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Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of
astrophysical scenarios suggest that binaries might have small but nonnegligible orbital eccentricities
when they enter the low-frequency bands of ground- and space-based gravitational-wave detectors.
If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic
error in the mass parameters of an inspiralling binary [M. Favata, Phys. Rev. Lett. 112, 101101
(2014)]. Gravitational-wave search templates typically rely on the quasi-circular approximation,
which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian
(PN) order. Damour, Gopakumar, Iyer, and others have developed an elegant but complex quasi-

Keplerian formalism for describing the post-Newtonian corrections to the orbits and waveforms
of inspiralling binaries with any eccentricity. Here we specialize the quasi-Keplerian formalism to
binaries with low eccentricity. In this limit the non-periodic contribution to the gravitational-wave
phasing can be expressed explicitly as simple functions of frequency or time, with little additional
complexity beyond the well-known formulas for circular binaries. These eccentric phase correc-
tions are computed to 3PN order and to leading order in the eccentricity for the standard PN
approximants. For a variety of systems these eccentricity corrections cause significant corrections
to the number of gravitational wave cycles that sweep through a detector’s frequency band. This
is evaluated using several measures, including a modification of the useful cycles. By comparing
to numerical solutions valid for any eccentricity, we find that our analytic solutions are valid up
to e0 . 0.1 for comparable mass systems, where e0 is the eccentricity when the source enters the
detector band. We also evaluate the role of periodic terms that enter the phasing and discuss
how they can be incorporated into some of the PN approximants. While the eccentric extension
of the PN approximants is our main objective, this work collects a variety of results that may be
of interest to others modeling eccentric relativistic binaries. This includes a consistent eccentricity
expansion of the Newtonian-order polarizations and a comparison of quasi-Keplerian results with
numerical simulations. In addition to applications in gravitational wave data analysis, the formulas
derived here could be of use in comparing PN theory with numerical relativity or self-force cal-
culations of eccentric binaries. They could also be useful in the construction of phenomenological
inspiral-merger-ringdown waveforms that include eccentricity effects.

PACS numbers: 04.25.Nx, 04.30.-w, 04.30.Db

I. INTRODUCTION, MOTIVATION, & SUMMARY

Shortly following the initial operations of a second generation of gravitational-wave (GW) interferometers [1–4],
LIGO made the first direct detection of gravitational waves from a coalescing compact-object binary [5]. The detected
waves were from a binary black hole merger and the signal was consistent with black holes moving in circular orbits
[6, 7] as predicted by General Relativity [8]. The standard expectation is that future detections will be from binaries
that have very small orbital eccentricities when they enter the LIGO frequency band (flow & 10 Hz). This is due to the
circularizing effect of gravitational radiation.1 However, one must be prepared for violations of standard expectations
(as is often the case in science). As discussed in Sec. IA below, there are some astrophysical scenarios that could
produce binaries with eccentricities that are observationally relevant for ground-based detectors. Favata [11] has also
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1 Note that test-particle calculations show that strong-gravity effects near the last-stable-orbit can cause the eccentricity to increase
slightly before plunge [9, 10].
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shown that even very small eccentricities (e0 & 6× 10−3) can cause detectable systematic parameter biases in binary
neutron stars (NSs) if eccentric corrections are not incorporated in waveform templates.
Post-Newtonian waveform models for circular, nonspinning binaries admit simple analytic expressions in the fre-

quency domain, allowing computationally efficient data analysis. However, eccentric waveforms are much more com-
plex, especially at high post-Newtonian (PN) orders. These waveforms are computed via a quasi-Keplerian formalism
[12–17] that provides a semi-analytic description of conservative PN eccentric orbits supplemented by a set of ordi-
nary differential equations (ODEs) describing the radiative evolution of the orbital elements. For arbitrarily eccentric
orbits, these waveforms must be computed by numerical evaluation of the ODEs supplemented with a root-finding
procedure to solve the 3PN extension of Kepler’s equation.2 Fully analytic waveforms for eccentric binaries can be
derived if one either ignores radiation reaction or other PN effects, or assumes that the eccentricity is small (see
Sec. I B for further discussion). The primary purpose of this paper is to provide a simple extension of the

standard circular PN approximants that consistently incorporate the leading-order effects of eccen-

tricity. (PN approximants provide different but related approaches for computing the phase and frequency evolution
of a gravitational wave signal.) This simple extension is possible because one can analytically solve for the evolution
of the eccentricity as a function of frequency [e(f)] to 3PN order if one assumes that the eccentricity is small.
The most important results of this paper are explicit formulas for the post-Newtonian approximants presented in

Sec. VI. In the waveform phasing these formulas are accurate to 3PN order [i.e. including relative corrections of O(v6)
where v is the relative orbital velocity] and to O(e20) (where e0 is the eccentricity at a reference frequency f0). For
example, the orbital phase of the binary can be expanded as
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where v = (πMf)1/3, v0 = (πMf0)
1/3, f is the observed GW frequency, M = m1 + m2 is the total binary mass,

η = m1m2/M
2 is the reduced mass ratio, and φc is the phase at coalescence. The above formula (and the other related

PN approximants) are known to 3.5PN order [O(v7)] in the circular terms (first line above). The low-eccentricity
corrections (our main results) are listed schematically on the second line. The leading-order (Newtonian) term was
computed in Ref. [18] and extended to 2PN order in [11, 19]. Here we extend those derivations to 3PN order and to
all the standard PN approximants (TaylorT1, TaylorT2, TaylorT3, TaylorT4, and TaylorF2). Readers wishing to get
immediately to the main results can skip to Sec. VI. Of particular interest is the TaylorF2 approximant [Eq. (6.26)],
which provides a fully analytic representation of the Fourier transform of the GW signal in the stationary phase
approximation (SPA). Because there is no need to numerically solve ODEs or compute a Fourier transform, this
formula is particularly useful for computationally intensive data analysis applications. In Sec. VIII we compare our
leading-order eccentricity phasing with a numerical calculation of the phase evolution that does not assume small
eccentricity. We estimate that our analytic formulas are valid for e0 . 0.1 for comparable-mass binaries and e0 . 0.01
for extreme-mass-ratio binaries. (The precise limits depend on the system masses. Note that for extreme-mass-ratio
systems, the PN series converges slowly.)
To quantify the relative importance of the different PN correction terms, we compute in Sec. VII several variants

of the number of cycles contributed from each PN term for different binary systems. For example, Table I displays
the contribution to the number of GW cycles ∆Ncyc from circular and eccentric PN terms for a binary neutron star
system in the LIGO band (assuming e0 = 0.1 at 10 Hz). Using the crude criterion that contributions ∆Ncyc ∼ O(1)
are potentially significant, we see that eccentric corrections through 2PN order are significant for this system, while
those at 2.5PN and 3PN orders are not. Other measures, such as the number of “useful” cycles or the contribution
to the phase of the Fourier Transform are discussed in more detail in Sec. VII.

Our objective is to provide waveforms that are only marginally more complex than circular ones yet consistently
incorporate the effects of eccentricity. It is therefore important to understand the approximations that enter our
analysis. Our approximants incorporate only the secular contribution to the phasing; there are also oscillatory

contributions to the phasing that we do not include. These oscillatory contributions arise from two sources: (i) Even

Newtonian elliptical orbits have an instantaneous orbital frequency φ̇ that varies along an orbit. This is simply the
statement that the binary phase angle evolves faster close to periastron and slower near apastron. (ii) In addition
to slow secular changes of the orbital elements, the radiation reaction force also induces periodic oscillations in the

2 Note that while we use the term “eccentric” throughout this paper, we consider only elliptical binaries in this work (e < 1). The formulas
here are not applicable to hyperbolic or parabolic binaries (e ≥ 1). We also note that by “elliptical” we refer to orbits that undergo
periastron advance (which are not true ellipses in the context of Newtonian theory).
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TABLE I. Post-Newtonian contributions to the number of gravitational wave cycles ∆Ncyc for a NS/NS binary in the LIGO
frequency band. This is computed from the orbital phase via ∆Ncyc = [φ(f2) − φ(f1)]/π. The first column lists the post-
Newtonian order and the type of term: “circ” refers to the quasi-circular contributions at that PN order, while “ecc” refers to
the leading-order eccentric terms that are computed here. The binary enters the LIGO band at f1 = 10 Hz. We truncate the
signal at f2 = 1000 Hz. The NS masses are m1 = m2 = 1.4M⊙. We assume an initial eccentricity of e0 = 0.1 at a reference
frequency f0 = f1 = 10 Hz. These values can be scaled to other eccentricities by multiplying by (enew0 /0.1)2. All numbers are
rounded to at least three significant digits.

PN order ∆Ncyc

0PN(circ) 16031
0PN(ecc) −463
1PN(circ) 439
1PN(ecc) −15.8
1.5PN(circ) −208
1.5PN(ecc) 1.67
2PN(circ) 9.54
2PN(ecc) −0.215
2.5PN(circ) −10.6
2.5PN(ecc) 0.0443
3PN(circ) 2.02
3PN(ecc) 0.00200
3.5PN(circ) −0.662
Total 15785

orbital elements. We show in Sec. V that (ii) does not affect the phasing until 5PN order. While (i) affects the phasing
at 0PN order, we show in Sec. V that it does not contribute more than of ∼ O(1) cycle to the GW phase. We also
briefly discuss how these oscillatory terms can be incorporated into the PN approximants. A more detailed treatment
of this effect will be discussed in future work. Aside from these oscillatory terms (which we have shown to be small),
all other PN effects are consistently incorporated into our phasing formulas at 3PN order and O(e20) in eccentricity.

Another important approximation arises from our treatment of the GW polarization amplitudes. Our amplitudes
are accurate only to leading order in v/c; i.e., they are Newtonian-order accurate and contain no relative PN amplitude
corrections. Furthermore, they contain no eccentric corrections to the amplitude. In other words, our polarizations
have the form h+,× = A+,×v

2 cos 2(φ − Φ+,×), where Φ+ = 0, Φ× = π/4, and A+,× are constants depending on the
masses, orbit inclination, and source distance. Our eccentric corrections only enter the waveform in the phasing φ(t)
and the evolution of v(t); our waveforms only oscillate at twice the azimuthal orbital frequency ωφ. In Appendix A we
provide a detailed derivation of how eccentricity affects the polarization amplitude at Newtonian order (but including
the effects of periastron precession). In addition to O(e2) corrections to the functions A+,×, eccentricity also introduces
terms of order O(e) that oscillate at multiples of the radial orbit frequency ωr and at frequencies 2ωφ ± jωr, where
j = 1, 2, 3, · · · . In the context of our analysis, these eccentric amplitude corrections will be unimportant because our
waveforms are already restricted to small eccentricities (e0 . 0.1), and small corrections to the waveform amplitude
are known to be much less important than small corrections to the phasing.

We emphasize that our objective is to obtain waveforms which are only marginally more complex than circular
waveforms, while incorporating eccentricity effects to the highest PN order available. We are further motivated to
focus on the small-eccentricity limit for the following reasons: (i) Because GW emission tends to circularize binaries, it
seems more likely than not that any class of GW sources will have more detectable events that are closer to very small
eccentricities than to moderate or large eccentricities. (ii) While other studies have computed waveform corrections to
higher orders in eccentricity than we provide, these calculations were not fully consistent in the PN approximation or
did not include effects like periastron precession [20, 21]. Considering our limitation to binaries with small eccentricity,
we envision our results as being applicable to the following situations:

(a) Studies that examine the systematic parameter bias of ignoring a small residual eccentricity (e.g., Ref. [11]) or
that wish to otherwise quantify (in a computationally efficient manner) the effect of small orbital eccentricity.
While we are primarily concerned with applications to ground-based GW detection (LIGO/Virgo/Kagra/ET), our
results could also be applied to studies concerned with sources for LISA (the Laser Interferometer Space Antenna;
[22]) or Pulsar Timing Arrays (PTAs; [23]).

(b) To set limits on the orbital eccentricity of future candidate GW signals from nearly circularized binaries.

(c) As a tool to help reduce orbital eccentricity in numerical relativity (NR) simulations.
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(d) To provide formulas that may be of use in studies that compare NR or gravitational self-force (GSF) [24–30]
calculations to analogous post-Newtonian results.

(e) To extend phenomenological inspiral-merger-ringdown models [31–37] to incorporate eccentricity effects.

In addition to the primary results summarized above, this paper also has the following secondary objectives and
results:

1. While our focus is the low-eccentricity limit, we provide a clear discussion of how to apply the full quasi-
Keplerian formalism to generate waveforms for arbitrary eccentricity. While some of this is discussed elsewhere
in the literature, we feel that the trasparency of our presentation will be useful to researchers and students
who need to model PN corrections to eccentric orbits. By showing how the small-eccentricity limit arises
from the full quasi-Keplerian formalism, the approximations implicit in our analysis are made more clear. Our
presentation also provides a guide for extending our results to higher order. In particular, Sec. II and Appendix A
discuss our notation and derive the waveform polarizations at Newtonian order and to O(e3) in the eccentricity
(properly accounting for precessing orbits which display two fundamental orbital frequencies). Via a 3PN
accurate inversion of Kepler’s equation, we show how the polarizations can be expressed as explicit functions
of time in an expansion in eccentricity [see e.g., Eqs. (A2) and (A4)]. A detailed description of the orbital
motion and phasing (in the absence of radiation reaction) is discussed in Sec. III. This includes a reduction to
the Newtonian case (Sec. IIIA), which helps elucidate the meaning of many of the quantities that enter the
quasi-Keplerian formalism. Section IV extends this to the case where radiation reaction is present, including an
explicit evaluation of the periodic oscillations that are induced in the orbital elements (Sec. IVA) along with
their secular variations (see Appendix B for the general eccentricity case and Sec. IVB for the low-eccentricity
limit). These equations are then used to analytically determine how the eccentricity secularly evolves with
frequency in the small eccentricity limit (Sec. IVC). This result is used to derive (in Sec. IVD) several explicit
formulas for the secular orbital phase and time to coalescence as a function of frequency, along with explicit
functions of time for the frequency and eccentricity evolution. Most of the PN approximants can be read off of
the results in that section (or independently derived from the orbital energy and GW luminosity as in Sec. VI).
We also show in Sec. VIII and Appendix D how the secular piece of the orbital phasing as a function of the
orbit frequency can be computed for arbitrary eccentricity via the numerical solution of two coupled ODEs.

2. Section IIID provides a discussion of the region of validity of the quasi-Keplerian formalism. Earlier work [15]
(before the NR era) provided an argument for setting a particular upper frequency limit (or a minimum orbital
separation) for which the formalism should be valid. By comparing with more recent NR and GSF calculations
in [38], we argue that the bound in [15] is too conservative. At least in the low-eccentricity limit, the quasi-
Keplerian formalism should be valid over nearly the same range in dimensionless frequency (Mf) as circular
waveforms.

3. Although they do not enter our final results, we pay particular attention to the role of periodic terms in the
waveform phasing. These terms are often neglected in other works. While the radiation-reaction induced
oscillations in the orbital elements are shown in Sec. IVA to enter at 5PN order (and are hence negligible for
our purposes), we derive in Sec. V an explicit frequency-domain expression for the conservative oscillatory piece
of the orbital phasing. We numerically evaluate its effect and find that, while small (. 0.07 GW cycles) it is
comparable to the 2.5PN and 3PN order eccentric secular corrections. We also briefly discuss in Sec. VI how
this oscillatory correction can be added to the PN approximants. This will be explored in more detail in a future
work.

In the remainder of this Introduction we first review the astrophysical expectations regarding binary eccentricity
(with an emphasis on LIGO sources; Sec. I A). Of particular note is an updated Table of known NS/NS systems
and their expected eccentricities when they enter the LIGO or LISA frequency band. In Sec. I B we summarize the
literature on modeling eccentric waveforms, emphasizing where our work differs from previous results. Throughout
we use units where G = c = 1 and follow the conventions of Refs. [15, 17].

A. Astrophysical expectations for eccentric binaries and implications for GW detection

Since the early work of Peters and Mathews [39, 40], it has been understood that GW emission causes the eccentricity
of a binary to decay. At Newtonian order the orbital eccentricity et of a binary emitting GWs at frequency fgw is



5

TABLE II. Eccentricity evolution for confirmed or likely double neutron-star binaries. The columns indicate the source’s name,
orbital period Porb (in days), current fundamental gravitational-wave frequency (fgw,i = 2/Porb) in mHz, current eccentricity
ei, eccentricity at 5 mHz (eLISA band), and eccentricity at 10 Hz (LIGO band). The eccentricities et(fgw) are computed using
Eq. (1.2). Most values for Porb and ei are taken from the ATNF pulsar catalog [41]. The values for J0453+1559 are from
[42, 43]; those for J1807-2500B are from [44]. There is some uncertainty as to whether the systems denoted with an asterisk
are double neutron star binaries [43].

