interesting to study efficient counter-

measures with minimum tweak in the design.

Given our work in this paper, differential fault at-

tacks are now known against all of the three ciphers

in the hardware portfolio of eStream. The attacks on

all the 3 ciphers use exactly the same fault model that

is similar to what described in this paper. Let us now

summarize the fault requirements.

Cipher State size Average # Faults

Trivium [16] 288 3.2

Grain v1 [20] 160 ≈ 10

MICKEY 2.0 200 ≈ 214.7

To the best of our knowledge, there was no published

fault attack on MICKEY 2.0. prior to our work. One

of the reasons this remained open for such a long time

could be that the cipher uses irregular clocking to up-
date its state registers. Hence it becomes difficult to
determine the location of a randomly applied fault in-

jected in either the R or S register by simply com-

paring the faulty and fault-free key-streams. The idea

explained in Theorem 1 and its implications are instru-

mental in mounting the attack. The total number of

faults is indeed much higher when we compare it with

the other two eStream hardware candidates. However,

this seems natural as MICKEY 2.0 has more complex

structure than Trivium or Grain v1. This is also impor-

tant to point out that while Grain and Trivium are sus-

ceptible to DFA with very few faults when SAT solvers

are exploited, such drastic results could not be attained

for MICKEY 2.0.
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Appendix A: Proofs for Theorem 1B-F

B. Since θ1 is a function of r0, r67, s34, r99, s99 only, for
any φ ∈ [1, 99] \ {67, 99} we have

θ1(Rt,∆rφ(t), St,∆rφ(t)) = θ1(Rt, St).

Therefore zt+1 + zt+1,∆rφ(t) equals

θ1(Rt, St) + θ1(Rt,∆rφ(t), St,∆rφ(t))

= 0, ∀φ ∈ [1, 99] \ {67, 99}, ∀Rt, St ∈ {0, 1}100.

So, Ψ1
rφ
[1] = 1 for all φ ∈ [1, 99] \ {67, 99}.

C. We have zt+1 + zt+1,∆r99(t) equals

θ1(Rt, St) + θ1(Rt,∆r99(t), St,∆r99(t))

= (rt0 · r
t
67 + rt0 · s

t
34 + rt99 + st99)+

(rt0 · r
t
67 + rt0 · s

t
34 + 1 + rt99 + st99)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
r99

[1] = 1. Also zt+1 + zt+1,∆r67(t) equals

θ1(Rt, St) + θ1(Rt,∆r67(t), St,∆r67(t))

= (rt0 · r
t
67 + rt0 · s

t
34 + rt99 + st99)+

(rt0 · (1 + rt67) + rt0 · s
t
34 + rt99 + st99)

= rt0 6= 0 or 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
r67

[1] = 0.

D. We have

zt + zt,∆s0(t) = θ0(Rt, St) + θ0(Rt,∆s0(t), St,∆s0(t))

= (rt0 + st0) + (rt0 + 1 + st0)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
s0
[0] = 1. Also θ0 is not a function of any ri, si

for i ∈ [1, 99] and so

θ0(Rt,∆sφ(t), St,∆sφ(t)) = θ0(Rt, St)
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for all φ ∈ [1, 99] and so we have

zt + zt,∆sφ(t) = θ0(Rt, St) + θ0(Rt,∆sφ(t), St,∆sφ(t))

= 0, ∀φ ∈ [1, 99], ∀Rt, St ∈ {0, 1}100.

So, Ψ1
sφ
[0] = 1 for all φ ∈ [1, 99].

E. Since θ1 is a function of r0, r67, s34, r99, s99 only, for
any φ ∈ [1, 99] \ {34, 99} we have

θ1(Rt,∆sφ(t), St,∆sφ(t)) = θ1(Rt, St).

Therefore zt+1 + zt+1,∆sφ(t) equals

θ1(Rt, St) + θ1(Rt,∆sφ(t), St,∆sφ(t))

= 0, ∀φ ∈ [1, 99] \ {34, 99}, ∀Rt, St ∈ {0, 1}100.

So, Ψ1
sφ
[1] = 1 for all φ ∈ [1, 99] \ {34, 99}.

