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Suspensions of spherical active particles often show microphase separation. At a continuum level,
coupling their scalar density to fluid flow, there are two distinct explanations. Each involves an
effective interfacial tension: the first mechanical (causing flow) and the second diffusive (causing
Ostwald ripening). Here we show how the negative mechanical tension of contractile swimmers
creates, via a self-shearing instability, a steady-state life cycle of droplet growth interrupted by
division whose scaling behavior we predict. When the diffusive tension is also negative, this is
replaced by an arrested regime (mechanistically distinct, but with similar scaling) where division of
small droplets is prevented by reverse Ostwald ripening.

Active matter continuously dissipates energy locally to
perform mechanical work. In consequence, the dynami-
cal equations of coarse-grained variables, such as particle
density, break time-reversal symmetry. Examples include
suspensions of spherical autophoretic colloids, which self-
propel due to self-generated chemical gradients at their
surfaces [1]. Experiments on several such suspensions
have observed activity-induced phase separation that ar-
rests at a mesoscopic scale [2–5]. A generic understand-
ing of such nonequilibrium microphase separations can
be sought at the level of continuum equations for a diffu-
sive scalar concentration field, coupled to incompressible
fluid flow. Such an approach is complementary to more
detailed mechanistic modelling, in which particle motion
and/or chemical fields are modelled explicitly [6–10]. By
sacrificing detail, the resulting ‘active field theory’ allows
maximal transfer of ideas and methods from equilibrium
statistical mechanics. Each distinct mode of activity can
be modelled in a minimal fashion, allowing the competi-
tion between them to be studied. This knowledge base
can inform the design of novel functional materials and
devices with tunable properties [11].

Bulk active phase separation can arise through attrac-
tive interactions, as in the passive case [12], or, even for
repulsive interactions, be motility-induced [13, 14]. At
continuum level, when there is no orientational order in
bulk, the only order parameter required for the parti-
cles is their scalar concentration φ(r, t). For ‘wet’ sys-
tems, with a momentum-conserving solvent rather than
a frictional substrate, this is coupled to a fluid velocity
field v(r, t) [15]. Operationally, the field theory of ac-
tive scalar phase separation starts from the long-studied
passive case, whose stochastic equations of motion are
constructed phenomenologically, respecting symmetries
and conservation laws, truncated at some consistent or-
der in the fields and their gradients [12]. If φ is measured
relative to the critical point for phase separation, this
gives to leading order a symmetric free energy functional
F [φ] = F [−φ]. The outcome is Model B (dry) or Model
H (wet) [12, 16].

To make these theories active, we add a small number
of leading-order terms, each of which breaks time-reversal

symmetry via a distinct channel. The first adds to the
chemical potential δF/δφ a piece that is not the deriva-
tive of any free energy functional F (this is the λ term
in (2) below). The deterministic diffusive current then
breaks detailed balance but remains curl-free. This chan-
nel is known to alter phase boundaries, but cannot arrest
phase separation [17]. A second channel (the ζ term in
(2) below) enters at the same order, but in the diffu-
sive current directly. This can arrest phase separation,
by creating an effectively negative interfacial tension in
the diffusive sector [18], throwing the process of Ostwald
ripening, whereby large droplets grow at the expense of
small ones, into reverse. These two channels are, for dry
systems, captured in Active Model B+ [18].

The third active channel, present for wet systems only,
is the mechanical stress arising from self-propulsion. This
is a bulk stress in systems with orientational order (where
it leads to bacterial turbulence [15]), but for a scalar it
is quadratic in ∇φ (the κ̃ − κ term in (3) below), just
like the passive thermodynamic stress for Model H [19].
It likewise drives fluid motion via interfacial curvature.

So far, the resulting ‘Active Model H’ has been ex-
plored only in the absence of the other two active chan-
nels, without noise, and for systems at the critical den-
sity, φ0 ≡ 〈φ〉 = 0 [20]. Under these conditions, activ-
ity can arrest separation, giving a dynamically fluctuat-
ing bicontinuous state. The effect of active stresses on
droplet states, as might describe the cluster phases seen
experimentally [1–4], remains unclear. Notably though,
in passive systems, the interfacial stress rapidly becomes
unimportant on moving away from bicontinuity, since
well separated droplets recover spherical symmetry which
precludes incompressible fluid flow. Wet and dry dilute
passive droplets then behave similarly [16].