Source Porb [days] fgw,i [mHz] ei et(5 mHz) et(10 Hz)
J0737-3039 0.10225156248 0.226 0.0877775 0.00339 1.11× 10−6

J1906+0746∗ 0.16599304683 0.139 0.0853028 0.00198 6.48× 10−7

J1756-2251 0.31963390143 0.0724 0.180594 0.00220 7.20× 10−7

B1913+16 0.322997448911 0.0717 0.6171334 0.0162 5.32× 10−6

B2127+11C 0.33528204828 0.0690 0.681395 0.0220 7.23× 10−6

B1534+12 0.420737298879 0.0550 0.27367752 0.00270 8.85× 10−7

J1829+2456 1.176027941 0.0197 0.1391412 4.17× 10−4 1.37× 10−7

J0453+1559 4.07246858 0.00568 0.11251832 8.98× 10−5 2.94× 10−8

J1518+4904 8.6340050964 0.00268 0.24948451 9.89× 10−5 3.24× 10−8

J1807-2500B∗ 9.9566681588 0.00232 0.747033198 9.32× 10−4 3.05× 10−7

J1753-2240 13.6375668 0.00170 0.303582 7.87× 10−5 2.58× 10−8

J1811-1736 18.7791691 0.00123 0.828011 9.29× 10−4 3.04× 10−7

J1930-1852 45.0600007 0.00514 0.39886340 3.36× 10−5 1.10× 10−8

related to its earlier eccentricity ei (when the binary was wider and emitting GWs at frequency fgw,i) via
3

fgw
fgw,i

=

(

ei
et

)18/19(
1− e2t
1− e2i

)3/2(
304 + 121e2i
304 + 121e2t

)1305/2299

. (1.2)

To illustrate the circularizing efficiency of GWs, we consider the eccentricity evolution of double neutron star systems.
Table II lists all such systems currently known. Using Eq. (1.2) we calculate the eccentricities of these binaries when
they enter the LIGO and eLISA bands. The largest eccentricity at 10 Hz is ≈ 7 × 10−6. This produces an entirely
negligible correction to the GW phase in the frequency band of ground-based detectors. (For space-based detectors,
the eccentricities are negligibly small in most cases, but potentially within the realm of detectability in others.)
Despite the fact that these projected eccentricities are small, there are still several reasons why the consideration of

eccentric gravitational waveforms might be important: (i) while orbits have time to circularize before they enter the
frequency band of ground-based detectors, detectors that operate at lower frequencies (such as eLISA [22] or pulsar
timing arrays [45–47]) can observe sources that have not yet circularized (wide stellar-mass binaries, supermassive
black hole (BH) binaries, extreme-mass-ratio inspirals); (ii) while not observed, astrophysical arguments suggest
that there may be compact binaries in the frequency band of ground-based detectors (& 10 Hz) that have not yet
circularized. (These scenarios are discussed below.) (iii) Lastly, it is possible that eccentric binaries are produced by
formation channels that have not yet been considered, so it is prudent to use the most general waveforms possible
when analyzing GW data.
Dense stellar environments such as galactic nuclei and globular clusters are suspected to create binaries with

significant eccentricities. This is partly due to hierarchical three body interactions where the Kozai-Lidov mechanism
can drive oscillations in the eccentricity of the inner binary of the triplet [48].4 In globular clusters around 30-50% [50]
of coalescing BH binaries driven by the Kozai-Lidov mechanism will have e & 0.1 when entering the LIGO frequency
band at 10 Hz.5 Recent work in [55] (which does not rely on orbit-averaged equations) indicates that ∼ 20% of merging
BHs formed via dynamical interactions in globular clusters will have eccentricities greater than 0.1 when they enter
the LIGO band at 10 Hz. They estimate that mergers with eccentricities greater than this value will be detected by
LIGO at rates between 0.05/yr to 3/yr, with a “realistic” estimate of 0.4/yr. More recent work in [56] indicates that
∼ 1% of binary black holes formed in globular clusters will have eccentricities at 10 Hz that exceed 10−3. Ref. [57]
also found that some NS/NS binaries can be dynamically formed in the LIGO band with high eccentricity.

Galactic nuclei are another potentially significant source of eccentric compact object mergers. Ref. [58] showed that
BH/BH binaries in dense galactic nuclei can be formed in the LIGO band with high eccentricities (90% with e > 0.9).

3 This formula follows from Eq. (5.11) of Ref. [40] where the semi-major axis a is related to the “fundamental” GW frequency via

πfgw =
√

M/a3 for a binary with total mass M . Here, fgw refers only to the frequency component of the GW signal that is emitted at
twice the orbital frequency. This is the dominant frequency component when the eccentricity is small.

4 Note that Ref. [49] has shown that PN effects can resonantly enhance eccentricity in hierarchical triples beyond the Newtonian Kozai-
Lidov effect.

5 Similar results were also found in [51]. While earlier studies [52, 53] indicated that globular cluster BH binaries will have mostly
circularized when they enter the LIGO band, those works relied on orbit-averaged equations of motion (which were shown to be
inaccurate in [50, 54]).
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Ref. [54] found that 10% of BH/BH binaries merging near supermassive BHs will have e > 0.1 when they enter the
LIGO band, with ∼ 2% to 5% of binaries having eccentricities ∼ 0.05, and ∼ 10% with e ≈ 0.001 [see their Fig. 7;
see also more recent work in [59]].
Using a population synthesis code, Ref. [60] computed the fraction of binaries whose eccentricities will exceed

e = 0.01 at 30 Hz (this is roughly the value where eccentricity will cause a systematic parameter bias [11]). For
BH/BH binaries, . 0.3% will exceed this value at 30 Hz. For BH/NS binaries this fraction increases slightly to
< 0.7%. For NS/NS binaries this value is < 2%. The fraction of binaries that exceed e = 0.01 at 3 Hz (the ET band)
are roughly double the numbers quoted above [see Table 3 of [60]].
For supermassive BH (SMBH) binaries that merge in galactic nuclei, [61] found that these systems generally form

with high eccentricities. When they enter the LISA band a significant fraction of these binaries have eccentricities
e ∼ 0.05–0.2. (For a brief review of the literature on eccentric LISA sources see Appendix A of [20].) While it is
well known that extreme mass ratio inspirals (EMRIs) will be highly eccentric in the LISA band (see, e.g., [62] for a
recent review), IMRIs (intermediate mass ratio inspirals) are likely to be nearly circular when they enter the LIGO
band [63].6

For binaries above a particular eccentricity threshold, the use of circular search templates results in a potential
decrease in the signal-to-noise ratio (SNR). This issue has been investigated in a variety of studies [63–68]. The
punchline of these analyses is that circular templates are sufficient for detecting compact binary inspirals with initial
eccentricities (when entering the band of ground-based detectors) e . 0.02–0.05 (for fitting factors & 0.95).7 Although
the waveform model developed here is not relevant to binaries with moderate to high eccentricities, the detectability
of such binaries is considered in Refs. [70–73].
We emphasize that currently understood astrophysical scenarios relevant for LIGO imply that if binaries enter

the detector band with any eccentricity, that eccentricity is more likely to be small than large. This justifies our
focus on the small-eccentricity limit. In addition, our formulas might be of use for parameter estimation or search
template studies wishing to examine the general behavior of including eccentricity (sacrificing accuracy in the moderate
eccentricity limit in exchange for simplicity and computational efficiency).

B. Previous work on eccentric waveform models

As circular binaries are thought to be more likely, circular-orbit waveforms are more developed than elliptical ones.8

Nonetheless, a significant body of work has explored eccentric waveform models. Much of this is reviewed in Sec. 10 of
[74]. Waveform polarizations for elliptical binaries are implicit in Peters and Mathews [39] (who focus on computing
the radiated power), and are first given explicitly in Wahlquist [75] and later in Refs. [76–78] to leading (0PN) order.
These elliptical waveforms have since been extended to 1PN order in amplitude by Junker and Schäfer [79] (see also
[80, 81]), to 1.5PN order in Blanchet and Schäfer [82], and to 2PN order (neglecting tails) in Gopakumar and Iyer
[83]. The 3PN (non-hereditary) contribution to the waveform was recently computed in [84]. The nonlinear memory
corrections to the polarizations (which enter at 0PN order) were computed in [85]. Information to compute the GW
phasing for elliptical binaries is currently known to relative 3PN order in the conservative [12–17] and dissipative parts
[79, 82, 86–92]. Time-domain waveforms that incorporate both spin and eccentricity via a direct numerical solution
of the PN equations of motion are discussed in [93–96].
Especially useful for GW data analysis applications is the development of frequency-domain eccentric waveforms.

Refs. [97, 98] express the waveform amplitude to arbitrary eccentricity at 1PN order in the frequency domain, but
do not express the phasing explicitly as a function of frequency. This is extended to 2PN order in [99] with the
phasing expressed as a hypergeometric function of the eccentricity. Explicit eccentric corrections to the phase of the
Fourier transform of the GW signal (expressed as a function of frequency) were first computed in the stationary phase
approximation (SPA) in [18]. They expressed the waveform amplitude at Newtonian order and without any eccentric
corrections. The phase contained leading-order eccentric corrections [O(e20)] at 0PN order. In Refs. [11, 19], these
O(e20) phase corrections were extended to 2PN order. The details of that computation, along with their extension to
3PN order, are the focus of this paper. The “post-circular” approximation in Ref. [20] computed the amplitude and
SPA phasing to Newtonian order as an expansion to O(e8). Post-Newtonian corrections to this work were recently
incorporated in [21]; however these were not computed via a fully-consistent PN approach but rather through the

6 Ref. [63] found that IMRIs that harden via 3-body interactions should have e < 10−4 at 10 Hz, while 10% of those formed by direct
capture will have e > 0.1 at 10 Hz.

7 The eccentricity threshold depends on the binary mass. The range in eccentricity quoted above is most applicable to NS/NS binaries;
for stellar-mass BH binaries the eccentricity threshold for detection with circular templates is closer to e ∼ 0.15. We do not quote precise
values because the various studies in [64–68] differ in their details. Interestingly, the threshold for detecting IMRI systems in the LIGO
band with circular templates is also e . 0.05 [63], although estimates suggest there are not likely to be many IMRIs with eccentricities
much higher than this. The inadequacy of circular templates for supermassive BH binaries in the LISA band is discussed in [69].

8 Recall that we take the word “eccentric” to refer to elliptical orbits (e < 1) in this work. We do not review waveforms relevant to
parabolic or hyperbolic binaries in detail.
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choice of a particular ansatz (as acknowledged in that work). For example, their results for the O(e20) corrections to
the SPA phasing disagree with ours beginning at 1PN order. As this manuscript was nearing completion we learned
of related work in Ref. [100]. There the post-circular approximation of Ref. [20] is extended to 2PN order and O(e6),
with only Newtonian effects accounted for in the amplitude.
The merger/ringdown portion of eccentric binary coalescence must be treated via numerical relativity (NR). Ec-

centric merger simulations have been performed by multiple groups [101–112]. Comparisons between eccentric post-
Newtonian waveforms and NR simulations were performed in Refs. [113, 114]. More recent comparisons between
PN, NR, and gravitational self-force (GSF) results for the periastron advance rate are discussed in [38, 115, 116];
comparisons between PN and GSF calculations of the redshift invariant are found in [25, 26, 28, 29]. Recent attempts
to extend the effective-one-body (EOB) formalism to handle eccentric orbits are discussed in [28, 30, 117].

II. GRAVITATIONAL WAVE POLARIZATIONS

We begin by defining our conventions and expressions for the GW polarizations. We work at leading (Newtonian)
order in the amplitude of the polarizations, but initially make no assumptions about the PN order of the phasing
(that will be specified in later sections). Starting from an expression that is valid for general planar orbits, we then
specialize to elliptical orbits (with the details relegated to Appendix A). These expressions are further simplified to
the case where eccentricity provides a negligible correction to the amplitude (but not to the phasing).

Consider a non-spinning eccentric binary with component masses m1, m2, total mass M = m1 +m2, and reduced
mass µ = m1m2/M . Following Sec. II of Damour, Gopakumar, and Iyer [15], introduce an orthonormal triad p, q, N
in which p points toward a suitably defined ascending node, N points from the source to the observer, and q = N×p.
The relative separation vector of the binary x, which has a magnitude r and makes an angle φ with respect to p, is
given by

x = pr cosφ+ (q cos ι+N sin ι)r sinφ , (2.1)

where ι is the orbit inclination angle (the angle between N and the orbital angular momentum). The plus (+)
and cross (×) polarizations of the gravitational wave field can be expanded in a post-Newtonian series. The leading
(“Newtonian”) order piece of that expansion is given in terms of r, φ, and their first time derivatives by Eq. (6) of
[15]:

hN+ = −ηM
D

{

(1 + C2)

[(

M

r
+ r2φ̇2 − ṙ2

)

cos 2φ+ 2ṙrφ̇ sin 2φ

]

+ S2

[

M

r
− r2φ̇2 − ṙ2

]

+O(v)

}

, (2.2a)

hN× = −2
ηMC

D

[(

M

r
+ r2φ̇2 − ṙ2

)

sin 2φ+ 2ṙrφ̇ cos 2φ+O(v)

]

, (2.2b)

where D is the distance to the binary, η ≡ µ/M is the reduced mass ratio, C ≡ cos ι, and S ≡ sin ι. Corrections
to these polarizations enter at 0.5-PN order [O(v), where v is the relative orbital speed].9 For eccentric binaries
these amplitude corrections have been computed to 2PN order by Gopakumar and Iyer [83] and to 3PN order in
[84] (neglecting hereditary corrections). Nonlinear memory corrections are computed in [85]. Only leading-order
amplitude corrections are considered here.
To further simplify Eqs. (2.2) we use the quasi-Keplerian parametrized solution for r and φ, which provides an

analytic solution to the conservative part of the PN equations of motion (Sec. III). Using this quasi-Keplerian solution,
we show in Appendix A how the polarizations can be expressed in terms of the eccentric anomaly u for arbitrary
elliptical orbits [Eq. (A1)]. Those expressions are further simplified by writing them as a series expansion in eccentricity
[carried to O(e3)] and in terms of the phase variable φ and the mean anomaly l (which are straightforwardly expressed
as functions of time for conservative orbits). The resulting expansion [Eqs. (A4)] indicates how different frequency
harmonics enter the waveform. Since we are focused on the small-eccentricity limit—in which most of the radiated
power is concentrated at a GW frequency equal to twice the orbital frequency—we take the e→ 0 limit of our result
and arrive at

hN+ = −2
ηM

D

(

M

r

)

(1 + C2) cos 2φ , (2.3a)

9 Throughout we denote nPN order relative corrections as O(v2n), denoting the appropriate power of v/c.
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FIG. 1. (color online). Angles describing elliptical orbits. The vector x is the relative separation vector which points from the
binary center of mass to the position of the reduced mass. The reduced mass traces out a curve, and we show the ellipse which
is momentarily tangent to that curve. The vector x makes an angle φ (the orbital phase angle) from the unit vector p and
an angle v (the true anomaly) from the pericenter point of the ellipse. The pericenter itself makes an angle ̟ (the argument
of pericenter) from the direction p. The eccentric anomaly u is the angle from the center of the ellipse to the projection
(perpendicular to the major axis) of the particle’s position on the circle circumscribing the ellipse. The mean anomaly l (which
does not have a geometric interpretation) is an angular parameter that varies along the orbit at a uniform rate, completing one
cycle in a time 2π/n. Note that u, v, and l are measured from the pericenter direction.

hN× = −4
ηM

D

(

M

r

)

C sin 2φ . (2.3b)

These are the expressions that we ultimately use for our polarizations. Note that this is equivalent to taking the
circular orbit limit (ṙ = 0 and r2φ̇2 = M/r) of Eqs. (2.2). Eccentricity introduces O(e) and higher corrections to
these expressions. However, we ignore them since amplitude corrections are less important than phase corrections
(and since we are also assuming that eccentricity is small). We note that the expressions (2.3) depend on only a single
phase variable while the more general expressions (A4) depend on two phase variables. There are thus only three
initial conditions [r(t0), e(t0), and φ(t0)] associated with the orbital motion that need to be specified in our waveforms.
For general elliptical orbits an additional constant associated with a second phase variable—and corresponding to the
initial argument of pericenter ̟(t0)—would also need to be specified. However, because we neglect O(e) corrections
to the waveform amplitude and oscillatory contributions to the waveform phase φ, this dependence on a fourth initial
condition drops out of our expressions. The extended discussion in Appendix A further clarifies this point and the
nature of the approximations leading to Eq. (2.3).