F. We have zt+1 + zt+1,∆s99(t) equals

θ1(Rt, St) + θ1(Rt,∆s99(t), St,∆s99(t))

= (rt0 · r
t
67 + rt0 · s

t
34 + rt99 + st99)+

(rt0 · r
t
67 + rt0 · s

t
34 + rt99 + 1 + st99)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
s99

[1] = 1. Also zt+1 + zt+1,∆s34(t) equals

θ1(Rt, St) + θ1(Rt,∆s34(t), St,∆s34(t))

= (rt0 · r
t
67 + rt0 · s

t
34 + rt99 + st99)+

(rt0 · r
t
67 + rt0 · (1 + st34) + rt99 + st99)

= rt0 6= 0 or 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
s34

[1] = 0.

⊓⊔

Appendix B: 187.25 faults are sufficient to de-
duce rt0 = 1 and find CRt

From Section 5.2, we know that we have a total of 297
different faulty streams. To deduce that rt0 = 1 and find

CRt, by injecting random faults, we want to obtain 4

different streams out of a set of 9 specific streams and
1 out of a set of 3 other streams. To find the expected
number of faults to achieve this target, we will use the

following proposition.

Proposition 7 Consider five real numbers a1, . . . , a5
in (0, 1). Then, we have the following identities

1.

∞
∑

r1=0

· · ·

∞
∑

r5=0

[

5
∏

i=1

arii

]

=

5
∏

i=1

1

(1− ai)

2.

∞
∑

r1=0

...
r5=0

[

5
∑

i=1

ri ·

5
∏

i=1

arii

]

=

5
∑

i=1

ai
(1− ai)2

5
∏

j=1
j 6=i

1

(1− aj)

Suppose, we first obtain the 4 streams of the set of 9 in

r1 + 1, r1 + r2 + 2, r1 + r2 + r3 + 3 and r1 + r2 + r3 +
r4 + 4 attempts respectively. Thereafter, we obtain the

remaining streams from the set of 3 after another r5+1

trials, i.e., we require r1 + r2 + r3 + r4 + r5 +5 faults in

total. We call this event Er1,...,r5 . Then Pr(Er1,...,r5) =

ar11
9

297
· ar22 ·

8

297
· ar33 ·

7

297
· ar44 ·

6

297
· ar55 ·

3

297

= ar11 ar22 ar33 ar44 ar55 ·
9072

2975
,

where a1 = 285
297 , a2 = 286

297 , a3 = 287
297 , a4 = 288

297 , a5 = 294
297 .

Here ai’s denote the failure probabilities, i.e., ai de-

notes the probability that, after obtaining i−1 required

streams, a random fault produces no stream of interest.

We may also fulfill our target by some other “order-

ing” of events. For example, we first obtain 3 streams
from the set of 9, then the single stream from the other

set of 3 and finally the remaining stream from the first

set. There are 5 orderings in total. Denote by bi, ci, di, ei
the failure probabilities, in each of the other orderings.

It is easy to see that, b1 = c1 = d1 = e1 = a1, b2 =

c2 = d2 = a2, b3 = c3 = a3, b4 = a4, b5 = c5 = d5 =
e5 = 291

297 , c4 = d4 = e4 = 290
297 , d3 = e3 = 289

297 , e2 = 288
297 .

Considering all cases, the required expected value is

E =

∞
∑

r1=0
·
·

r5=0

(

5 +

5
∑

i=0

ri

)

( 5
∏

i=1

arii + · · ·+

5
∏

i=1

erii

)

·
9072

2975

Now using Proposition 7, we get E = 187.25.

Appendix C: The functions ρi ∀i ∈ [0, 99]