In this Letter we first extend the study of Active
Model H, with noise, to off-critical quenches (φ0 6= 0),
where droplets or bubbles arise, and there address the
competition between mechanical (κ̃) and diffusive (λ, ζ)
activity channels. We find that, contrary to the pas-
sive case, the mechanical stress plays a crucial role in
droplet (or bubble) evolution; when sufficiently contrac-
tile, it can halt phase separation, causing large droplets to
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split in smaller ones. This balances the diffusive droplet
growth due to Ostwald ripening, giving a steady state
with a distinctive droplet life cycle. This represents ‘in-
terrupted’ rather than ‘arrested’ phase separation, be-
cause the steady state is highly dynamic, and continues
unchanged after all noise is switched off. This contrasts
with the microphase separation that results from reverse
Ostwald ripening, where switching off noise leads to a
fully arrested, static assembly of monodisperse droplets
[18].

Crucially, the droplet life-cycle just described for the
case of hydrodynamic interruption requires splitting to
be balanced by forward Ostwald ripening, which sustains
a stationary droplet number. In contrast, we find that
when the mechanical and diffusive activity both favor mi-
crophase separation, the final steady state is arrested, not
interrupted. Despite this, the final droplet size depends
on the active stress parameter κ̃, instead of being fixed by
either the noise level or the initial condition, as happens
for the dry case of Active Model B+ [18]. Our work thus
exposes a subtle interplay between different channels in
the physics of active microphase separation.

Active scalar field theory: Our starting point is the
diffusive dynamics of a conserved scalar field φ(r, t) in a
momentum-conserving fluid of velocity v(r, t):

φ̇+∇ · J + v ·∇φ = 0. (1)

Here J is the current density of φ, which contains equilib-
rium, active and stochastic contributions. Keeping active
terms to order O(φ2,∇3) in (1), J obeys [17, 18, 20]

J = M
(

−∇µ+ ζ(∇2φ)∇φ
)

+
√
2DMΛ, (2a)

µ = µE + µλ, µE =
δF
δφ

, µλ = λ|∇φ|2. (2b)

Here M is a mobility, assumed constant (we set M = 1
in what follows); Λ is a zero-mean, unit-variance Gaus-
sian white noise, and D is a noise temperature [22]. The
equilibrium and non-equilibrium parts of the chemical
potential for φ are denoted by µE and µλ, while F is
the Landau-Ginzburg free energy functional: F [φ] =
∫ (

a
2
φ2 + b

4
φ4 + κ

2
(∇φ)2

)

dr, which gives bulk phase sep-
aration for a < 0, with b, κ > 0 for stability [19, 23].

The terms in ζ and λ in (2) break time-reversal sym-
metry at O(φ2,∇4) in (1). These terms also break the
φ → −φ symmetry of the passive limit; however the full
system of equations remains invariant under (φ, λ, ζ) →
−(φ, λ, ζ). This means that all statements made below
about droplets also apply to the phase-inverted case of
bubbles, so long as λ and ζ are also changed in sign. No-
tably, the reverse Ostwald process stabilizes only droplets
for ζ < 0 and only bubbles for ζ > 0 [18].

The fluid flow, in the limit of low Reynolds number
(as applicable to microswimmers), is obtained from the
solution of the Stokes equation: ∇ · σ = −f , where f =
∇·(ΣA+Σ

E) is the force density on the fluid, σ = −pI+

η(∇v+ (∇v)T ) is the Cauchy fluid stress, η is viscosity,
I is the identity tensor, and p is the pressure field which
contains all isotropic terms and ensures incompressibility
(∇·v = 0) [24]. We neglect noise in these flow equations
since this would involve the thermal temperature T which
is vastly smaller than D for active swimmers.