III. QUASI-KEPLERIAN PARAMETERIZATION

First introduced in Refs. [13, 14], the quasi-Keplerian formalism provides an analytic (parametric) solution to the
conservative pieces of the PN equations of motion. It provides the orbital variables (r, φ) and their derivatives as a
function of a parametric angle (the eccentric anomaly u). Combined with a numerical solution of the PN extension of
Kepler’s equation, this formalism allows one to determine the orbital evolution as a function of time without the need
to solve ODEs. In this section we first review the more familiar Newtonian case, expressing the Keplerian solution
in a form that will be similar to its PN generalization (Sec. III A). We then provide the related generalization to the
PN case (quasi-Keplerian), listing the relevant equations from the literature that one needs to model eccentric PN
orbits (Sec. III B). In Sec. III C we perform a change of variables that more naturally connects with the circular limit.
The overall domain of validity of the quasi-Keplerian formalism is discussed in Sec. IIID. The effects of incorporating
radiation reaction are then discussed in Sec. IV and the remainder of the paper.
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A. Newtonian-order (Keplerian) parameterization

In the Newtonian limit, the radial and angular pieces of elliptical motion can be expressed via the following
equations:

rN = S(l;n, e) = ar(1− e cosu) , (3.1a)

ṙN = n
∂S

∂l
(l;n, e) =

ξ1/3e sinu

(1− e cosu)
, (3.1b)

φN = λN +WN(l;n, e) = λN + v − u+ e sinu , (3.1c)

= v +̟ = v + (cλ − cl) , (3.1d)

λN = n(t− t0) + cλ , (3.1e)

φ̇N = n+ n
∂WN

∂l
(l;n, e) =

n
√
1− e2

(1− e cosu)2
, (3.1f)

lN = n(t− t0) + cl = u− e sinu , (3.1g)

v = VN(u) ≡ 2 arctan

[

(

1 + e

1− e

)2

tan
(u

2

)

]

. (3.1h)

The subscript N denotes that these are Newtonian quantities (to distinguish between their PN generalizations below).
The angles u, v, and l are the eccentric, true, and mean anomalies. Figure 1 discusses their geometrical interpretation
(which carries over to the PN case). The semimajor axis of the ellipse is ar = (M/n2)1/3, and the mean motion

is n ≡ 2π/P , where P is the radial orbital (periastron to periastron) period. (For Newtonian orbits the radial and
azimuthal frequencies are identical, but not for PN orbits). We also define the dimensionless radial angular orbit
frequency ξ = Mn; this dimensionless variable will be used extensively in this work and serves as a PN expansion
parameter. The definitions of the functions S and WN can be read off of the above equations. The phase angle λN
provides the linearly accumulating piece of the orbital phase. In the Newtonian limit it is equivalent (up to a constant
shift) to the mean anomaly lN. The constants cl and cλ provide the values of lN and λN at some instant t0. They are
related to the argument of pericenter ̟ = cλ − cl, which is the angle the pericenter makes with respect to p.
Note that a planar orbit requires the specification of 4 initial conditions or constants of the motion. For example,

these might be the set [r(t0), φ(t0), ṙ(t0), φ̇(t0)]. Equivalently (and of greater geometrical meaning) one can specify
[ar, e,̟, φ(t0)]. The constant ar could be replaced by n or a related frequency variable. In Eqs. (3.1) above the
constants that must be specified are [n, e, cλ, cl]. Given ̟ and φ(t0), cl is determined by first solving for the initial
value of v via φ(t0) = ̟ + v0 and then inverting Eq. (3.1h) [v0 = VN(u0)] for u0. The value u0 is substituted in
Eq. (3.1g) (with t = t0) to give cl.

B. quasi-Keplerian parameterization

When post-Newtonian effects are considered the resulting orbits are no longer Keplerian ellipses, but the parametric
equations for r, φ, ṙ, and φ̇ take a form similar to Eqs. (3.1) (but are much more complicated). The resulting solution
is thus referred to as quasi-Keplerian. These explicit analytic expressions can only be obtained for the conservative
contributions to the equations of motion (i.e., one ignores the dissipative or radiation-reaction contributions to the
equations of motion at 2.5PN, 3.5PN, and higher orders). The extension of Eqs. (3.1) is known to 3PN order [16, 17]
and has the following form [Eqs. (7-12) of [17]]:

r = S(l;n, et) = ar(1− er cosu) , (3.2a)

ṙ = n
∂S

∂l
(l;n, et) , (3.2b)

φ = λ+W (l;n, et) , (3.2c)

λ = (1 + k)n(t− t0) + cλ , (3.2d)

W (l;n, et) = (1 + k)(v − l) +

(

f4φ
c4

+
f6φ
c6

)

sin 2v +

(

g4φ
c4

+
g6φ
c6

)

sin 3v +
i6φ
c6

sin 4v +
h6φ
c6

sin 5v , (3.2e)

φ̇ = (1 + k)n+ n
∂W

∂l
(l;n, et) , (3.2f)
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l = n(t− t0) + cl = u− et sinu+

(

g4t
c4

+
g6t
c6

)

(v − u) +

(

f4t
c4

+
f6t
c6

)

sin v +
i6t
c6

sin 2v +
h6t
c6

sin 3v ,

(3.2g)

v = V (u) ≡ 2 arctan

[

(

1 + eφ
1− eφ

)2

tan
(u

2

)

]

. (3.2h)

The various symbols have the same interpretation as their Newtonian counterparts, but the function W and the 3PN
analog of Kepler’s equation is significantly more complex. The functions g4t, g6t, f4t, f6t, i6t, h6t, g4φ, g6φ, f4φ, f6φ,
i6φ, and h6φ are given in [16] (in both ADM and harmonic gauges), while more explicit and useful expressions for r,

ṙ, φ, and φ̇ are given in harmonic gauge in [17] (to 3PN order) or in ADM gauge to 2PN order in [15]. For brevity we
list here only expressions in harmonic gauge10 and to 2PN order (we list some results to 3PN order if they are crucial
for later steps in our analysis). As in the Newtonian case, the functions S(l) and W (l) are 2π periodic in l.

Besides the overall increase in complexity, the quasi-Keplerian case introduces some additional new features. There
now appear three eccentricities et, er, and eφ instead of one in the Newtonian case. These eccentricities can be
related to each other or to the orbital energy and angular momentum (see [15, 16]). The quasi-Keplerian equations
also show the well-known periastron precession, a secular effect embodied in the constant k = ∆Φ/(2π), where ∆Φ
is the advance of the periastron angle in the time interval P . The explicit expression for k is given to 3PN order by
Eq. (25d) of [17]:

k =
3ξ2/3

1− e2t
+
[

78− 28η + (51− 26η)e2t
] ξ4/3

4(1− e2t )
2
+
{

18240− 25376η + 492π2η + 896η2

+ (28128− 27840η + 123π2η + 5120η2)e2t + (2496− 1760η + 1040η2)e4t

+
[

1920− 768η + (3840− 1536η)e2t
]

√

1− e2t

} ξ2

128(1− e2t )
3
. (3.3)

Making the above expressions more explicit requires choosing an appropriate set of constants of the motion. Several
choices are possible for the principal constants of motion, including some combination of the orbital energy E, the
magnitude of the reduced angular momentum h, the mean motion n, the semi-major axis ar, or one of the three
eccentricities (et, er, eφ). A convenient choice is to choose the mean motion n and the time eccentricity et [15, 17].
In addition to the principal (intrinsic) constants of motion, two positional (extrinsic) constants of motion (cl and cλ)
determine the orientation of the orbit and the orbital phase at a reference time t0. These constants (n, et, cl, cλ) are
fixed for conservative orbits (no radiation reaction). When radiation reaction is considered, these “constants” now
evolve—their initial values must be chosen and a scheme for evolving them must be supplied. This is discussed in
Sec. IV. In the present section we ignore radiation reaction effects.
Given this choice of constants, we can now express r, ṙ, φ, and φ̇ explicitly in terms of n, et, cl, cλ, and the eccentric

anomaly u. The exact expressions are given to 3PN order and harmonic gauge in Eqs. (23)–(26) of [17] or to 2PN
order and ADM gauge in Eqs. (51)–(54) of [15]. For reference, we list the complete expressions up to 2PN order and
in harmonic gauge [see Eqs. (23)–(27) in [17] for the lengthy 3PN terms]:

r =Mξ−2/3(1− et cosu)

(

1 + [−18 + 2η − (6− 7η)et cosu]
ξ2/3

6(1− et cosu)
+

{

− 72(4− 7η) + [72 + 30η + 8η2

− (72− 231η + 35η2)et cosu](1− e2t )− 36(5− 2η)(2 + et cosu)
√

1− e2t

}

ξ4/3

72(1− e2t )(1− et cosu)
+O(ξ2)

)

, (3.4a)

ṙ =
ξ1/3

(1− et cosu)
et sinu

{

1 + (6− 7η)
ξ2/3

6
+

[

−468− 15η + 35η2 + (135η − 9η2)e2t + (324 + 342η

− 96η2)et cosu+ (216− 693η + 105η2)(et cosu)
2 − (72− 231η + 35η2)(et cosu)

3

+
36

√

1− e2t
(1− et cosu)

2(4− et cosu)(5− 2η)

]

ξ4/3

72(1− et cosu)3
+O(ξ2)

}

, (3.4b)

10 Note that the harmonic and ADM gauge expressions differ only at 2PN and higher orders; at 1PN order they are identical.
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φ(λ, l) = λ+W (l) , (3.4c)

W (l) = (v − u+ et sinu) + (v − u+ et sinu)
3ξ2/3

1− e2t
+

(

8
[

78− 28η + (51− 26η)e2t − 6(5− 2η)(1− e2t )
3/2
]

(v − u)(1− et cosu)
3 +

{

624− 284η + 4η2 + (408− 88η − 8η2)e2t − (60η − 4η2)e4t + [−1872 + 792η

−8η2 − (1224− 384η − 16η2)e2t + (120η − 8η2)e4t
]

et cosu+
[

1872− 732η + 4η2 + (1224− 504η − 8η2)e2t

−(60η − 4η2)e4t
]

(et cosu)
2 +

[

−624 + 224η − (408− 208η)e2t
]

(et cosu)
3
}

et sinu

+
{

− (8 + 153η − 27η2)e2t + (4η − 12η2)e4t +
[

8 + 152η − 24η2 + (8 + 146η − 6η2)e2t
]

et cosu

+
[

−8− 148η + 12η2 − (η − 3η2)e2t
]

(et cosu)
2
}

et sinu
√

1− e2t

)

ξ4/3

32(1− e2t )
2(1− et cosu)3

+O(ξ2) , (3.4d)

φ̇ =
(ξ/M)

√

1− e2t
(1− et cosu)2

(

1 +
[

3− (4− η)e2t + (1− η)et cosu
] ξ2/3

(1− e2t )(1− et cosu)

+

{

144− 48η − (162 + 68η − 2η2)e2t + (60 + 26η − 20η2)e4t + (18η + 12η2)e6t +
[

−216 + 125η + η2

+(102 + 188η + 16η2)e2t − (12 + 97η − η2)e4t
]

et cosu+
[

108− 97η − 5η2 + (66− 136η + 4η2)e2t

−(48− 17η + 17η2)e4t
]

(et cosu)
2 +

[

−36 + 2η − 8η2 − (6− 70η − 14η2)e2t
]

(et cosu)
3

+ 18(1− et cosu)
2(1− 2e2t + et cosu)(5− 2η)

√

1− e2t

}

ξ4/3

12(1− e2t )
2(1− et cosu)3

+O(ξ2)

)

. (3.4e)

Some of these equations depend on the true anomaly v in the combination v−u. Rather than using the discontinuous
function in Eq. (3.2h), this combination is more easily described by the smooth function [15, 17]

v − u = 2 tan−1

(

βφ sinu

1− βφ cosu

)

, (3.5)

where βφ = (1−
√

1− e2φ)/eφ. An explicit expression for eφ in terms of et and n is not listed in the literature, but it

can be derived by combining Eq. (25r) of [16] with Eqs. (21) of [17]. The result to (3PN order and harmonic gauge) is

eφ
et

= 1 + ξ2/3(4− η) +

[

2016− 260η − 4η2 − (1152− 659η + 41η2)e2t + (720− 288η)
√

1− e2t

]

ξ4/3

96(1− e2t )

+

{

2553600− 2719360η + 17220π2η + 268800η2 − (3494400− 3203200η + 17220π2η + 255360η2)e2t

+ (940800− 483840η− 13440η2)e4t +

[

4139520− 3574960η+ 17220π2η− 155680η2 − (2419200− 1290048η+ 4305π2η

+ 483420η2 − 18900η3)e2t + (860160− 786310η + 134050η2 − 1050η3)e4t

]

√

1− e2t

}

ξ2

26880(1− e2t )
5/2

. (3.6)

The above equations allow one to determine the functions r, ṙ, φ, φ̇ and the waveform polarizations h+,× entirely
in terms of the eccentric anomaly u and the chosen constants et, n, cl, and cλ [see Eq. (A1)]. With the addition of
the 3PN extension of Kepler’s equation [Eq. (27) of [17]],

l = u− et sinu+

[

(15η − η2)et sinu
√

1− e2t + 12(5− 2η)(v − u)(1− et cosu)

]

ξ4/3

8
√

1− e2t (1− et cosu)
+O(ξ2), (3.7)

one can parametrically obtain the orbit and waveform as a function of the mean motion angle or time. To do this
Eq. (3.7) must be inverted. Techniques for doing this numerically are given in celestial mechanics texts (see, e.g.,
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Sec. 6.6 of Danby [118]) and are discussed more recently in the context of eccentric compact binaries in [80]. For
Newtonian binaries Bessel derived a series expansion that solves Kepler’s equation [e.g., Appendix D of [118]]:

u = l + 2

∞
∑

n=1

1

n
Jn(net) sin(nl) . (3.8)

Since PN corrections to Kepler’s equation do not enter until 2PN order, the above equation can also be applied to
binaries at 1PN order. In Appendix A we analytically invert the 3PN version of Eq. (3.7), obtaining u(l) as a series

expansion to order O(e3t ). This expansion can then be plugged into expressions for r, ṙ, φ, φ̇, and h+,×, yielding
explicit functions of time [e.g., Eqs. (A3)–(A4)].

C. Converting between radial and azimuthal frequencies

In the quasi-Keplerian formalism PN expansions of elliptical orbit quantities are most naturally expressed in terms
of the radial orbit angular frequency ωr ≡ n ≡ ξ/M (i.e., the mean motion or periastron to periastron angular
frequency). However, circular orbit quantities are more naturally expanded in terms of the azimuthal or φ-angular
frequency ωφ ≡ ξφ/M (this is related to the time to return to the same azimuthal angular position in the orbit).

The relation between ωr and the instantaneous azimuthal angular frequency φ̇ is given by Eq. (3.2f). However, since
we are often more concerned with secular variations it is useful to derive the relationship between the orbit-averaged
azimuthal frequency ωφ ≡ 〈φ̇〉 and the radial frequency. Upon orbit-averaging Eq. (3.2f) the periodic dW/dl term
vanishes and we have

ξφ =M〈φ̇〉 =M
dλ

dt
= (1 + k)ξ

= ξ

(

1+
3ξ2/3

1− e2t
+
[

78− 28η + (51− 26η)e2t
] ξ4/3

4(1− e2t )
2
+

{

18240−(25376−492π2)η+896η2+[28128−(27840−123π2)η

+ 5120η2]e2t + (2496− 1760η + 1040η2)e4t +
[

1920− 768η + (3840− 1536η)e2t
]

√

1− e2t

}

ξ2

128(1− e2t )
3

)

. (3.9)

This equation can be inverted to give

ξ = ξφ

(

1−
3ξ

2/3
φ

1− e2t
−
[

18− 28η + (51− 26η)e2t
] ξ

4/3
φ

4(1− e2t )
2
−
{

− 192− (14624− 492π2)η + 896η2 + [8544− (17856

− 123π2)η + 5120η2]e2t + (2496− 1760η + 1040η2)e4t +
[

1920− 768η + (3840− 1536η)e2t
]

√

1− e2t

}

ξ2φ
128(1− e2t )

3

)

.

(3.10)

This relation allows us to replace the constant of the motion ξ = Mn in the quasi-Keplerian formalism with the
equivalent constant ξφ =Mλ̇. The advantage in doing so is that ξφ is directly related to the standard PN expansion
parameters x and v that appear in PN expansions for quasicircular orbits. Specifically, we make the following
identifications between the various PN expansion parameters:

ξφ =Mωφ = x3/2 = v3 . (3.11)

In the eccentric case x and v are defined by the above relation and reduce to their standard meanings in the circular
limit. As an application of these relations, it will be useful (in the next section) to express k in terms of ξφ via
substitution of (3.10) into (3.3) and expanding to 3PN order:

k(ξφ) =
3ξ

2/3
φ

1− e2t
+
[

54− 28η + (51− 26η)e2t
] ξ

4/3
φ

4(1− e2t )
2
+

{

6720− (20000− 492π2)η + 896η2

+ [18336− (22848− 123π2)η + 5120η2]e2t + (2496− 1760η + 1040η2)e4t

+
[

1920− 768η + (3840− 1536η)e2t
]

√

1− e2t

}

ξ2φ
128(1− e2t )

3
. (3.12)
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Note that in the et → 0 limit the frequency variables ξ and ξφ do not agree. This arises from the fact that the
well-known formula for the periastron advance angle is independent of eccentricity in the et → 0 limit. Readers should
keep in mind that it is the quantity ξφ that is equivalent to the circular orbit frequency in the et → 0 limit. When PN
quantities for eccentric orbits are specialized to the et → 0 limit, they generally will reduce to the standard circular
expressions only if they are expressed in terms of ξφ (not ξ). This is an important point and motivates much of the
approach that we follow throughout this paper.