i ρi

0 r0 · r67 + r0 · s34 + r99
1 r0 + r1 · r67 + r1 · s34 + r99
2 r1 + r2 · r67 + r2 · s34
3 r2 + r3 · r67 + r3 · s34 + r99
4 r3 + r4 · r67 + r4 · s34 + r99
5 r4 + r5 · r67 + r5 · s34 + r99
6 r5 + r6 · r67 + r6 · s34 + r99
7 r6 + r7 · r67 + r7 · s34
8 r7 + r8 · r67 + r8 · s34
9 r8 + r9 · r67 + r9 · s34 + r99
10 r9 + r10 · r67 + r10 · s34
11 r10 + r11 · r67 + r11 · s34
12 r11 + r12 · r67 + r12 · s34 + r99
13 r12 + r13 · r67 + r13 · s34 + r99
14 r13 + r14 · r67 + r14 · s34
15 r14 + r15 · r67 + r15 · s34
16 r15 + r16 · r67 + r16 · s34 + r99
17 r16 + r17 · r67 + r17 · s34
18 r17 + r18 · r67 + r18 · s34
19 r18 + r19 · r67 + r19 · s34 + r99
20 r19 + r20 · r67 + r20 · s34 + r99
21 r20 + r21 · r67 + r21 · s34 + r99
22 r21 + r22 · r67 + r22 · s34 + r99
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i ρi

23 r22 + r23 · r67 + r23 · s34
24 r23 + r24 · r67 + r24 · s34
25 r24 + r25 · r67 + r25 · s34 + r99
26 r25 + r26 · r67 + r26 · s34
27 r26 + r27 · r67 + r27 · s34
28 r27 + r28 · r67 + r28 · s34 + r99
29 r28 + r29 · r67 + r29 · s34
30 r29 + r30 · r67 + r30 · s34
31 r30 + r31 · r67 + r31 · s34
32 r31 + r32 · r67 + r32 · s34
33 r32 + r33 · r67 + r33 · s34
34 r33 + r34 · r67 + r34 · s34
35 r34 + r35 · r67 + r35 · s34
36 r35 + r36 · r67 + r36 · s34
37 r36 + r37 · r67 + r37 · s34 + r99
38 r37 + r38 · r67 + r38 · s34 + r99
39 r38 + r39 · r67 + r39 · s34
40 r39 + r40 · r67 + r40 · s34
41 r40 + r41 · r67 + r41 · s34 + r99
42 r41 + r42 · r67 + r42 · s34 + r99
43 r42 + r43 · r67 + r43 · s34
44 r43 + r44 · r67 + r44 · s34
45 r44 + r45 · r67 + r45 · s34 + r99
46 r45 + r46 · r67 + r46 · s34 + r99
47 r46 + r47 · r67 + r47 · s34
48 r47 + r48 · r67 + r48 · s34
49 r48 + r49 · r67 + r49 · s34
50 r49 + r50 · r67 + r50 · s34 + r99
51 r50 + r51 · r67 + r51 · s34
52 r51 + r52 · r67 + r52 · s34 + r99
53 r52 + r53 · r67 + r53 · s34
54 r53 + r54 · r67 + r54 · s34 + r99
55 r54 + r55 · r67 + r55 · s34
56 r55 + r56 · r67 + r56 · s34 + r99
57 r56 + r57 · r67 + r57 · s34
58 r57 + r58 · r67 + r58 · s34 + r99
59 r58 + r59 · r67 + r59 · s34
60 r59 + r60 · r67 + r60 · s34 + r99
61 r60 + r61 · r67 + r61 · s34 + r99
62 r61 + r62 · r67 + r62 · s34
63 r62 + r63 · r67 + r63 · s34 + r99
64 r63 + r64 · r67 + r64 · s34 + r99
65 r64 + r65 · r67 + r65 · s34 + r99
66 r65 + r66 · r67 + r66 · s34 + r99
67 r66 + r67 · s34 + r67 + r99
68 r67 · r68 + r67 + r68 · s34
69 r67 · r69 + r68 + r69 · s34
70 r67 · r70 + r69 + r70 · s34
71 r67 · r71 + r70 + r71 · s34 + r99
72 r67 · r72 + r71 + r72 · s34 + r99
73 r67 · r73 + r72 + r73 · s34
74 r67 · r74 + r73 + r74 · s34
75 r67 · r75 + r74 + r75 · s34
76 r67 · r76 + r75 + r76 · s34
77 r67 · r77 + r76 + r77 · s34
78 r67 · r78 + r77 + r78 · s34
79 r67 · r79 + r78 + r79 · s34 + r99
80 r67 · r80 + r79 + r80 · s34 + r99
81 r67 · r81 + r80 + r81 · s34 + r99
82 r67 · r82 + r81 + r82 · s34 + r99
83 r67 · r83 + r82 + r83 · s34
84 r67 · r84 + r83 + r84 · s34
85 r67 · r85 + r84 + r85 · s34
86 r67 · r86 + r85 + r86 · s34
87 r67 · r87 + r86 + r87 · s34 + r99
88 r67 · r88 + r87 + r88 · s34 + r99
89 r67 · r89 + r88 + r89 · s34 + r99
90 r67 · r90 + r89 + r90 · s34 + r99
91 r67 · r91 + r90 + r91 · s34 + r99
92 r67 · r92 + r91 + r92 · s34 + r99
93 r67 · r93 + r92 + r93 · s34
94 r67 · r94 + r93 + r94 · s34 + r99
95 r67 · r95 + r94 + r95 · s34 + r99
96 r67 · r96 + r95 + r96 · s34 + r99
97 r67 · r97 + r96 + r97 · s34 + r99
98 r67 · r98 + r97 + r98 · s34
99 r67 · r99 + r98 + r99 · s34