There exists a standard procedure [25] to derive the de-
viatoric stress Σ

E in equilibrium systems using the free
energy F . This stress, retaining all isotropic terms, satis-
fies ∇ ·ΣE = −φ∇µE , which is the thermodynamic force
density on the fluid due to gradients of the concentration
field φ [19]. The deviatoric stresses ΣE and Σ

A are then,
in d-dimensions, given to the required order as

Σ
E = −κS, Σ

A = −(κ̃− κ)S, (3)

where S ≡ (∇φ)(∇φ)− 1

d |∇φ|2I. The mechanical stress

Σ
A +Σ

E = −κ̃S is not derived from a free energy and
breaks detailed balance in general. Its overall coefficient
κ̃ can be either positive (for extensile microswimmers)
or negative (for sufficiently contractile ones) [20], unlike
equilibrium systems where Σ

A = 0.
Equations (1-3) define our Active Model H for the dif-

fusive dynamics of a conserved order parameter with mo-
mentum conservation.The numerical method we use to
integrate these equations is described in [21]. Having ne-
glected inertia, they reduce to an effective dynamics for
φ alone, which reads (with M = 1)

φ̇ = ∇2µeff−∇φ(r)·
∫

G(r−r′)·f(r′) dr′−∇·JΛ. (4)

Here G(r) is the Oseen tensor, JΛ =
√
2DΛ, and µeff =

µE + µλ + µζ an effective chemical potential. This has
a part µζ , constructed via Helmholtz decomposition of
the active current term in (2), as ζ(∇2φ)∇φ = −∇µζ +
∇×A. The ∇×A term is divergenceless, and so cannot
contribute to φ̇ in (4), allowing it to be ignored [18].

Three tensions: At large scales, the dynamics of an in-
terface between phases is controlled by its curvature and
its interfacial tension. Without activity, there is only one
such tension, γ0=

√

−8κa3/9b2, governing both diffusive
and mechanical sectors; curvature then drives diffusive
currents and/or fluid flow via Laplace pressure [16, 19].

With activity, two further tensions enter [18, 20]. First,
the chemical potential term µζ is in general nonlocal,
and acquires a step-discontinuity across a curved inter-
face that is cancelled by a counter-step in µE . The result
is a discontinuity in φ different from the equilibrium one.
This is captured by a ‘pseudotension’ γφ that replaces γ0
when calculating diffusive fluxes between droplets, and
becomes negative for sufficiently negative ζ, λ. Crucially,
negative γφ does not make interfaces locally unstable;
spherical droplets stay spherical. Rather, its effect is to
drive the system towards states of globally uniform curva-
ture (monodisperse drops) whereas positive tension pro-
motes curvature differences by shrinking small droplets
and growing large ones (the Ostwald process) [18].
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Figure 1. The self-shearing instability interrupts phase ordering in two dimensions with contractile active stress. Time sequence
A has global density φ0 = −0.6 (giving bubbles), while sequence B has φ0 = 0.4 giving droplets. (Sequences for φ0 = +0.6,−0.4
can be generated by inverting the color scale.) Both sequences have κ̃ = −0.1. Panel C shows the mean steady state droplet

size R̄ (defined as (Ad/4π)
1/2 with Ad the droplet area) on variation of κ̃. The best linear fit on log-log gives exponent −0.52,

in good agreement with the scaling argument of (5). System size 2562; for movies and simulation details see [21].

The third tension arises from the active stress at inter-
faces, where swimmers align parallel or antiparallel to the
surface normal. In either case, contractile swimmers pull
fluid inward along the normal direction and expel it in
the interfacial plane, causing stretching, whereas exten-
sile swimmers do the opposite. The resulting mechanical
tension is γv = κ̃γ0/κ, which is negative for sufficient
contractility; this is known to interrupt phase separation
for bicontinuous regimes [20]. We find next that it also
does so for droplets, by destabilizing interfaces locally (in
contrast with negative γφ; see above).