D. Domain of validity of the quasi-Keplerian formalism

In Sec. III of [15] an estimate was provided for the range of validity of the quasi-Keplerian formalism. We review
this constraint here, illustrate its problems, and then argue that recent comparisons with numerical relativity (NR)
and gravitational self-force (GSF) calculations suggest that the constraint (in the small et limit) should be relaxed.

Reference [15] argues that the parameters of elliptical motion in the quasi-Keplerian formalism should be chosen
such that i) orbits are not plunging and ii) that rapid periastron precession is avoided. Sec. III of [15] adequately
discusses the first point. In the small et limit, this constraint is simply that one stay outside the last stable orbit,
which we will take to be the innermost stable circular orbit (ISCO; there are eccentric corrections to this, but they
will be negligible for our purposes as any small eccentricity will have rapidly decayed at frequencies near plunge). The
second point is a more conservative constraint—effectively requiring the binary separation (for a given eccentricity)
to be sufficiently far from the plunge boundary that the periastron advance rate is “slow.” (This also eliminates the
possibility of zoom-whirl orbits.) Using a particular (and somewhat arbitrary) choice for specifying the smallness of
the periastron advance rate in the Schwarzschild spacetime, Ref. [15] proposes that the following condition be satisfied:

ξ

(1− e2t )
3/2

< 0.0030. (3.13)

Rearranging the above and approximating (at Newtonian order) ξ ≈ πMf yields the following constraint on the
eccentricity parameter,

et <

√

1−
(

πMf

α

)2/3

, (3.14)

where f is the GW frequency of the fundamental harmonic (twice the orbital frequency) and α = 0.0030. This
equation implies that (for the quasi-Keplerian formalism to be valid) a NS/NS system should have et . 0.85 at 10 Hz,
while aM = 10M⊙ BH/BH binary should have et . 0.6. Similarly a BH/BH binary withM & 19.3M⊙ is constrained
to be fully circularized before entering the LIGO band.
An immediate problem arises when one considers the decay of eccentricity with frequency, et(f) ≈ e0(f0/f)

19/18 for
small et. Substituting this relation into Eq. (3.14) implies that the GW frequency must satisfy the following inequality
throughout the inspiral:

e20

(

f0
f

)19/9

+

(

πMf

α

)2/3

< 1. (3.15)

If a binary enters the LIGO band (f0 = 10 Hz) with e0 = 0.1, this implies that the formalism is valid only for f . 69
Hz for a NS/NS binary, or f . 19 Hz for a M = 10M⊙ BH/BH binary. For e0 . 0.1 the first term in (3.15) hardly
affects the result and one can simplify the criterion to

f <
α

πM
= 194Hz

( α

0.0030

)

(

1M⊙

M

)

. (3.16)

In comparison, the Schwarzschild ISCO frequency is

fisco =
6−3/2

πM
= 4397Hz

(

1M⊙

M

)

. (3.17)

Equation 3.16 is vastly more constraining than the ISCO limit and suggests that quasi-Keplerian waveforms would
be essentially useless for LIGO data analysis. This is surprising. While circular PN waveforms certainly breakdown
before the ISCO limit above, they can often be pushed much closer to the ISCO frequency than Eq. 3.16 would imply
(especially in the comparable mass limit). In the low-eccentricity limit, the quasi-Keplerian waveforms we derive
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here smoothly approach the circular limit, so we would expect that they would have a similar range of validity. For
example, for circular binaries ξ̇φ agrees with equal-mass NR calculations to within a few percent at ξφ = 0.1 (see
Fig. 13 of [119]). We therefore expect our low-eccentricity expressions to remain accurate to comparable frequencies.

Independently of the approach in Sec. III of [15], the constraint (3.13) can be derived by specifying a condition
for the slowness of the periastron advance rate. Recall that the angular frequency ωp ≡ dΦ/dt of the periastron

angle Φ = ̟ is given by ωp = ωφ − ωr, where ωφ = 〈φ̇〉 is the orbit averaged azimuthal orbit frequency and ωr = n
is the radial orbital frequency (mean motion). Since ωφ = (1 + k)ωr, ωp = kωr. Let us phrase our constraint on
the “slowness” of the periastron advance rate in the following terms: we require that the periastron advance angle
not exceed one cycle (∆Φ < 2π) in N radial orbital periods. This implies the constraint k < 1/N or, using the
leading-order expression for k [c.f., Eq. (3.3)],

ξ

(1− e2t )
3/2

<

(

1

3N

)3/2

. (3.18)

One may then attempt to set a constraint by choosing an appropriate value for N that assures that k is sufficiently
small. For example, the criterion in [15] for “slowness” (3.13) corresponds to N > 16 radial cycles for every cycle of
the periastron [i.e., using α → (3N)−3/2 and α = 0.003]. Zoom-whirl behavior corresponds to the condition N < 1
(i.e., k < 1 is required to forbid zoom-whirl orbits). However, “sufficiently small” is an arbitrary criterion on which
reasonable people can differ. (E.g., is N > 1 sufficient? Or N > 10? Or N > 100?) Unfortunately the precise
choice is important as the upper bound on the frequency of validity depends sensitively on the chosen value of N [or
equivalently, the chosen α in Eq. (3.16)].

We argue that this is not the appropriate way to determine the constraint. A better constraint comes from requiring
that a specified PN quantity agrees with an exact (or at least “better”) calculation to within a specified accuracy
(e.g., within ∼ 1% to 10%).11 As a proxy for an “exact” calculation, we use the relationship between the periastron
advance parameter and orbital frequency given in Eq. (7) of [38]12

kηGSF =
1√

1− 6x

[

1− η

2

ρ(x)

(1− 6x)
+O(η2)

]

− 1, (3.19)

where

ρ(x) =
14x2(1 + 12.9906x)

1 + 4.57724x− 10.3124x2
(3.20)

and x = ξ
2/3
φ = (Mωφ)

2/3 = (πMf)2/3 is the standard circular PN expansion parameter. This equation arises

from an effective-one-body (EOB) calculation of k in the et → 0 limit [120]. The resulting expression automatically
incorporates the Schwarzschild et → 0 result and additionally incorporates an O(q) correction to the Schwarzschild
limit, where q = m1/m2 ≤ 1 is the binary mass ratio. This correction arises from the first-order GSF and is determined
by fitting the function ρ(x) to accurate GSF calculations. The resulting linear-in-q expression (kqGSF) can then be
“improved” by replacing q → η, resulting in Eq. (3.19) above. This replacement of the mass ratio q with η has the
following remarkable effect: while the q dependent expression kqGSF agrees with low-eccentricity NR simulations at
small q (as expected), the expression kηGSF agrees exceptionally well with NR simulations at all mass ratios, essentially
lying within (or close to) the error bars of the NR simulations for the frequency range analyzed (see Figs. 1 to 3 of
[38]). The figures there also clearly indicate good agreement between NR calculations of k and the 3PN result we use
here (e.g., less than 1% error up to ξφ = 0.03).
Considering the importance of understanding the realm of validity of the quasi-Keplerian formalism (and hence the

results of this study), we further quantify the bounds on our PN expressions. Since it exhibits excellent agreement
with NR results for all mass ratios, we take Eq. (3.19) as our “exact” result and compare it with the 3PN expression

for k expressed in terms of x = ξ
2/3
φ [Eqs. (3.12)] and specialized to the et → 0 limit. This reduces to

k(et → 0) = 3ξ
2/3
φ + (13.5− 7η)ξ

4/3
φ + (67.5− 124.3137η + 7η2)ξ2φ. (3.21)

In Figure 2 we see the behavior of these two functions as well as the fractional error between the 3PN formula and
the “exact” result. The 3PN periastron advance constant shows good agreement with Eq. (3.19) for nearly all mass

11 This accuracy level and the particular quantity that one chooses to constrain are also subjective elements, but we argue that the approach
here provides a more natural way to set an appropriate constraint on the domain of validity of the quasi-Keplerian formalism.

12 Note that the notation here is related to that in Ref. [38] via k = K − 1. That reference also uses ν for the reduced mass ratio (η here).
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FIG. 2. (color online). Comparison of 3PN and “exact” calculations of the periastron advance constant k. We plot kη
GSF

[Eq. (3.19)] and k(et → 0) [Eq. (3.21)] vs. ξφ = Mωφ. The inset shows the fractional error between the quantities for different
values of the reduced mass ratio η. As expected, agreement is better for comparable mass binaries.

ratios. Depending on the acceptable level of accuracy required and the mass ratio of the system, Figure 2 determines
the frequency where the required accuracy threshold is violated. For example, if we require that the 3PN expression
agrees with kηGSF to within 10%, then this implies that ξφ < 0.0274 for η = 0. This is a significantly larger upper limit
than the ≈ 0.003 value required by Eq. (3.13). For η = 0 and ξφ = 0.003, the fractional error from kηGSF is 0.1%, a
value that we argue is unnecessarily conservative. Furthermore, for larger mass ratios the 3PN expression agrees even
more closely with the NR/GSF result. A < 10% error is achieved for η = 0.25 so long as ξφ < 0.0458. This upper
bound increases to ξφ < 0.0511 for η = 0.2.

In summary, we believe that the constraint (3.13) suggested by [15] is too conservative, as it implies that the quasi-
Keplerian formalism is not applicable to binaries in the frequency band of ground-based interferometers. Instead,
more recent comparisons with NR and GSF simulations (summarized in [38] and discussed above) suggest that a more
appropriate constraint for comparable mass binaries is ξφ . 0.04 or

f .
α

πM
= 2585Hz

( α

0.04

)

(

1M⊙

M

)

. (3.22)

This limit is nearly 60% of the frequency of the Schwarzschild ISCO. This implies that our formalism should be
accurate up to f ≈ 920 Hz for NS/NS binaries or f ≈ 260 Hz for a M = 10M⊙ BH/BH binary.

IV. QUASI-KEPLERIAN PHASING FOR EVOLVING BINARIES

In the previous section we described the quasi-Keplerian formalism, which provides a parametric solution to the
conservative pieces of the PN equations of motion. This analytic solution follows from the fact that conservative
quasi-elliptical orbits admit four constants of motion: the principal (intrinsic) constants n and et which determine the
shape of the orbit, plus two positional (extrinsic) constants (here taken to be cl and cλ) that determine the orientation
of the orbit and the initial binary configuration. We now consider the inclusion of radiation reaction, both generally
[15, 17] and in the low-eccentricity limit. When dissipative terms are included, these 4 constants will generally evolve
with time. A scheme for evolving the constants of the motion for non-spinning eccentric binaries has been detailed in
[15, 17]. Here we briefly summarize their results, and then specialize them to low-eccentricity orbits.

As in the conservative case, the essential problem is to determine the functions r(t), φ(t) and their derivatives
as solutions to the full PN equations of motion. Rather than numerically solving the PN equations of motion (at
say 3.5PN order), Ref. [15] employs a method of variation of constants in which the functional form of the 3PN
conservative solution [Eqs. (3.2)] is used as a leading-order solution. The 2.5PN and 3.5PN radiative pieces of the
equations of motion then act as a perturbation that causes the constants of the motion in Eqs. (3.2) to vary with
time. Specifically, the mean motion and time-eccentricity now vary with time, n = n(t), et = et(t), and the angles l
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and λ are now given by

l ≡
∫ t

t0

n(t′) dt′ + cl(t) , (4.1a)

λ ≡
∫ t

t0

[1 + k(t′)]n(t′) dt′ + cλ(t) , (4.1b)

where the positional constants cl = cl(t) and cλ = cλ(t) also vary with time. Instead of solving a first order system

of differential equations involving r(t), φ(t), ṙ(t), and φ̇(t), a new first order system is solved in which the dynamical
variables are cα(t) = [c1(t), c2(t), cl(t), cλ(t)]. In this system the “constants” c1 and c2 could be the energy and
angular momentum of the binary, but—as indicated earlier—they are more conveniently chosen to be the mean
motion n and the time eccentricity et (which can be related to the energy and angular momentum).

To arrive at a first order system for the cα one proceeds as follows (see [15] for details): Begin with the PN equations
of motion in first-order form,

ẋ = v , (4.2a)

v̇ = A0(x,v) +A
′(x,v) , (4.2b)

where the motion is planar and A0 and A
′ represent the conservative and dissipative pieces of the equations of motion

(respectively). These equations are first solved neglecting the A
′ term, resulting in the parametric quasi-Keplerian

solution described in Sec. III B, x = x0(t; cα). The solution to the full equations (including the dissipative term A
′)

is written such that it has the same functional form as the conservative system, but with the “constants” cα now as
functions of time, x = x0[t; cα(t)]. This exact form for the solution, combined with the full equations of motion (4.2),
yields a new first-order system for the cα(t):

dcα
dt

= Fα(l, cβ) ; α, β = 1, 2, l, λ, (4.3)

where Fα is linear in A
′. This is then recast in the form

dcα
dl

= Gα(l, ca) ; α = 1, 2, l, λ; a = 1, 2 , (4.4)

where Gα ∝ A
′ and is periodic in l. Since Gα contains both fast, periodic oscillations as well as slowly varying pieces

[since radiation reaction causes a slow variation of the ca(t)], the solution is split into a slowly varying piece c̄α(l) and
a rapidly varying piece c̃α(l),

cα(l) = c̄α(l) + c̃α(l) . (4.5)

For sufficiently long times, the rapidly-oscillating terms c̃α(l) will always be smaller than the slowly-varying ones
c̄α(l). Using this splitting Refs. [15, 17] then show how to solve for the quantities n̄, ēt, c̄l, c̄λ, ñ, ẽt, c̃l, c̃λ, which are
expressed as functions of l, u, or t. The differential equations for each piece of the cα have the form

dc̄α
dl

= Ḡα(c̄α) , (4.6a)

dc̃α
dl

= G̃α(c̄α) , (4.6b)

where Ḡα and G̃α are the orbit-averaged and oscillatory pieces of Gα. The time evolution of the angles l(t) and λ(t)
can be similarly split into secular and oscillatory pieces [by virtue of their definition in Eqs. (4.1)]:

l(t) = l̄(t) + l̃[l; c̄a(t)] , (4.7a)

λ(t) = λ̄(t) + λ̃[l; c̄a(t)] . (4.7b)

The next subsections discuss separately the solutions to the oscillatory and secular equations in (4.6).
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A. Periodic variation of the constants

As shown in [15], Eq. (4.6b) can be integrated analytically, yielding closed-form expressions for ñ(u, n̄, ēt), ẽt(u, n̄, ēt),

c̃l(u, n̄, ēt), and c̃λ(u, n̄, ēt). These are then used in constructing expressions for l̃(u, n̄, ēt) and λ̃(u, n̄, ēt). The full
expressions are given by Eqs. (64) and (67) of [15] (at 2PN order in ADM gauge) and Eqs. (36) and (40) of [17] (at
3PN order in harmonic gauge). Those expressions are seen to have the following form when 3.5PN order reactive
effects are included:

C̃γ = [ξ̃/ξ̄, ẽt, c̃l, c̃λ, l̃, λ̃] = ηξ̄5/3
[

f (2.5)γ [u(l̄); ēt] + ξ̄2/3f (3.5)γ [u(l̄); ēt]
]

, (4.8)

where the fγ label the various expressions listed in [15, 17], and the index γ takes on labels corresponding to the six

variables listed on the left-hand-side of the equation. The C̃γ are periodic functions of l and have the leading-order

scaling C̃γ ∼ O(ηξ̄5/3). This indicates that these terms will generally be small, especially in comparison with the
secular pieces that we consider in the next section.
In the low-eccentricity limit we can simplify the expressions given in [17] by using Eq. (A2) to express u in terms

of l. At leading PN order the constants C̃γ reduce to the following when we expand about ēt = 0:

ξ̃(l̄; ξ̄, ēt) = ηξ̄8/3ēt

[

120 sin l̄ +
718

5
ēt sin 2l̄ +

(

2269

5
sin l̄ +

3011

15
sin 3l̄

)

ē2t +O(ē3t )

]

+O(ξ̄10/3) , (4.9a)

ẽt(l̄; ξ̄, ēt) = −ηξ̄5/3
[

64

5
sin l̄ +

352

15
ēt sin 2l̄ +

(

1138

15
sin l̄ +

358

9
sin 3l̄

)

ē2t +O(ē3t )

]

+O(ξ̄7/3) , (4.9b)

c̃λ(l̄; ξ̄, ēt) = ηξ̄5/3ēt

[

64

3
cos l̄ +

(

cos 2l̄ − 1

3

)

32ēt +

(

81

5
cos l̄ +

2131

45
cos 3l̄

)

ē2t +O(ē3t )

]

+O(ξ̄7/3) , (4.9c)

c̃l(l̄; ξ̄, ēt) =
ηξ̄5/3

ēt

[

−64

5
cos l̄ +

(

32

5
− 352

15
cos 2l̄

)

ēt +

(

146

15
cos l̄ − 358

9
cos 3l̄

)

ē2t

+

(

91

15
+

383

15
cos 2l̄ − 1289

20
cos 4l̄

)

e3t +O(ē4t )

]

+O(ξ̄7/3) , (4.9d)

l̃(l̄; ξ̄, ēt) = −ηξ̄
5/3

ēt

[

64

5
cos l̄ + (107 + 352 cos 2l̄)

1

15
ēt +

(

1654

15
cos l̄ +

358

9
cos 3l̄

)

ē2t

+

(

−644

15
+

694

15
cos 2l̄ +

1289

20
cos 4l̄

)

ē3t +O(ē4t )

]

+O(ξ̄7/3) , (4.9e)

λ̃(l̄; ξ̄, ēt) = −ηξ̄5/3
[

203

15
+

296

3
ēt cos l̄ +

(

−131

5
+

199

5
cos 2l̄

)

ē2t +O(ē3t )

]

+O(ξ̄7/3) , (4.9f)

To derive the last two equations, we had to evaluate the integrals appearing in Eqs. (40a) and (40b) of [17]. This was
done by first expanding the integrands in the small-et limit and then computing the indefinite integral, neglecting the
constant of integration. Eq. (A2) was then substituted and the result was expanded in the small-et limit. Note also

that at leading-order in ξ̄, λ̃ = l̃ − c̃l + c̃λ. The expressions (4.9) are listed for completeness. As we will discuss in
more detail in Sec. V, they will be negligible for our purposes.