The functions βi ∀i ∈ [0, 99]

i βi

0 s99
1 s0 + s1 · s2 + s1 + s99
2 s1 + s2 · s3 + s99
3 r33 · s99 + s2 + s3 · s4 + s3 + s67 · s99 + s99
4 r33 · s99 + s3 + s4 · s5 + s4 + s5 + s67 · s99 + 1
5 s4 + s5 · s6 + s6 + s99
6 r33 · s99 + s5 + s6 · s7 + s67 · s99
7 r33 · s99 + s6 + s7 · s8 + s7 + s67 · s99 + s99
8 r33 · s99 + s7 + s8 · s9 + s67 · s99 + s99
9 r33 · s99 + s8 + s9 · s10 + s9 + s10 + s67 · s99 + s99 + 1
10 r33 · s99 + s9 + s10 · s11 + s10 + s67 · s99 + s99
11 s10 + s11 · s12 + s11 + s12 + s99 + 1
12 s11 + s12 · s13 + s12 + s13 + s99 + 1
13 s12 + s13 · s14 + s14 + s99
14 r33 · s99 + s13 + s14 · s15 + s15 + s67 · s99 + s99
15 r33 · s99 + s14 + s15 · s16 + s15 + s67 · s99
16 s15 + s16 · s17 + s17
17 r33 · s99 + s16 + s17 · s18 + s17 + s67 · s99 + s99
18 r33 · s99 + s17 + s18 · s19 + s67 · s99
19 s18 + s19 · s20 + s20 + s99
20 r33 · s99 + s19 + s20 · s21 + s67 · s99 + s99
21 r33 · s99 + s20 + s21 · s22 + s21 + s22 + s67 · s99 + s99 +1
22 r33 · s99 + s21 + s22 · s23 + s22 + s67 · s99 + s99
23 s22 + s23 · s24 + s24 + s99
24 r33 · s99 + s23 + s24 · s25 + s24 + s67 · s99 + s99
25 r33 · s99 + s24 + s25 · s26 + s26 + s67 · s99 + s99
26 s25 + s26 · s27 + s26 + s99
27 s26 + s27 · s28 + s27 + s28 + s99 + 1
28 r33 · s99 + s27 + s28 · s29 + s28 + s67 · s99 + s99
29 s28 + s29 · s30 + s30
30 r33 · s99 + s29 + s30 · s31 + s30 + s31 + s67 · s99 + 1
31 r33 · s99 + s30 + s31 · s32 + s31 + s67 · s99 + s99
32 s31 + s32 · s33 + s32 + s33 + s99 + 1
33 r33 · s99 + s32 + s33 · s34 + s33 + s67 · s99
34 s33 + s34 · s35
35 s34 + s35 · s36 + s36
36 s35 + s36 · s37
37 r33 · s99 + s36 + s37 · s38 + s37 + s67 · s99
38 r33 · s99 + s37 + s38 · s39 + s38 + s67 · s99
39 r33 · s99 + s38 + s39 · s40 + s67 · s99 + s99
40 r33 · s99 + s39 + s40 · s41 + s40 + s67 · s99 + s99
41 r33 · s99 + s40 + s41 · s42 + s67 · s99 + s99
42 s41 + s42 · s43 + s42
43 s42 + s43 · s44 + s43 + s44 + 1
44 s43 + s44 · s45 + s44 + s99
45 r33 · s99 + s44 + s45 · s46 + s46 + s67 · s99
46 s45 + s46 · s47
47 s46 + s47 · s48 + s48 + s99
48 r33 · s99 + s47 + s48 · s49 + s67 · s99
49 r33 · s99 + s48 + s49 · s50 + s49 + s50 + s67 · s99 + s99 +1
50 s49 + s50 · s51
51 r33 · s99 + s50 + s51 · s52 + s67 · s99 + s99
52 r33 · s99 + s51 + s52 · s53 + s67 · s99
53 s52 + s53 · s54 + s53
54 r33 · s99 + s53 + s54 · s55 + s55 + s67 · s99 + s99
55 s54 + s55 · s56 + s55
56 s55 + s56 · s57 + s56 + s57 + s99 + 1
57 r33 · s99 + s56 + s57 · s58 + s57 + s67 · s99 + s99
58 r33 · s99 + s57 + s58 · s59 + s67 · s99 + s99
59 s58 + s59 · s60 + s60 + s99
60 s59 + s60 · s61 + s61
61 r33 · s99 + s60 + s61 · s62 + s61 + s62 + s67 · s99 + s99 +1
62 r33 · s99 + s61 + s62 · s63 + s62 + s63 + s67 · s99 + 1
63 r33 · s99 + s62 + s63 · s64 + s63 + s67 · s99 + s99
64 r33 · s99 + s63 + s64 · s65 + s64 + s67 · s99
65 s64 + s65 · s66 + s65 + s66 + s99 + 1
66 s65 + s66 · s67 + s66
67 r33 · s99 + s66 + s67 · s68 + s67 · s99 + s68
68 s67 + s68 · s69 + s68
69 r33 · s99 + s67 · s99 + s68 + s69 · s70 + s70
70 s69 + s70 · s71 + s70 + s71 + 1
71 s70 + s71 · s72 + s71 + s72 + 1
72 r33 · s99 + s67 · s99 + s71 + s72 · s73 + s72 + s73 + 1
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i βi