Self-shearing instability: For simplicity we first con-
sider active mechanical stress alone, setting λ = ζ = 0 so
that γφ = γ0 > 0 while κ̃ = −0.1, giving negative γv. In
Fig.(1), we show the dynamic interruption of phase sep-
aration in two dimensions and the resulting steady state
droplet size R̄. The negative mechanical tension, arising
from contractile stress, results in a self-shearing of the
droplets, causing large ones to split. This is balanced by
Ostwald ripening: small droplets evaporate while large
ones grow until they in turn become unstable. The result
is a dynamical steady state of droplet splitting followed,
on average, by diffusive growth of one offspring and dis-
appearance of the other(s). Supplemental movies show
this dynamics clearly [21]. In Fig.(2), and supplemental
movie [21], we show the dynamics of an individual droplet
for negative γv, which exhibits the flow-induced droplet
breakup mechanism. Our numerics do not of course di-
rectly introduce a negative interfacial tension, but solve
the full equations (1-3) or equivalently (4).

Scaling of droplet size: In Fig.1C, we show that the
droplet size obeys R̄ ∼ |γv/γφ|−0.52 (best fit exponent),
where, in these simulations, γφ = γ0 > 0. We now argue
on simple grounds for a negative one half exponent when-
ever γv < 0 and γφ > 0. From the mechanical tension γv

and fluid parameters we can construct just one quantity
with the dimensions of velocity: Vv = γv/η. This is the
familiar coarsening rate L̇ for systems with bicontinuous
domains of size L, in the so-called ‘viscous hydrodynamic’
regime where curvature drives fluid motion and diffusive
fluxes are negligible [25]. For a droplet of size R̄ with
negative γv, one thus expects the time between scission
events to scale as τ = −R̄/Vv. The Ostwald process
gives another speed, which is the rate of change of the

mean droplet size Vφ(R̄) = ˙̄R ∝ Mγφ/φ
2
BR̄

2 where φB

is the binodal density [18, 19]. Balancing a positive Ost-
wald speed Vφ(R̄) with a negative hydrodynamic speed
Vv gives the promised scaling law

R̄ ∝
(−γvφ

2
B

ηMγφ

)−1/2

∼
∣

∣

∣

∣

γv
γφ

∣

∣

∣

∣

−1/2

. (5)

The predicted one-half exponent is in excellent agree-
ment with Fig.1C. Unlike the simulations, our scaling ar-
gument does not include noise, which appears inessential
to the steady state, at least in the parameter range in-
vestigated here. We checked this by explicitly switching
off noise once the steady state is achieved and found that

Figure 2. Snapshots mapping the order parameter and flow
streamlines, starting from a deformed droplet for a sufficiently
contractile active stress (self-shearing instability).
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it continues to exist, with essentially the same droplet
life-cycle and mean size. While noise is needed initially
to start the phase separation, once enough droplets are
present the contractile active stress can maintain the dy-
namics of scission and coarsening indefinitely. In ad-
dition to splitting and ripening, we observe splitting-
induced coalescence mediated by fluid flow. This re-
sembles the coalescence-induced coalescence mechanism
seen for semidilute passive droplets in two dimensions
[26]. However, this cannot change the scaling because its
physics is also governed by Vφ.

Competing activity channels: We next consider the
full dynamics of (4), where both the active tensions can
change sign, and enumerate the possible steady-states.
The resulting phase diagram, in the (γφ, γv) plane, is
shown in Fig.(3A-B). In panel A, we show time evolution
of two bubbles of unequal sizes and their final steady
state. The two bubbles disproportionate if both tensions
are positive; the corresponding outcome in the many-
droplet system (panel B) is forward Ostwald dynamics.
The three activity parameters κ̃, λ, ζ in this region serve
merely to renormalize the passive behavior. In contrast,
when γv > 0 and γφ < 0, we recover the result of [18],
with reverse Ostwald ripening arresting phase separation
of droplets (see panel C(ii)). As in the forward case,
the reverse Ostwald regime entails little or no fluid mo-
tion, so the results given in [18] apply even for the wet
systems studied here, with physics controlled by γφ and
no role for γv. Thirdly, the case γv < 0 and γφ > 0 is
governed by our interrupted steady state with the split-
ting/coarsening life-cycle described above; here λ and ζ
enter only via γφ. Because the steady state balances me-
chanical and diffusive processes, both tensions enter the
mean droplet size via (5).