B. Secular variation of the constants

We now focus on computing the secular evolution of the constants of the motion (which will eventually lead to the
main results of this paper). The primary expressions that are needed to compute the various PN approximants are
the differential equations governing the secular time evolution of n̄ = ξ̄/M and ēt. (The positional constants of the
motion are found to have no secular variations, i.e., ˙̄cl = ˙̄cλ = 0 [15].) These are given to 2PN order in ADM or
harmonic gauge in [15, 17]; the harmonic gauge versions are reproduced in Appendix B. Here we are more interested
in the pair (ω̄φ = ξ̄φ/M, ēt) for reasons discussed above. Expressions for ˙̄ωφ and ˙̄et have been computed to 3PN order
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in ADM gauge in [92].13 Since we work in modified harmonic (MH) gauge here, we must convert those results from
ADM to MH gauge. The explicit relation between the two gauges is given by Eq. (8.21) of [91]:

eADM
t = eMH

t

{

1 +

(

1

4
+

17

4
η

)

ξ
4/3
φ

1− e2t
+

[

1

2
+

(

16739

1680
− 21

16
π2

)

η − 83

24
η2 +

(

1

2
+

249

16
η − 241

24
η2
)

e2t

]

ξ2φ

(1− e2t )
2

}

,

(4.10)
where et = eMH

t on the right-hand-side. Note that the difference between ADM and MH gauges enters at 2PN and
higher orders. For reference we also include the inverse transformation:

eMH
t = eADM

{

1−
(

1

4
+

17

4
η

)

ξ
4/3
φ

(1− e2t )
−
[

1

2
+

(

16739

1680
− 21

16
π2

)

η − 83

24
η2 +

(

1

2
+

249

16
η − 241

24
η2
)

e2t

]

ξ2φ

(1− e2t )
2

}

,

(4.11)
where et = eADM

t on the right-hand-side. (Everywhere else in this document et = eMH
t .)

Arun et. al [92] provide expressions for dωφ/dt and det/dt for arbitrary eccentricity (et < 1).14 They also specialize
their results to leading-order in et and in ADM gauge [see their Eqs. (7.6c) and (7.6e)]. Using Eq. (4.10) to convert
their Eq. (7.6c) to harmonic gauge gives

dξφ
dt

=M
dωφ

dt
=

96ηξ
11/3
φ

5M

(

1−
(

743

336
+

11

4
η

)

ξ
2/3
φ + 4πξφ +

(

34103

18144
+

13661

2016
η +

59

18
η2
)

ξ
4/3
φ −

(

4159

672
+

189

8
η

)

π

ξ
5/3
φ +

[

16447322263

139708800
− 1712

105
γE +

16

3
π2 +

(

−56198689

217728
+

451

48
π2

)

η +
541

896
η2 − 5605

2592
η3 − 856

105
ln(16ξ

2/3
φ )

]

ξ2φ

+ e2t

{

157

24
+

(

713

112
− 673

16
η

)

ξ
2/3
φ +

2335

48
πξφ +

(

−479959

12096
+

80425

4032
η +

213539

1728
η2
)

ξ
4/3
φ +

(

7885

96
− 27645

56
η

)

πξ
5/3
φ

+

[

277391496167

139708800
− 106144

315
γE +

992

9
π2 +

(

−280153957

120960
+

188231

2304
π2

)

η − 73109

448
η2 − 6874115

31104
η3 +

18832

45
ln 2

−234009

560
ln 3− 53072

315
ln(16ξ

2/3
φ )

]

ξ2φ

})

, (4.12)

where γE = 0.5772156649 . . . is the Euler-Mascheroni constant. In the above (and henceforth) we drop overbars where
it is clear that we refer to a secular (orbit-averaged) quantity.
To compute det/dt in harmonic gauge one first takes the time derivative of Eq. (4.11), and then substitutes

Eqs. (7.6c) and (7.6e) of [92] for dξφ/dt and de
ADM
t /dt. Next the gauge transformation in Eq. (4.10) is substituted

and the result is expanded to 3PN order yielding the harmonic gauge expression

det
dt

= −
304etηξ

8/3
φ

15M

(

1−
(

2817

2128
+

1021

228
η

)

ξ
2/3
φ +

985

152
πξφ +

(

−108197

38304
+

56407

4256
η +

141

19
η2
)

ξ
4/3
φ −

(

55691

4256

+
19067

399
η

)

πξ
5/3
φ +

[

246060953209

884822400
− 82283

1995
γE +

769

57
π2 +

(

−613139897

2298240
+

22345

3648
π2

)

η − 1046329

51072
η2

−305005

49248
η3 +

4601

105
ln 2− 234009

5320
ln 3− 82283

3990
ln(16ξ

2/3
φ )

]

ξ2φ + e2t

{

881

304
+

(

40115

4256
− 51847

1824
η

)

ξ
2/3
φ

+
21729

608
πξφ +

(

−1368625

51072
− 288209

17024
η +

274515

2432
η2
)

ξ
4/3
φ +

(

286789

3584
− 7810371

17024
η

)

πξ
5/3
φ +

[

1316189396351

589881600

− 1500461

3990
γE +

14023

114
π2 +

(

−5882746699

4596480
+

46453

1536
π2

)

η − 554719

4788
η2 − 100330729

393984
η3

−3813587

3990
ln 2 +

6318243

21280
ln 3− 1500461

7980
ln(16ξ

2/3
φ )

]

ξ2φ

})

. (4.13)

For reference and later use in Sec. VIII, we provide in Appendix B 2PN order equations for dn/dt and det/dt in
terms of n and et and valid for arbitrary et < 1.

13 Ref. [92] includes modified harmonic gauge expressions in an appendix, but Eqs. (C10)-(C11) there were found to contain an error.
This is addressed in a forthcoming erratum. Also note that there are important notational differences between this paper and Ref. [92].
Specifically, Ref. [92] uses ζ ≡ Mn in place of our ξ. Their ω is labeled ωφ here. They also do not use bars to denote orbit averaged
quantities.

14 Note that the tail contributions to the expressions for dωφ/dt and det/dt in Ref. [92] are expressed as infinite series and require careful
consideration when used in actual computations. This is discussed further in Sec. VIII below. In the low-eccentricity limit, these tail
terms can be expanded as a power series in et.
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C. Analytic eccentricity evolution as a function of frequency

At Newtonian (0PN) order the equations for dξφ/dt and det/dt can be analytically solved for arbitrary et to

determine ξφ(et). Computing dξφ/det = ξ̇φ/ėt and integrating using the initial condition that ξφ = ξφ,0 when et = e0
gives

ξφ(et)

ξφ,0
=

(

e0
et

)18/19(
1− e2t
1− e20

)3/2(
304 + 121e20
304 + 121e2t

)1305/2299

. (4.14)

An analogous result in terms of the semi-major axis was first derived by Peters [40].
At higher PN orders the differential equation for dξφ/det is not separable, so an exact solution valid for arbitrary

eccentricities is not easily found. However, an analytic result can be found if we only include the leading-order
eccentricity terms. Expanding the low-eccentricity limit of det/dξφ in ξφ gives

det
dξφ

= −19

18

et
ξφ

{

1 +

(

2833

3192
− 197

114
η

)

ξ
2/3
φ +

377

152
πξφ +

(

−1392851

508032
+

32537

6384
η − 833

1368
η2
)

ξ
4/3
φ

+

(

−253409

51072
− 133157

12768
η

)

πξ
5/3
φ +

[

27226918334431

178380195840
− 3317

133
γE − 67

38
π2

+

(

−26105879

3386880
− 3977

1216
π2

)

η +
58057

153216
η2 − 25

608
η3 +

4601

105
ln 2− 234009

5320
ln 3− 3317

266
ln(16ξ

2/3
φ )

]

ξ2φ

}

. (4.15)

Separating variables and integrating gives

et = C1ξ
−19/18
φ exp

{(

−2833

2016
+

197

72
η

)

ξ
2/3
φ − 377

144
πξφ +

(

26464169

12192768
− 32537

8064
η +

833

1728
η2
)

ξ
4/3
φ

+

(

253409

80640
+

133157

20160
η

)

πξ
5/3
φ +

[

−27968380877791

377983528960
+

3317

252
γE +

67

72
π2 +

(

496011701

121927680
+

3977

2304
π2

)

η

− 58057

290304
η2 +

25

1152
η3 − 87419

3780
ln 2 +

26001

1120
ln 3 +

3317

504
ln(16ξ

2/3
φ )

]

ξ2φ

}

. (4.16)

Expanding the above equation in ξφ then yields

et = e0

(

ξφ,0
ξφ

)19/18 E(ξφ)
E(ξφ,0)

, (4.17a)

where

E(ξφ) =
{

1 +

(

−2833

2016
+

197

72
η

)

ξ
2/3
φ − 377

144
πξφ +

(

77006005

24385536
− 1143767

145152
η +

43807

10368
η2
)

ξ
4/3
φ

+

(

9901567

1451520
− 202589

362880
η

)

πξ
5/3
φ +

[

−33320661414619

386266890240
+

3317

252
γE +

180721

41472
π2 +

(

161339510737

8778792960
+

3977

2304
π2

)

η

−359037739

20901888
η2 +

10647791

2239488
η3 − 87419

3780
ln 2 +

26001

1120
ln 3 +

3317

504
ln(16ξ

2/3
φ )

]

ξ2φ

}

. (4.17b)

The constant C1 was determined by the initial condition et(ξφ,0) = e0.
To gauge the accuracy of the low-eccentricity approximation, we can compare the 0PN expression (4.14) with its

low-eccentricity version, ξφ/ξφ,0 = (e0/et)
18/19. For e0 . 0.2 (0.1), these agree to within 7% (2%). The PN corrections

have the effect of decreasing the eccentricity more rapidly as the frequency increases.

D. Explicit evolution equations as a function of frequency or time

Using the results of the previous subsection, we can determine dξφ/dt explicitly as a function of ξφ only (eliminating
the frequency dependence in et) and then solve for ξφ and et explicitly as functions of time. This also allows us to
determine the evolution of the phase variables λ and l as functions of time or the frequency variable ξφ.
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Substituting Eq. (4.17) for ēt(ξφ) into Eq. (4.12) and series expanding yields15

dξφ
dt

=
96ηξ

11/3
φ

5M

(

1−
(

743

336
+

11

4
η

)

ξ
2/3
φ + 4πξφ +

(

34103

18144
+

13661

2016
η +

59

18
η2
)

ξ
4/3
φ −

(

4159

672
+

189

8
η

)

πξ
5/3
φ

+

[

16447322263

139708800
− 1712

105
γE +

16

3
π2 +

(

−56198689

217728
+

451

48
π2

)

η +
541

896
η2 − 5605

2592
η3 − 856

105
ln(16ξ

2/3
φ )

]

ξ2φ

+
157

24
e20

(

ξφ,0
ξφ

)19/9{

1−
(

41539

22608
+

5413

5652
η

)

ξ
2/3
φ +

(

2833

1008
− 197

36
η

)

ξ
2/3
φ,0 +

24871

11304
πξφ +

377

72
πξφ,0

+

(

−122085949

239283072
+

2133953

712152
η − 36497

101736
η2
)

ξ
4/3
φ +

(

−117679987

22788864
+

10486813

1424304
η +

1066361

203472
η2
)

ξ
2/3
φ ξ

2/3
φ,0

+

(

−1193251

3048192
− 66317

9072
η +

18155

1296
η2
)

ξ
4/3
φ,0 +

(

215395661

28486080
− 8416733

508680
η

)

πξ
5/3
φ +

(

10065649

1627776

−4899587

406944
η

)

πξφξ
2/3
φ,0 −

(

15660203

1627776
+

2040701

406944
η

)

πξ
2/3
φ ξφ,0 +

(

764881

90720
− 949457

22680
η

)

πξ
5/3
φ,0

+

(

−345869493517

241197336576
+

96596798141

8614190592
η − 9444185

542592
η2 +

7189909

3662496
η3
)

ξ
4/3
φ ξ

2/3
φ,0 +

9376367

813888
π2ξφξφ,0

+

(

49566453289

68913524736
+

237857384155

17228381184
η − 1281029377

68366592
η2 − 98273015

7324992
η3
)

ξ
2/3
φ ξ

4/3
φ,0

+

[

9765600648106487

66329267558400
− 2491067

98910
γE − 10610699

1627776
π2 +

(

−3409129936301

8614190592
+

2883161

180864
π2

)

η

+
1598264033

102549888
η2 − 2773315

10987488
η3 +

5257873

296730
ln 2− 1534059

87920
ln 3− 2491067

197820
ln(16ξ

2/3
φ )

]

ξ2φ

+

[

26531900578691

168991764480
− 3317

126
γE +

122833

10368
π2 +

(

9155185261

548674560
− 3977

1152
π2

)

η

−5732473

1306368
η2 − 3090307

139968
η3 +

87419

1890
ln 2− 26001

560
ln 3− 3317

252
ln(16ξ

2/3
φ,0 )

]

ξ2φ,0

})

. (4.18)

This is the key equation that allows us to determine explicit functions for the frequency and phase evolution in the
small-eccentricity limit. We illustrate how these results follow from this equation in the remainder of this section,
deferring some of the full 3PN expressions to Sec. VI where they are derived via an equivalent approach that generalizes
the quasi-circular PN approximants.
The time to coalescence is computed by integrating dt = dξφ/(dξφ/dt). To compute this we first invert Eq. (4.18),

expand the terms in {}-brackets to leading-order in e0, and then expand the entire expression to 3PN order [relative
O(ε6)]. Integrating the result with respect to ξφ yields

tc − t ≡ 5M

η
τ =

5M

256ηξ
8/3
φ

T (ξφ, ξφ,0, e0), (4.19a)

T (ξφ, ξφ,0, e0) =

{

1 +

(

743

252
+

11

3
η

)

ξ
2/3
φ + · · ·+O(ξ2φ)

−157

43
e20

(

ξφ,0
ξφ

)19/9 [

1 +

(

17592719

5855472
+

1103939

209124
η

)

ξ
2/3
φ +

(

2833

1008
− 197

36
η

)

ξ
2/3
φ,0 + · · ·+O(ξ2φ)

]

}

, (4.19b)

where tc is the coalescence time and the full 3PN expression can be inferred from Eq. (6.7b) via the substitutions

T (v = ξ
1/3
φ , v0 = ξ

1/3
φ,0 , e0).

Note the general structure of the series expansion in Eq. (4.19b). The first line shows the quasi-circular result.16

The second line shows the leading-order in eccentricity corrections. Since ξφ,0/ξφ ∼ O(1) the first term on the second

15 When performing the series expansions we introduce a PN expansion parameter ε ∼ 1/c via ξφ → ε3ξφ and ξφ,0 → ε3ξφ,0. This
parameter ε is set to 1 at the end of the calculation.