73 s72 + s73 · s74 + s74
74 r33 · s99 + s67 · s99 + s73 + s74 · s75 + s74 + s75 + 1
75 r33 · s99 + s67 · s99 + s74 + s75 · s76 + s75 + s76 + s99 +1
76 r33 · s99 + s67 · s99 + s75 + s76 · s77 + s76 + s77 + s99 +1
77 s76 + s77 · s78 + s77 + s78 + 1
78 s77 + s78 · s79 + s99
79 r33 · s99 + s67 · s99 + s78 + s79 · s80 + s80
80 r33 · s99 + s67 · s99 + s79 + s80 · s81
81 r33 · s99 + s67 · s99 + s80 + s81 · s82 + s81 + s82 + 1
82 r33 · s99 + s67 · s99 + s81 + s82 · s83 + s83 + s99
83 s82 + s83 · s84 + s84 + s99
84 r33 · s99 + s67 · s99 + s83 + s84 · s85 + s85
85 s84 + s85 · s86 + s86 + s99
86 s85 + s86 · s87 + s86 + s87 + s99 + 1
87 s86 + s87 · s88 + s87 + s99
88 s87 + s88 · s89 + s88 + s89 + 1
89 s88 + s89 · s90
90 r33 · s99 + s67 · s99 + s89 + s90 · s91 + s91 + s99
91 r33 · s99 + s67 · s99 + s90 + s91 · s92 + s99
92 r33 · s99 + s67 · s99 + s91 + s92 · s93 + s92 + s99
93 s92 + s93 · s94
94 r33 · s99 + s67 · s99 + s93 + s94 · s95
95 r33 · s99 + s67 · s99 + s94 + s95 · s96 + s95 + s99
96 r33 · s99 + s67 · s99 + s95 + s96 · s97 + s96 + s99
97 s96 + s97 · s98 + s98
98 s97 + s98 · s99 + s99
99 r33 · s99 + s67 · s99 + s98