In the final regime, both tensions are negative. Here,
because negative γφ reverses Ostwald ripening, the bal-
ance of splitting and ripening embodied in (5) cannot be
maintained. Were splitting to continue, the number of
droplets would increase forever, with the reverse Ostwald
process driving these towards uniformity in size but not
allowing the number to reduce by evaporation. Accord-
ingly, for negative γφ, no matter how small its magnitude,
the steady state must consist of almost static droplets
with no splitting, and this is indeed what we observe.

Despite this complete change of mechanism, we now
argue that the steady-state droplet size is still governed
by R̄ ∼ |γv|−1/2 as in (5). This is because the reverse
Ostwald process drives the system towards uniformity of
curvature which, for a single droplet, directly opposes
the self-shearing instability. Indeed, for an amplitude
A ∼ ǫR of the lowest deformation mode in a droplet of
radius R, one expects on dimensional grounds that, up
to prefactors, Ȧ ∼ ǫ(Vv + Vφ(R)). Here the first term is
the self-shearing instability and the second is stabilizing
for negative γφ. Stability is restored for droplets smaller
than R̄ given by (5), which thus again gives the scaling

Figure 3. Phases of Active Model H in the plane (γφ, γv).
Panel A shows the dynamics of two unequal size bubbles in
four regions distinguished by the signs of γφ and γv, as labelled
in B. The markers denote simulation points. Snapshots of
steady states are shown in panel C(i-ii) for the regions in

panel B(i-ii). Panel D shows that R̄ ∼ |γv|
−1/2 (5) continues

to hold (best fit exponent is −0.46) in the region B(iii). See
Fig(1) for steady states of B(iv). System size is 1282.

of steady-state droplet size, albeit by a completely differ-
ent mechanism of arrest rather than interruption. This
scaling is consistent with simulations, see Fig.(3D).

All the above arguments apply equally to bubbles as
to droplets via invariance under (φ, λ, ζ) → −(φ, λ, ζ).

Conclusion: In wet active systems containing droplets
or bubbles, microphase separation can replace bulk phase
separation by three distinct mechanisms. These are re-
verse Ostwald ripening (also present in the dry limit, and
caused by negative pseudotension γφ); hydrodynamic in-
terruption by self-shearing (caused by negative mechan-
ical tension γv); and a peculiar combination of the two
when both of tensions are negative. In contrast to reverse
Ostwald ripening, where the size of droplets or bubbles
in the arrested steady state is selected by noise (or, in its
absence, initial conditions) [18], our self-shearing mech-
anism continues to operate even if the noise is switched
off after the steady-state is reached. The droplet size is
then selected by a balance between droplet splitting and
forward Ostwald ripening. This balance is unsustainable
when γφ is also negative, and so is replaced by a new one
whereby the reverse Ostwald process suppresses the self-
shearing instability for small droplets, leading to static
arrest rather than dynamic interruption.

These results point to a subtle interplay of causes be-
hind the phenomena of active microphase separation. We
contend that they cannot be understood without first
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clearly enumerating the relevant activity channels, and
then studying their interaction; this is best done within
the minimalist framework of an active field theory as
done here. A possible generalization of (4) would al-
low for boundary conditions imposed on the fluid flow
via a nearby wall; these are known to play a crucial role
in active phase separation [27–29] but with no clear un-
derstanding, so far, of the microphase-separated case.