16 The quasicircular results are all known to relative 3.5PN order, but as our starting expressions for eccentric orbits are only known to
3PN order we restrict to purely 3PN results in this section. The full expressions, listed in Sec. VI, include the 3.5PN quasicircular terms.
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line is equivalent to a 0PN order effect. The remainder of the second line schematically shows corrections which we
have computed to relative 3PN order [see Eq. (6.7b)]. Note that starting at 2PN order, there are terms with the
structure ξaφξ

b
φ,0 where a + b = 2n/3 for terms at nPN order. The other PN series expansions in this section have

a similar structure. Note also that the difference between the time of coalescence and the reference time t0 when
et(t0) = e0 is given by

tc − t0 ≡ 5M

η
τ0 =

5M

256ηξ
8/3
φ,0

T (ξφ,0, ξφ,0, e0). (4.20)

The time evolution of the frequency variable ξφ can now be obtained by performing a series reversion on Eq. (4.19).
This is done by expanding ξφ as a PN series in τ and τ0 with the coefficients undetermined.17 This series is then
substituted into Eq. (4.19) and expanded in ǫ and to O(e20). The unknown coefficients are determined by requiring
that each term vanish at the appropriate orders in ǫ and e0. The result is

ξφ(t) =
1

8τ3/8
Ξ(τ, τ0, e0) , (4.21a)

Ξ(τ, τ0, e0) =

{

1 +

(

743

2688
+

11

32
η

)

τ−1/4 + · · ·+O(τ−3/4)

−471

344
e20

(

τ

τ0

)19/24 [

1 +

(

− 7647061

70265664
+

209353

836496
η

)

τ−1/4 +

(

4445

3456
− 185

288
η

)

τ
−1/4
0 + · · ·+O(τ−3/4)

]

}

, (4.21b)

where the full 3PN order expression can be inferred from Eq. (6.8b) (replacing θ = τ−1/8 and θ0 = τ
−1/8
0 as appro-

priate). Similar to Eq. (4.19) there are also cross terms of the form τ cτd0 appearing at 2PN and higher orders. The
value of ξφ at the reference time [where et(t0) = e0] is determined from

ξφ,0(t0) =
1

8τ
3/8
0

Ξ(τ0, τ0, e0). (4.22)

Although we do not use this later in our analysis, the evolution of the orbital eccentricity with time can be computed
by substituting Eqs. (4.21) and (4.22) into Eq. (4.17) and expanding to 3PN order. The result has the form

et(t) = e0

(

τ

τ0

)19/48 [

1 +

(

−4445

6912
+

185

576
η

)

(

τ−1/4 − τ
−1/4
0

)

+ · · ·+O(τ−3/4)

]

, (4.23)

where the full 3PN expression is given in Appendix C.
We can also compute the secular evolution of the angular variables λ and l. (We consider the oscillatory piece of λ

in the next section.) The secular evolution of λ is governed by

dλ

dt
=
ξ(1 + k)

M
=
ξφ
M
, (4.24)

which can be integrated to give

λ− cλ =
1

M

∫

ξφ
(dξφ/dt)

dξφ. (4.25)

Series expanding the integrand, evaluating the integral, and simplifying yields

λ(ξφ)− cλ = − 1

32ηξ
5/3
φ

Λf (ξφ, ξφ,0, e0) , (4.26a)

17 In other words, one can use PN power counting to infer the form of the series shown in the solution (4.21). The series expansions
are more easily performed by introducing a dimensionless parameter ǫ ∼ O(1/c) and substituting τ → τ/ǫ8 and τ0 → τ0/ǫ8. The ǫ
parameter is then set to 1 at the end of the calculation.
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Λf (ξφ, ξφ,0, e0) =

{

1 +

(

3715

1008
+

55

12
η

)

ξ
2/3
φ + · · ·+O(ξ2φ)

−785

272
e20

(

ξφ,0
ξφ

)19/9 [

1 +

(

6955261

2215584
+

436441

79128
η

)

ξ
2/3
φ +

(

2833

1008
− 197

36
η

)

ξ
2/3
φ,0 + · · ·+O(ξ2φ)

]

}

, (4.26b)

where the additional terms to 3PN order can be read off of Eq. (6.6b). Plugging Eqs. (4.21) and (4.22) into the above
equation and expanding to 3PN order allows us to determine the time-dependent function λ(t):

λ(τ)− c̄λ = −1

η
τ5/8Λt(τ, τ0, e0) , (4.27a)

Λt(τ, τ0, e0) =

{

1 +

(

3715

8064
+

55

96
η

)

τ−1/4 + · · ·+O(τ−3/4)

− 7065

11696
e20

(

τ

τ0

)19/24 [

1 +

(

−130000037

983719296
+

3559001

11710944
η

)

τ−1/4 +

(

4445

3456
− 185

288
η

)

τ
−1/4
0 + · · ·+O(τ−3/4)

]

}

,

(4.27b)

with the full 3PN expression given in Eq. (6.9b).
Lastly, the secular evolution of l is determined by

dl

dt
=

ξ

M
=
ξ(ξφ)

M
, (4.28)

where ξ(ξφ) is given by Eq. (3.10). As was the case for λ, this is straightforwardly integrated via

l − cl =
1

M

∫

ξ(ξφ)

dξφ/dt
dξφ. (4.29)

Evaluating the integral using the same techniques as above gives

l(ξφ)− cl = − 1

32ηξ
5/3
φ

{

1 +

(

−1325

1008
+

55

12
η

)

ξ
2/3
φ + · · ·+O(ξ2φ)

−785

272
e20

(

ξφ,0
ξφ

)19/9 [

1 +

(

117997

2215584
+

436441

79128
η

)

ξ
2/3
φ +

(

2833

1008
− 197

36
η

)

ξ
2/3
φ,0 + · · ·+O(ξ2φ)

]

}

, (4.30)

where the full 3PN expression is in Eq. (C2). A function of time l(t) analogous to Eq. (4.27) can also be derived and
is given in Eq. (C3).
In this section we have expressed the secular evolution of the intrinsic constants ξφ, et and the phase functions λ

and l. Results were expressed as functions of time or the frequency variable ξφ. These results could also have been
derived directly in terms of the radial frequency variable ξ. They can be converted to functions of ξ via substitution
of Eq. (3.9).

V. EFFECT OF OSCILLATORY TERMS IN THE PHASING

While the main goal of this work is to analytically compute the secular corrections to the waveform phasing, it is
important to also consider the relative sizes of the oscillatory contributions to the phasing. The Newtonian-order GW
polarizations in the low-et limit depend on the orbital phase φ via h+,× ∝ (cos 2φ, sin 2φ). Recall that the complete
orbital phasing is the sum of three terms,

φ = λ+ λ̃+W (et, ξ, l), (5.1)

where λ = λ̄ is the secularly growing part of the phase [Eq. (4.26)], λ̃ is the radiation-reaction induced oscillatory
contribution to λ [Eq. (4.9f)], and W (et, ξ, l) is the eccentricity-induced oscillatory piece of the phase [c.f., Eq. (A3d);

recall that we have dropped overbars on secularly varying quantities]. Notice that λ̃ andW both oscillate at multiples of
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the radial orbital period, with amplitudes that vary on the radiation-reaction timescale. Since λ̃ ∼ O(ξ5/3) ∼ O(ξ
5/3
φ )

while λ ∼ O(1/ξ
5/3
φ ), this implies that λ̃ represents a 5PN relative correction [∼ O(ξ

10/3
φ ) ∼ O(v10)] to φ. Since our

phasing is only accurate to 3PN order, we can safely ignore λ̃. The W contribution to the phasing has a leading-order
term W ∼ 2et sin l; this is potentially of order unity (for large et) and is not obviously ignorable. However, as we
argue below, this order unity contribution is oscillatory, decays with time, and is vastly dominated by the secularly
increasing contribution λ to the total phase.

To better understand its contribution to the phasing, we can explicitly evaluate the W term as a function of
frequency. Restricting for simplicity to 2PN order, W is expressed in Appendix A as a function of the mean anomaly
l and a series expansion in et:

W (l) ≈ et sin l

[

2+(10−η)ξ2/3+
(

72− 259

12
η+

1

12
η2
)

ξ4/3

]

+e2t sin 2l

[

5

4
+

(

31

4
−η
)

ξ2/3+

(

447

8
− 187

12
η+

1

12
η2
)

ξ4/3

]

+O(e3t ) +O(ξ2), (5.2)

where l = l̄ and et = ēt in the above expression. [As with λ̃, l̃ and ẽt represent relative 5PN corrections and can be
ignored.] An explicit expression in terms of the frequency variable ξφ can be obtained by substituting Eqs. (3.10),
(4.17), and (4.30) to 2PN order into (5.2); PN expanding then yields

W (ξφ) = e0

(

ξφ,0
ξφ

)19/18

sin l

[

2 +

(

7247

1008
+

161

36
η

)

ξ
2/3
φ +

(

2833

1008
− 197

36
η

)

ξ
2/3
φ,0 +

377

72
π (ξφ,0 − ξφ)

+

(

539690101

12192768
− 477299

72576
η +

30055

5184
η2
)

ξ
4/3
φ +

(

20530751

2032128
− 485773

36288
η − 31717

2592
η2
)

ξ
2/3
φ,0 ξ

2/3
φ

+

(

−28850671

12192768
+

27565

72576
η +

33811

5184
η2
)

ξ
4/3
φ,0

]

+ e20

(

ξφ,0
ξφ

)19/9

sin 2l

[

5

4
+

(

17083

4032
+

841

144
η

)

ξ
2/3
φ

+

(

14165

4032
− 985

144
η

)

ξ
2/3
φ,0 +

1885

288
π (ξφ,0 − ξφ) +

(

176530423

6096384
+

168745

72576
η +

37667

2592
η2
)

ξ
4/3
φ

+

(

48396139

4064256
− 491399

72576
η − 165677

5184
η2
)

ξ
2/3
φ,0 ξ

2/3
φ +

(

− 5966255

12192768
− 331585

36288
η +

90775

5184
η2
)

ξ
4/3
φ,0

]

. (5.3)

To estimate the magnitude of W we can inspect the O(e0) Newtonian order result, WN(f) = 2e0(f0/f)
19/18 sin l,

where we have used ξφ = πMf and ξφ0 = πMf0. Clearly, this expression has a maximum value when f = f0 and
scales linearly with e0. Section VIII below demonstrates that e0 ≈ 0.1 is the maximum eccentricity to which our
low-eccentricity expressions are valid. We can then estimate that the maximum error δφ in the orbital phasing due
to the oscillatory terms is δφ ≈ WN(e0 = 0.1, f = f0) ≈ 0.2 radians. Figure 3 shows an evaluation of the full 2PN
expression [Eq. (5.3)] for a NS/NS binary that evolves through the LIGO band with e0 = 0.1 at f0 = 10 Hz (and
choosing cl = 0). We can see that the amplitude of the periodic term decreases sharply with increasing frequency.
Changing the binary masses of the system (which does not affect the Newtonian-order expressionWN) leads to a slight
change in the amplitude; however, the qualitative behavior of the curve remains unchanged. The maximum values of
Eq. (5.3) for NS/NS, BH/BH, and NS/BH binaries with e0 = 0.1 are 0.207, 0.224, and 0.217 radians, respectively.
This corresponds to a correction to the number of GW cycles of δNcyc,W ∼ 0.2/π . 0.07. Since this effect is small
and decays rapidly, we ignore it when computing corrections to the PN approximants in the next section. However,
we note that this oscillatory contribution is comparable (for some systems) to the 2.5PN and 3PN secular eccentric
corrections that we compute (see Sec. VII and the tables presented there). We also note that when eccentricities are
large (in which case our formalism is not valid), these oscillatory terms will contribute phase errors ∼ O(1) and should
not be ignored.

VI. POST-NEWTONIAN APPROXIMANTS

For quasi-circular inspiralling binaries, the GW signal at leading PN order takes the form given in Eq. (2.3).
Neglecting corrections to the waveform amplitude that scale as O(et) and higher [cf. Eq. (A4)], our low-eccentricity
waveforms take the same (quasi-circular) form. What remains is a determination of the orbital phase φ(t). In the
quasi-circular limit (and in the adiabatic approximation—i.e., the assumption that the orbital timescale is much
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FIG. 3. (color online). Oscillatory contribution to the orbital phasing W (f) for a NS/NS binary with e0 = 0.1 at 10 Hz. The
function has a maximum amplitude of ∼ 0.2 (with little dependence on the binary masses) which decays along with the binary
eccentricity. The resulting contribution to the GW phasing is small for low eccentricity.

shorter than the radiation reaction timescale) the phase evolution is governed by the following differential equations:

dφ

dt
=
ξφ
M

=
v3

M
, (6.1a)

dv

dt
= − F(v)

dE(v)/dv
, (6.1b)

where in this section we express quantities in terms of the relative orbital velocity parameter v = ξ
1/3
φ = (πMf)1/3.

In the above F(v) is the gravitational wave luminosity (often referred to as the energy flux) and E(v) is the orbit
energy. Different approaches for solving these differential equations are referred to as different PN approximants (see
e.g., [121] and references therein, which we follow in this section).18

For eccentric orbits, the orbital phase includes the oscillatory terms in Eq. (5.1) above. However, as we have argued
in Sec. V, the oscillatory terms contribute . 0.2 radians for e0 . 0.1. Assuming this is an acceptably small error,
we can ignore these oscillatory terms. In this limit Eqs. (6.1) carry over unchanged to the case of small-eccentricity
binaries if we take φ→ 〈φ〉 = λ (recall that we are dropping overbars on secularly varying quantities). The oscillatory
effects encapsulated in W could be incorporated into the PN approximants by adding terms equal to dW/dt and
M
3v2

d2W
dt2 to the right-hand-sides of Eqs. (6.1a) and (6.1b) respectively. This will be considered in future work.

We note that the above equations imply that two initial conditions must be supplied: φ(t0) and v(t0) [or equivalently
f(t0)], along with the binary masses and the eccentricity e0 at a reference frequency f0. However, for arbitrarily ellip-
tical orbits one must specify an additional parameter—equivalent to the argument of pericenter ̟—which determines
the orientation of the ellipse that is momentarily tangent to the orbit. Towards the end of Appendix A we discuss how
a parameter like ̟ enters the waveform and how it relates to the constants cl and cλ. This parameter does not enter
our approximants for two reasons: (i) since we ignore O(et) and higher corrections to the polarization amplitudes, we
need only to evolve the phase variable φ(t) [and can ignore the other phase variable l(t)]. (ii) Furthermore, because
we ignore the oscillatory corrections to φ(t) that arise from W (l), the dependence on the initial orientation of the
ellipse (which enters via cl) drops out of our waveforms completely.
In the remainder of this section we derive the small-eccentricity extensions to the standard PN approximants to 3PN

order, starting with appropriate expressions for the orbital energy and GW luminosity. Most of these approximants
can also be derived following the procedure outlined in Sec. IVD. The approximants presented here were derived via
both approaches and crosschecked by at least two of the authors. In this section our goal is to provide a derivation
that does not require understanding a significant amount of the “context” provided by the quasi-Keplerian formalism.
The 3.5PN order circular terms were not derived here or in Sec. IVD but can be found in [121]; for completeness we
added those terms to our expressions below.