Our findings should complement more detailed work
that could connect our activity channels to microscopic
interactions [6–10]. They may also be be relevant to con-
tinuum models of multiple species (some non-conserved
[30]) that were used recently to study microphase separa-
tions used by cells to create cytoplasmic and nucleoplas-
mic organization [31, 32]. Fluid motion is often neglected
in such studies but we have shown that it brings new fea-
tures (a similar case of elasticity in polymer networks has
been shown to arrest phase separation [33]), suggesting
exciting directions for future work.
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SUPPLEMENTAL INFORMATION (SI)

Appendix A: Methodology

In this section, we explain the numerical methods used
to study the field theory of an active scalar field with
mass and momentum conservation. We first explain the
solution of the flow equations and then given details of
the simulation and provide the system of parameters.

1. Stokes solver

At low Reynolds number, the fluid flow satisfies the
Stokes equation

−∇p+ η∇2v = −f , (A1)

∇ · v = 0. (A2)

Here,

f = ∇ · (ΣA +Σ
E),

is the force density on the fluid. We now show how to
determine flow given the force density and detail the im-
plementation of incompressibility in the flow. We use
Fourier transforms to obtain a solution of the above equa-
tions. We define the Fourier transform of a function ϕ(r)
as

ϕ̂(k) = F [ϕ(r)] =

∫

ϕ(r) e−ik·r dr, (A3a)

ϕ(r) = F
−1 [ϕ̂(k)] =

1

(2π)3

∫

ϕ̂(k) eik·r dk. (A3b)

We now Fourier transform (A1) to obtain

−ikp̂− ηk2v̂ = −f̂ , (A4a)

ik · v̂ = 0. (A4b)

The above equations can then be used to obtain the
Fourier transform of the pressure field

p̂ = −ik · f̂/k2. (A5)

The above expression of the pressure is then used in
(A4a) to obtain the solution of the fluid flow, with built-
in incompressibility, given as

v̂ = Ĝ(k) · f̂ , Ĝ(k) =
1

η

(

I

k2
− kk

k4

)

. (A6)

Here Ĝ(k) is the Fourier transform of the Oseen tensor
G(r) [35]. The explicit forms of the Oseen tensor, in
three dimensions, is

G(r) =
1

8πη

(

I

r
+

rr

r3

)

. (A7)

The above is the Green’s function of Stokes equation in
an unbounded domain and captures the long range inter-
actions at low Reynolds number [36]. It should be noted
that we are confining ourselves to low Reynolds number
by not solving the full Navier-Stokes equation. Thus, our
theory is mainly applicable to active matter systems of
microorganisms [37] and synthetic microwswimmers [1],
where the Reynolds number is known to be very small.

2. Simulation details

The simulations reported in this manuscript are per-
formed by the numerical integration of Eq.(1-3) of the
main text. Eq.(A6) is the solution for the fluid flow,
which we use for numerical computations. The solu-
tion, by construction, satisfies incompressibility exactly.
The Fourier solution of the fluid flow is then used in
Eq.(1) to numerical update the order parameter field.
The terms in the mass conservations equations are com-
puted using a pseudospectral method (involving Fourier
transforms and 2/3 dealiasing procedure) [38, 39]. The
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Figure Global density φ0 System size κ̃ λ ζ

1 A 0.6 256× 256 -0.1 0 0

1 B -0.4 256× 256 -0.1 0 0

1 C 0.6 128× 128 varied 0 0

2 -0.1 128× 128 -0.1 0 0

3 A 0.6 128× 128 varied varied varied

3 B 0.6 128× 128 varied varied varied

3 C(i) 0.6 128× 128 1.1 0 0

3 C(ii) 0.6 128× 128 1.1 1.2 2

3 D 0.6 128× 128 varied 1.2 2

Table I. Simulation parameters used to study the field theory of an active scalar with mass and momentum conservation.
Throughout the paper, the following parameters have been kept fixed a = −0.25, b = 0.25, κ = 1, M = 1, and D = 0.02. The
value of κ̃ has been varied in Fig.(1C) and Fig.(3D) to show the scaling of the length scale with contractile activity. We start
with an elliptic droplet in 2A and 2B. The parameters for activity in mass conservation (λ, ζ) and momentum conservation
(κ̃) equations has been varied in Fig.(3A-B) to enumerate distinct steady states. All the simulations reported are in two space
dimensions, while the predictions of the manuscript would be maintained in higher dimensions.

spectral solver for the fluid flow and order parameter
is numerically implemented using standard fast Fourier
transforms (FFTs) and by virtue of these Fourier trans-
forms, periodic boundary conditions are automatically
ensured in the system. We evolve the system in time us-
ing the explicit Euler–Maruyama method [40]. We pro-
vide the parameters used in generating all the figures of
the manuscript in Table I.