18 Note that our notation differs slightly from [121] in that we take E to be the orbital energy; [121] uses that symbol to denote the orbital
energy divided by M . This leads to different factors of M appearing in our Eqs. (6.1) and (6.5) as compared with the equations in [121].
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A. 3PN energy, energy flux, and TaylorT1

The TaylorT1 approximant is obtained by numerically solving Eqs. (6.1) without expanding the ratio in Eq. (6.1b).
To compute this (and the other approximants) we require expressions for the orbital energy and GW luminosity
(energy flux). These are given in ADM gauge in Eqs. (6.5a) and (7.4a) of [92]. Taking those expressions to O(e2t ),
expressing them in MH gauge [via Eq. (4.10)], substituting et(v) [Eq. (4.17)], and simultaneously expanding in v and
v0, yields the low-eccentricity limit of the orbital energy and flux functions (expressed explicitly as functions of v):

E(v) = −1
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. (6.3)

As it is explicitly needed to compute the TaylorT1 approximant, we also list here the derivative dE/dv:
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B. TaylorT2

The TaylorT2 approximant is obtained by series expanding the ratio in Eq. (6.1b) to the appropriate PN order.
One then analytically obtains a parametric solution for the phase [〈φ〉(v), t(v)] by integrating

d〈φ〉
dv

=
d〈φ〉
dt

dt

dv
= − v3

M

dE(v)/dv

F(v)
, (6.5a)

dt

dv
= −dE(v)/dv

F(v)
. (6.5b)

Expanding to 3PN order and O(e20), the resulting solutions are

〈φ〉 − φc = − 1
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C. TaylorT3

The TaylorT3 approximant is obtained by performing a series reversion of t(v) to obtain v(t). This is then used
to compute the phase as an explicit function of time, 〈φ〉(t) = 〈φ〉[v = v(t)]. This procedure is equivalent to the
derivation of Eqs. (4.21) and (4.27). Here we express the result in terms of the notation used in Ref. [121]. They
introduce a parameter θ which is related to our τ by θ = τ−1/8 = [η(tc− t)/(5M)]−1/8. Our low-eccentricity equations
for the time evolution of the fundamental gravitational-wave frequency F ≡ ξφ/(πM) = f and the secular piece of
the orbital phase 〈φ〉 then become:
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〈φ〉 − φc = − 1
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1562664960
+

9504671

130222080
η

)

πθ3θ20

+

(

− 7930002257

2833111572480
+

217099061

33727518720
η

)

πθ2θ30 +

(

−12410299

17418240
+

576391

1451520
η

)

πθ50 +

(

−12655793156128495

35772971311300608

+
210394537724215

751984381919232
η +

15243290714305

331231215845376
η2 − 7785179155

159860625408
η3
)

θ4θ20 −
15669863

6511104000
π2θ3θ30

+

(

− 133243396873109855

1151449070712127488
+

1304926916474123

4569242344095744
η − 1028388931741

18131914063872
η2 +

53281803971

1942705078272
η3
)

θ2θ40

+

[

1171304704862747874258197

262931339138059468800000
− 1290927929

1266048000
γE − 9863961577

20835532800
π2 +

(

−11424851904553639

699373828177920
+

20654201

30867456
π2

)

η

+
6472252465855931

9033578613964800
η2 − 3935072194303

64525561528320
η3 − 914957

118692000
ln 2− 1121397129

1125376000
ln 3− 1290927929

1266048000
ln θ

]

θ6

+

[

−55579234653596057

23361421521715200
+

15943

40320
γE +

3968617

16588800
π2 +

(

21736949245913

1685528248320
− 12751

24576
π2

)

η − 1742350567

4013162496
η2

+
4790953

143327232
η3 +

8453

7560
ln 2− 26001

35840
ln 3 +

15943

40320
ln θ0

]

θ60

})

. (6.9b)

In the above θ0 is the dimensionless reference time defined by et(θ0) = e0 (analogous to τ0 in Sec. IVD).
The TaylorT3 approximant has been shown to behave very differently from the other approximants. It displays a

non-monotonic frequency evolution (the orbital frequency starts to decrease before the ISCO is reached; see Fig. 1 of
[121]). It also has worse overlaps with an EOBNR model in comparison to the other approximants [121]. We have
performed our own comparison by examining the frequency evolution as a function of time for TaylorT1, TaylorT3,
and TaylorT4 (defined in the next section). While all three agree well at early times (large orbital separations), as the
ISCO is approached TaylorT3 deviates substantially from the other two approximants (which remain close to each
other). In fact TaylorT3 diverges before the Schwarzschild ISCO frequency is reached. This behavior remains when
the comparison is performed by truncating the series at different PN orders; it is present for small and large mass
ratios. In contrast, TaylorT1 and TaylorT4 remain relatively close to each other for all PN orders and are finite at the
ISCO. We also observe the non-monotonic behavior reported in [121]: for some PN orders TaylorT3 reaches a peak
frequency and decreases before the ISCO. TaylorT1 and TaylorT4 display a monotonically increasing frequency. For
these reasonswe recommend that the TaylorT3 approximant should not be used in practical applications.
We include it here only for completeness.

D. TaylorT4

In the TaylorT4 approximant the right-hand-side of Eq. (6.1b) is series expanded; the resulting system (6.1) is then
solved numerically. Our low eccentricity equation for dv/dt is equivalent to substituting ξφ → v3 and ξφ,0 → v30 in
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Eq. (4.18):

dv

dt
=

32

5

η

M
v9
(

1−
(

743

336
+

11

4
η

)

v2 + 4πv3 +

(

34103

18144
+

13661

2016
η +

59

18
η2
)

v4 −
(

4159

672
+

189

8
η

)

πv5

+

[

16447322263

139708800
− 1712

105
γE +

16

3
π2 +

(

−56198689

217728
+

451

48
π2

)

η +
541

896
η2 − 5605

2592
η3 − 856

105
ln(16v2)

]

v6

−
(

4415

4032
− 358675

6048
η − 91495

1512
η2
)

πv7+
157

24
e20

(v0
v

)19/3
{

1−
(

41539

22608
+

5413

5652
η

)

v2 +

(

2833

1008
− 197

36
η

)

v20 +
24871

11304
πv3

+
377

72
πv30 +

(

−122085949

239283072
+

2133953

712152
η − 36497

101736
η2
)

v4 +

(

−117679987

22788864
+

10486813

1424304
η +

1066361

203472
η2
)

v2v20

+

(

−1193251

3048192
− 66317

9072
η +

18155

1296
η2
)

v40 +

(

215395661

28486080
− 8416733

508680
η

)

πv5 +

(

10065649

1627776
− 4899587

406944
η

)

πv3v20

−
(

15660203

1627776
+

2040701

406944
η

)

πv2v30 +

(

764881

90720
− 949457

22680
η

)

πv50 +

[

9765600648106487

66329267558400
− 2491067

98910
γE

− 10610699

1627776
π2 +

(

−3409129936301

8614190592
+

2883161

180864
π2

)

η +
1598264033

102549888
η2 − 2773315

10987488
η3 +

5257873

296730
ln 2− 1534059

87920
ln 3

−2491067

197820
ln(16v2)

]

v6 +

(

−345869493517

241197336576
+

96596798141

8614190592
η − 9444185

542592
η2 +

7189909

3662496
η3
)

v4v20 +
9376367

813888
π2v3v30

+

(

49566453289

68913524736
+

237857384155

17228381184
η − 1281029377

68366592
η2 − 98273015

7324992
η3
)

v2v40+

[

26531900578691

168991764480
− 3317

126
γE +

122833

10368
π2

+

(

9155185261

548674560
− 3977

1152
π2

)

η − 5732473

1306368
η2 − 3090307

139968
η3 +

87419

1890
ln 2− 26001

560
ln 3− 3317

252
ln(16v20)

]

v60

})

. (6.10)

E. TaylorF2 (SPA)

Unlike the previous time-domain approximants, TaylorF2 is a frequency-domain approximant consisting of the
phase of the Fourier transform of the GW signal evaluated in the stationary-phase approximation (SPA). Working at
0PN order and O(e0t ) in the waveform amplitude significantly simplifies the calculation as one can begin with Eqs. (2.3)
(which contain no harmonics beyond the fundamental GW frequency). Accounting for the antenna patterns F+,× of
the detector allows us to write the GW signal in the form

h = F+h+ + F×h×, (6.11a)

= A(t) cosΦ(t) = A(t) cos[2φ(t)− 2Φ0], (6.11b)

where

A(t) = −2ηM

D
[v(t)]2

[

(1 + C2)2F 2
+ + 4C2F 2

×

]1/2
and (6.12)

Φ0 =
1

2
arctan

[

2F×C

F+(1 + C2)

]

. (6.13)

(Recall that C = cos ι with ι the inclination angle.)
To compute the Fourier transform

h̃(f) ≡
∫ ∞

−∞

h(t)e2πift dt (6.14)

via the SPA, we first use cosΦ = (eiΦ + e−iΦ)/2 to split h̃(f) into two integrals,

h̃(f) =
1

2

∫ +∞

−∞

A(t)[eifϕ+(t) + eifϕ−
(t)] dt , (6.15)
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where ϕ± = 2πt±Φ(t)/f . Here f represents the observed GW frequency (which for general orbits is not the same as
twice the azimuthal orbital frequency [i.e., in this section we initially assume f 6= ξφ/(πM)]. The method of stationary
phase can then be used to compute integrals of the form [122]

I(f) =

∫ b

a

A(t)eifϕ(t) dt . (6.16)

For large values of the parameter f , the integrand oscillates rapidly and causes large cancellations when integrated.
[Integration by parts shows that this integral scales like I(f) = O(1/f) if ϕ̇ 6= 0.]

The SPA relies on the fact that the integral (6.15) is dominated by contributions near times when the ϕ± are
stationary (ϕ̇± = 0). This is equivalent to the statement

λ̇+ Ẇ = ∓πf . (6.17)

Because λ̇ > 0, in the quasi-circular limit (Ẇ = 0) it can be shown that ϕ+ has no real stationary points for

positive f , while ϕ− has a single stationary point at t = t0 given by 2πf = dΦ/dt(t0). When Ẇ 6= 0, the condition

ϕ̇+ = 0 is satisfied for f > 0 provided that Ẇ < −λ̇. A numerical investigation indicates that this is safely satisfied
for low-eccentricity waveforms (et . 0.3), but not for large eccentricity ones. Because the ϕ+ contribution to the
integral has no stationary points in the low-eccentricity limit, the rapidly varying phase results in a near perfect
cancellation when that part of the integral is evaluated. For this reason the first integral in Eq. (6.15) can be ignored.
However, if ϕ(t) is roughly constant over some interval (as is the case for ϕ−), then there will be less cancellation,
and most of the value of the integral will come from the region near t = t0 where ϕ̇(t0) = 0. Using this fact, the
second integral in (6.15) can be evaluated by Taylor expanding the phase function ϕ− about its stationary point:
ϕ−(t) ≈ ϕ−(t0) +

1
2 ϕ̈−(t0)(t− t0)

2 + · · · .
Note that while ϕ− has a single stationary point t0 in the quasicircular case, when eccentricity oscillations are

included ϕ− acquires multiple stationary points (even for low values of et). Because of this, eccentric waveforms
cannot be strictly treated in the SPA approximation. However, when eccentricity is small, the effect of the oscillatory
terms encapsulated in W is to add a rapid but small oscillation to ϕ−. These oscillations are on a much shorter
timescale than the evolution of ϕ− near the stationary point, so they are essentially averaged away when the integral
is performed. The quadratic order Taylor expansion of ϕ− given above remains an accurate approximation for the
small eccentricities we consider here. We will explore these issues in more detail in a future work; at the level of
accuracy suitable for our present purposes we set W → 0 and proceed as in the quasicircular case.

Substituting the above expansion for ϕ−, the Fourier transform then becomes19

h̃(f) ≈ 1

2
A(t0)e

ifϕ
−
(t0)

∫ +∞

−∞

e
if
2
ϕ̈

−
(t0)(t−t0)

2

dt , (6.18)

where fϕ−(t0) = 2πft0−Φ(t0) and fϕ̈−(t0) = −Φ̈(t0). Since the orbital frequency is monotonically increasing (when

ignoring orbital timescale oscillations due to W ), Φ̈ > 0 and the integral is convergent. The integral can be evaluated
using

∫ +∞

−∞

e−au2

du =
√

π/a for a > 0 . (6.19)

The Fourier transform then becomes

h̃(f) ≈ A(t0(f))

2

√

2π

Φ̈(t0(f))
ei[2πft0(f)−Φ(t0(f))−π/4] , (6.20)

where we have used i−1/2 = e−iπ/4. The function t0(f) is determined by the stationarity condition 2πf = Φ̇(t0).
20

Using

Φ̈[t0(f)] = 2φ̈ ≈ 2λ̈ = 2
ξ̇φ
M

≈ 192

5

η

M2
(πMf)11/3, (6.21)

19 Note also that the function h(t) must additionally satisfy the following conditions [123]: i) its amplitude must vary slowly compared to
the phase, Ȧ/A ≪ Φ̇, so that the amplitude can be approximated as nearly constant near the stationary point, and ii) the phase must
satisfy Φ̈ ≪ Φ̇2, which guarantees that the phase does not vary too quickly and that a real stationary point exists. These conditions
are satisfied provided the eccentricity is small and the binary is not too close to its last stable orbit. Detailed discussion of the validity
of the SPA and corrections to it can be found in [124, 125].

20 If the phase has more than one stationary points, then this procedure can be repeated at each point and the resulting integrals summed.
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A[t0(f)] = −2
ηM

D
(πMf)2/3

[

(1 + C2)2F 2
+ + 4C2F 2

×

]1/2
, (6.22)

we can write the SPA as

h̃(f) = AeiΨ, (6.23)

where

A = −M
√

5π

96

(

M

D

)√
η(πMf)−7/6

[

(1 + C2)2F 2
+ + 4C2F 2

×

]1/2
, (6.24)

Ψ = 2πft0(f)− 2φ[t(f)] + 2Φ0 −
π

4
, (6.25)

and φ ≈ λ in the above equation (i.e., we are ignoring all oscillatory terms). Using Eqs. (6.7) and (6.6) for t0 and φ
and simplifying, we arrive at our final result for the SPA phase:

Ψ = ψ0 + 2fπtc +
3

128

1

ηv5

(

1 +

(

3715

756
+

55

9
η

)

v2 − 16πv3 +

(

15293365

508032
+

27145

504
η +

3085

72
η2
)

v4

+

{

[

1 + ln(v3)
]

(

38645

756
− 65

9
η

)}

πv5 +

[

11583231236531

4694215680
− 6848

21
γE − 640

3
π2 +

(

−15737765635

3048192

+
2255

12
π2

)

η +
76055

1728
η2 − 127825

1296
η3 − 3424

21
ln(16v2)

]

v6 +

(

77096675

254016
+

378515

1512
η − 74045

756
η2
)

πv7

− 2355

1462
e20

(v0
v

)19/3
{

1 +

(

299076223

81976608
+

18766963

2927736
η

)

v2 +

(

2833

1008
− 197

36
η

)

v20 −
2819123

282600
πv3 +

377

72
πv30

+

(

16237683263

3330429696
+

24133060753

971375328
η +

1562608261

69383952
η2
)

v4 +

(

847282939759

82632420864
− 718901219

368894736
η − 3697091711

105398496
η2
)

v2v20

+

(

−1193251

3048192
− 66317

9072
η +

18155

1296
η2
)

v40 −
(

2831492681

118395270
+

11552066831

270617760
η

)

πv5 +

(

−7986575459

284860800

+
555367231

10173600
η

)

πv3v20 +

(

112751736071

5902315776
+

7075145051

210796992
η

)

πv2v30 +

(

764881

90720
− 949457

22680
η

)

πv50

+

[

−43603153867072577087

132658535116800000
+

536803271

19782000
γE +

15722503703

325555200
π2 +

(

299172861614477

689135247360
− 15075413

1446912
π2

)

η

+
3455209264991

41019955200
η2 +

50612671711

878999040
η3 +

3843505163

59346000
ln 2− 1121397129

17584000
ln 3 +

536803271

39564000
ln(16v2)

]

v6

+

(

46001356684079

3357073133568
+

253471410141755

5874877983744
η − 1693852244423

23313007872
η2 − 307833827417

2497822272
η3
)

v4v20 −
1062809371

20347200
π2v3v30

+

(

−356873002170973

249880440692736
− 260399751935005

8924301453312
η +

150484695827

35413894656
η2 +

340714213265

3794345856
η3
)

v2v40 +

[

26531900578691

168991764480

− 3317

126
γE +

122833

10368
π2 +

(

9155185261

548674560
− 3977

1152
π2

)

η − 5732473

1306368
η2 − 3090307

139968
η3

+
87419

1890
ln 2− 26001

560
ln 3− 3317

252
ln(16v20)

]

v60

})

, (6.26)

where the constant ψ0 = 2Φ0 − 2φc − π/4. Recall that tc and φc represent the time and phase of coalescence. Along
with the other PN approximants in this section, Eq. (6.26) represents one of our main results.

VII. POST-NEWTONIAN CONTRIBUTIONS TO THE NUMBER OF WAVE CYCLES

With the above results in hand we can now examine the significance of the various PN correction terms to the
secular phasing. There are various ways of quantifying this, and here we choose to examine three easily computable
quantities, applying them to fiducial sources for LIGO and eLISA.
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The first quantity we compute is the number of GW cycles in the time-domain waveform as the signal sweeps from
an initial frequency f1 to a final frequency f2:

∆Ncyc =
1

π
[λ(f2)− λ(f1)] , (7.1)

where λ = 〈φ〉 is given by Eqs. (6.6). Notice that this is simply twice the number of (azimuthal) orbits. The initial
frequency f1 is taken to be 10 Hz for LIGO (an estimate of the seismic cutoff for the final design sensitivity) and one
year or one month before the ISCO frequency for eLISA sources. The latter is computed via

f1(δt) = fisco(1 + δt/τrr,isco)
−3/8, (7.2)

where δt is the time before the ISCO frequency and τrr,isco = (5/256)η−1M−5/3(πfisco)
−8/3. (This 0PN order formula

for the initial frequency assumes circular orbits and makes a few percent error in the initial frequency.) The reference
frequency f0 entering all the PN approximants is set equal to f1. The termination frequency f2 is taken to be 1000
Hz for NS/NS systems (in between the tidal disruption and last-stable-orbit frequencies) and the Schwarzschild ISCO
fisco = (63/2πM)−1 for all other sources. These choices are made for simplicity and to conform with standard practice
for comparing the sizes of different PN terms (see e.g., [126, 127]). The results are shown in Tables III, IV, and V
for LIGO and eLISA sources, where each row shows the contribution to ∆Ncyc from each PN order. The eccentric
contributions are for an initial eccentricity e0 = 0.1; those numbers can be scaled to other values by multiplying by
(e0/0.1)

2. In computing these numbers we made use of the following constants:21

1 km = 3.335640952× 10−6 s , (7.3)

1 yr = 3.1557600× 107 s , (7.4)

1M⊙ = 4.925491025× 10−6 s , (7.5)

= 1.4766225061 km . (7.6)

The quantity ∆Ncyc above represents the simplest approach for assessing the importance of PN phase corrections.
Alternative (but more computationally difficult) methods include the computation of waveform overlaps, fitting fac-
tors, or systematic parameter estimation errors (the latter being of greatest observational significance). We leave
analysis via these methods to future work. Instead, we investigate two additional methods that are comparable in
simplicity to Eq. (7.1).