Appendix B: Higher-order terms of active stress

In the main text, we have provided a form of the ac-
tive stress tensor Σ

A in Eq.(3). This term preserves the
φ → −φ symmetry of the passive model H. It is possible
to add higher-order terms of the form ∼ − (αφ) S and
∼ −

(

β∇2φ
)

S to the active stress tensor. These terms
break the φ → −φ and can be derived by taking into
account the fact that self-propulsion speed of active par-
ticles is dependent on their local density [13, 14, 20]. In
what follows, we show that such terms can never reverse
the sign of the active stress. In other words, it is not
possible to make a contractile swimmer by slowing down
an extensile swimmer.

To obtain terms of the form ∼ − (αφ) S and ∼
−
(

β∇2φ
)

S, we note that the density-dependent speed
w([φ]) of active particles can be written as w([φ]) =
w0 + w1φ + w2∇2φ + higher order terms [13]. The ac-

tive stress can be written as Σ
A ∼ ξP pipj , where pi =

−τ∇i(wφ) and τ is the orientational relaxation time [20].
Thus, it follows that the active stress is ΣA

ij = ΥSij , with

Υ ∼ ξP τ
2(w0 + 2w1φ+w2∇2φ+ h.o.t)2. It is then clear

that the sign of the coefficients in the active stress is de-
termined by the parameter ξP , which is positive for ex-
tensile swimmer and negative for contractile swimmers.
For simplicity, we have treated ξP as constant but mak-
ing it a function of w has no effect on our conclusions
in the paper. Moreover, by construction, the terms pro-
portional to α and β can only reduce the magnitude but
never reverse the sign of the active stress. Thus, in this
paper, we consider a constant Υ which captures all the
qualitative effects.

Appendix C: Supplemental movies

In this Appendix, we describe the supplemental movies
which are complementary with the main text. These
movies are available online at at this URL.

Movie I: The movie shows the dynamics of Fig.1A in
the main text, which is the self-shearing instability in the
bubble phase for contractile active stress (κ̃ < 0) with no
activity in the diffusive sector. Starting from a uniform
phase, droplets nucleate due to the noise and they grow in
size until interrupted by the contractile active stress. The
parameters are a = −0.25, b = 0.25, κ = 1, κ̃ = −0.1,
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λ = 0, and ζ = 0. The initial global density φ0 = 0.6 and
the system size is 256× 256.

Movie II: Same as in movie I but with φ0 = −0.4. It
corresponds to Fig.(1B) of the main text.

Movie III: The movie shows the fluid flow and dy-
namics of deformed droplet in the presence of a suffi-
ciently contractile active stress (self-shearing instability).
It corresponds to Fig(2) of the main text. The parame-
ters are a = −0.25, b = 0.25, κ = 1, λ = 0, ζ = 0, and
κ̃ = −0.1. The system size used for this simulation is
256× 256.

Movie IV: Nucleation and growth of bubbles when
activity is present in both the mechanical and diffusive

sectors. A snapshot from the steady state is in Fig(3C-
(ii)) of the main text. The parameters are a = −0.25,
b = 0.25, κ = 1, κ̃ = 1.1, λ = 1, ζ = 2. The initial global
density φ0 = 0.6 and the system size is 128× 128.

Movie V: Same as in movie IV, but with κ̃ = −0.1. It
corresponds to Fig.(3D) in the main text. The fluid due
to contractile stress has the effect of stretching the inter-
face, which is the precursor to the self-shearing instability
as the system approaches the steady state. It should be
noted that there is no self-shearing in the steady state
- this is because the reverse Ostwald process drives the
system towards uniformity of curvature which directly
opposes the self-shearing instability.
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