The first is the difference ∆Ncyc,Ψ in the number of accumulated GW cycles computed via the SPA phase Ψ of

the waveform’s Fourier transform h̃(f). This quantity provides a better representation of the importance of PN
corrections than ∆Ncyc because it is Ψ which directly enters the inner product between a GW signal and a template

waveform. For example, consider a “true” GW signal hT whose Fourier transform has the form h̃T = A0e
i(Ψ0+δΨ).

Suppose an approximate search template hAP has the Fourier transform h̃AP = A0e
iΨ0 . The template differs from

the true signal by an unmodeled PN phase correction δΨ. A straightforward calculation shows that the standard
noise-weighted inner product between hT and hAP is

(hAP|hT) = 2

∫ ∞

0

h̃APh̃
∗
T + h̃∗APh̃T
Sn(f)

df = 4

∫ ∞

0

|A0|2
Sn(f)

cos δΨ df , (7.7)

where Sn(f) is the detector noise spectral density. The above expression indicates that a phase error δΨ ∼ π rad will
cause a near cancellation in the inner-product integral, leading to a significant loss in template overlap. It is thus
errors in the SPA phase (not twice the orbital phase 2φ) that more directly impacts GW data analysis. One approach
to quantifying these SPA phase errors that is analogous to Eq. (7.1) is to define the quantity

∆Ncyc,Ψ =
1

2π

[

Ψ(f2)−Ψ(f1) + (f1 − f2)
dΨ

df1

]

, (7.8)

where Ψ is given by Eq. (6.26). The above equation is constructed by requiring that constants ψ0 and tc are chosen

such that ∆Ncyc,Ψ and
d∆Ncyc,Ψ

df vanish at f = f1.
22 Any phase contributions from PN corrections ∆Ncyc,Ψ & 1

2 cycle

will negatively impact data analysis. These phase errors are listed in the Tables along with ∆Ncyc.

21 The kilometer-second relation comes from the definition c = 1 = 299 792 458 m/s [128]. The year is taken as the Julian year which is
precisely 365.25 days, with one day = 86400 s [129]. The relations involving the solar mass come from the value GM⊙ = (1.32712442099×
1020 ± 1 × 1010)m3/s2 in Barycentric Coordinate Time (TCB) [129]. This is the value used by the LIGO Algorithms Library (LAL).
Using Barycentric Dynamical Time (TDB) would cause a difference in the 7th decimal place of Eq. (7.5).

22 The use of this particular metric for waveform errors is less common in the literature. A version of it was brought to our attention by
É. Flanagan [19, 130].
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In Ref. [124] an alternative measure called the number of useful cycles ∆Nuseful was introduced.
23 This effectively

weights the number of cycles according to their contributions to the signal-to-noise ratio (SNR). To define this quantity
we first note that Eq. (7.1) can be expressed in the form

∆Ncyc =

∫ f2

f1

dNcyc

df
df , (7.9)

where

dNcyc

df
=

1

π

dλ

df
=

1

π

dλ/dt

df/dt
=

f

df/dt
. (7.10)

The SNR ρ is defined via

ρ2 = (h|h) = 4

∫ ∞

0

|h̃(f)|2
Sn(f)

df. (7.11)

This can be expressed in terms of dNcyc/df using the fact that |h̃(f)| = A = A[t0(f)]/(2
√

df/dt) [see Eq. (6.20) and
associated discussion]:

ρ2 =

∫ ∞

0

(

A2

fSn

)

dNcyc

df
df . (7.12)

If we define the weight function

W(f) =
A(f)2

fSn(f)
, (7.13)

we see that the SNR ρ is simply
√

∆Ncyc appropriately weighted by W(f). This leads us to define the number of
useful cycles according to

∆Nuseful =

(

∫ f2

f1

W dNcyc

df
df

)(

∫ f2

f1

W df

f

)−1

. (7.14)

While our notation and method of presentation differs from Sec. IIB of [124], our Eq. (7.14) for ∆Nuseful is completely
equivalent to their Eq. (2.24). Here we tried to make clear the connection between ∆Ncyc and ∆Nuseful. Note that if
the weight function W → 1, then ∆Nuseful → ∆Ncyc/[ln(f2/Hz) − ln(f1/Hz)]. However, the definition in Eq. (7.14)
is problematic in that it allows the number of useful cycles to vastly exceed the number of (actual) cycles. This is
especially apparent for EMRI sources. Considering this, we suggest that a more appropriate definition of the useful
cycles incorporates the following normalization:

∆Nnorm
useful =

(

∫ f2

f1

W dNcyc

df
df

)(

∫ f2

f1

W df

f

)−1

[ln(f2/Hz)− ln(f1/Hz)] . (7.15)

This normalized useful cycles then precisely reduces to ∆Ncyc when the weight function W → 1. Note that ∆Nnorm
useful

is a factor ∼ 3–6 larger than ∆Nuseful (for LIGO band binaries).
Along with the previous measures, we also show ∆Nnorm

useful in Tables III, IV, and V. In evaluating Eq. (7.15), f1,2
are chosen as before, A = βf2/3 [the value of β can be inferred from Eq. (6.22) but does not enter ∆Nnorm

useful], and
the detector spectral density curves come from Eq. (4.7) of [133] for LIGO and Eq. (1) of [134] for eLISA.24 From
examining these tables we can make the following observations:

(a) Following standard expectations, the 0PN eccentric correction is always negative. Eccentricity therefore reduces
the overall number of cycles and causes binaries to merge faster.

23 Shortly before submitting this paper we learned of an additional measure called the effective cycles of phase [131]. This is equivalent
to the waveform distinguishability criterion of [132] and is closely related to ∆Nuseful.

24 Additional information on the design sensitivity curves for Advanced LIGO can be found in Ref. [135]. For eLISA we consider only the
instrumental noise and do not include the galactic white dwarf foreground. We choose the configuration in [134] corresponding to noise
model N2A1 (optimistic acceleration noise and 1 million km arm-lengths). This corresponds to the blue-dashed curve in the right-panel
of their Figure 1. Our choices of one month and one year for the SMBH and EMRI sources (respectively) is motivated by the timescale
for which the characteristic amplitude of those sources will be above the eLISA noise (see e.g., Figure 13 of [136]).
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TABLE III. Post-Newtonian contributions to the number of gravitational wave cycles ∆Ncyc, ∆Ncyc,Ψ, and ∆Nnorm
useful for compact

object binaries in the LIGO band. The first column lists the post-Newtonian order and the type of term: “(circ)” refers to
the quasi-circular contributions at that PN order, “(ecc)” refers to the leading-order eccentric PN terms that are computed
here. The initial frequency f1 is the seismic cutoff for Advanced LIGO (10 Hz). The final frequency f2 is the ISCO frequency
for systems involving BHs and 1000 Hz for NS/NS binaries. The numbers in the “(ecc)” rows assume an initial eccentricity
e0 = 0.1 at f0 = f1. These values can be scaled to other values of e0 by multiplying by (e0/0.1)

2. All numbers are rounded to
at least three significant digits.

1.4M⊙ + 1.4M⊙, f2 = 1000 Hz 1.4M⊙ + 10M⊙, f2 = 386 Hz 10M⊙ + 10M⊙, f2 = 220 Hz
PN order ∆Ncyc ∆Ncyc,Ψ ∆Nnorm

useful ∆Ncyc ∆Ncyc,Ψ ∆Nnorm
useful ∆Ncyc ∆Ncyc,Ψ ∆Nnorm

useful

0PN(circ) 16031 986372 1821 3577 82853 492 602 7715 101
0PN(ecc) −463 −36137 −6.37 −103 −3052 −1.77 −17.5 −286 −0.385
1PN(circ) 439 21743 125 213 4003 69.0 59.3 622 21.8
1PN(ecc) −15.8 −1193 −0.332 −9.00 −258 −0.221 −2.21 −35.0 −0.0743
1.5PN(circ) −208 −8520 −94.8 −181 −2877 −89.3 −51.4 −463 −27.4
1.5PN(ecc) 1.67 103 0.113 1.52 35.2 0.128 0.450 5.75 0.0482
2PN(circ) 9.54 294 6.70 9.79 123 7.08 4.06 30.1 3.04
2PN(ecc) −0.215 −15.4 −0.00817 −0.285 −7.77 −0.0118 −0.112 −1.67 −0.00669
2.5PN(circ) −10.6 −218 −10.6 −20.0 −186 −20.0 −7.14 −41.4 −7.14
2.5PN(ecc) 0.0443 2.61 0.00473 0.106 2.34 0.0130 0.0442 0.539 0.00725
3PN(circ) 2.02 18.2 2.80 2.30 9.14 3.55 2.18 8.29 2.98
3PN(ecc) 0.00200 0.119 −0.000238 0.0173 0.412 −0.0000672 0.00508 0.0719 −0.000724
3.5PN(circ) −0.662 −4.39 −0.977 −1.82 −7.65 −2.79 −0.818 −2.56 −1.24
Total 15785 962445 1843 3488 80637 458 589 7552 92.6

(b) For all cases examined, the circular PN corrections are non-negligible (even at the highest PN orders known).
This suggests the possibility of systematic parameter biases if only 3.5PN order circular templates are used. This
issue was examined in more detail in [11].25

(c) For LIGO band binaries, the importance of the various eccentric PN corrections depends on which measure one
uses. ∆Ncyc becomes ≪ 1 at the level of the 2.5PN eccentric terms, while ∆Ncyc,Ψ is not similarly small until
3PN order is reached. The same conclusion holds for SMBH binaries. However, for LIGO band binaries ∆Nnorm

useful
becomes clearly negligible for 2PN eccentric terms, while for SMBH binaries that measure is clearly very small
even for the 0PN order eccentric term. This does not suggest that small initial eccentricities in SMBH binaries
are undetectable. Rather, this is an artifact of the several order-of-magnitude difference between the minimum of
the eLISA sensitivity curve and the value of the sensitivity at f1. In other words, most of the “useful” cycles are
accumulated near the minimum of the noise curve; the binary eccentricity has been significantly reduced before
those frequencies are reached. But this does not mean that a strong SNR source would not have observable
eccentric effects. Because it does not account for the overall strength of the signal, the number of cycles (even
when weighted by the detector response as in ∆Nnorm

useful) is an imperfect measure of the detectability of a particular
PN effect. The various δN provide an indication that an effect is important when δN & O(1); but ambiguity can
be introduced when the different δN differ significantly. Parameter estimation errors from neglecting a PN effect
provide a more effective measure (although with some increase in computational complexity) [11].

(d) For comparable mass binaries and for eccentricities e0 . 0.1, the eccentric PN terms indicate convergence in the
sense that higher-order eccentric PN corrections are smaller than lower-order ones. This suggests that 3PN order
eccentric terms are sufficient to treat low-eccentricity, comparable mass systems.

(e) For EMRI systems, it is clear that the PN series has not converged (as is well known). This holds for both the
circular and eccentric terms for all the measures indicated. We also note that the tail terms are especially large
for EMRI systems.

(f) The normalized useful cycles for EMRIs is often comparable to (and in a few cases larger than) the number of
cycles for a given PN term. This is likely due to the fact that EMRI systems accumulate many cycles even in
regions of frequency space far from the minimum of the detector noise curve. (In effect, all the cycles are useful
for these systems). We note that if we had used the standard definition [Eq. (7.14)], ∆Nuseful would far exceed
∆Ncyc for the two EMRI systems involving a 106 M⊙ SMBH.

25 See also [137] for a recent attempt to address the issue of unknown PN corrections by fitting higher order terms in the orbital energy
and energy flux to EOBNR calculations.
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TABLE IV. Same format as Table III, except listing SMBH sources for eLISA. Here f2 is the Schwarzschild ISCO GW frequency
and f1 is the GW frequency of the binary one month before the ISCO.

106M⊙ + 106M⊙ 105M⊙ + 106M⊙ 105M⊙ + 105M⊙

f1 = 0.000115Hz, f2 = 0.00220Hz f1 = 0.000252Hz, f2 = 0.00400Hz f1 = 0.000483Hz, f2 = 0.0220Hz
PN order ∆Ncyc ∆Ncyc,Ψ ∆Nnorm

useful ∆Ncyc ∆Ncyc,Ψ ∆Nnorm
useful ∆Ncyc ∆Ncyc,Ψ ∆Nnorm

useful

0PN(circ) 479 5303 27.9 1051 9461 82.9 2030 55788 120
0PN(ecc) −13.9 −197 −0.0128 −30.6 −353 −0.0632 −58.7 −2052 −0.104
1PN(circ) 51.4 467 10.8 107 793 26.5 126 2796 26.5
1PN(ecc) −1.93 −26.4 −0.00498 −4.82 −54.0 −0.0212 −4.58 −155 −0.0177
1.5PN(circ) −46.2 −363 −17.4 −120 −778 −50.2 −88.1 −1648 −33.6
1.5PN(ecc) 0.411 4.53 0.00662 1.09 9.78 0.0300 0.731 20.1 0.0144
2PN(circ) 3.78 24.6 2.40 7.77 42.1 5.17 5.79 85.1 3.74
2PN(ecc) −0.107 −1.38 −0.000948 −0.271 −2.89 −0.00313 −0.142 −4.54 −0.00153
2.5PN(circ) −6.83 −35.2 −6.83 −19.8 −86.6 −19.8 −8.82 −94.0 −8.82
2.5PN(ecc) 0.0441 0.465 0.00190 0.138 1.18 0.00768 0.0443 1.16 0.00202
3PN(circ) 2.14 7.44 3.54 2.18 5.27 4.14 2.37 14.0 3.68
3PN(ecc) 0.00542 0.0665 −0.000713 0.0348 0.328 −0.00150 0.00360 0.106 −0.00468
3.5PN(circ) −0.807 −2.34 −1.60 −2.14 −5.56 −4.01 −0.864 −3.95 −1.52
Total 467 5181 18.8 991 9032 44.7 2004 54747 110

TABLE V. Same as Table IV, except listing EMRI sources for eLISA and with the initial frequency 1 year before ISCO.

1M⊙ + 106M⊙ 10M⊙ + 105M⊙ 10M⊙ + 106M⊙

f1 = 0.00404Hz, f2 = 0.00440Hz f1 = 0.00551Hz, f2 = 0.0440Hz f1 = 0.00274Hz, f2 = 0.00440Hz
PN order ∆Ncyc ∆Ncyc,Ψ ∆Nnorm

useful ∆Ncyc ∆Ncyc,Ψ ∆Nnorm
useful ∆Ncyc ∆Ncyc,Ψ ∆Nnorm

useful

0PN(circ) 132844 5920 132474 270628 1116876 226651 105270 33493 94979
0PN(ecc) −7975 −366 −7925 −8060 −42797 −5766 −4637 −1694 −3669
1PN(circ) 47573 2100 47494 37604 131181 33805 32596 9860 30660
1PN(ecc) −6867 −314 −6827 −2001 −10344 −1461 −3223 −1154 −2604
1.5PN(circ) −108805 −4781 −108684 −56117 −175279 −52344 −69528 −20481 −66760
1.5PN(ecc) 1257 51.8 1265 568 2289 484 1045 289 1042
2PN(circ) 10491 459 10485 3662 10040 3541 6265 1796 6139
2PN(ecc) −1875 −85.0 −1865 −167 −826 −126 −731 −253 −611
2.5PN(circ) −50686 −2206 −50686 −12442 −29361 −12442 −28341 −7899 −28341
2.5PN(ecc) 974 41.1 977 114 443 98.6 574 162 566
3PN(circ) 4082 175 4090 251 −78.3 306 1839 460 1973
3PN(ecc) 1131 47.7 1136 46.6 198 38.8 534 154 517
3.5PN(circ) −10838 −467 −10850 −1481 −2464 −1565 −5345 −1406 −5561
Total 11308 576 11083 232605 999878 191219 36317 13326 28332

VIII. COMPARISON WITH LARGE-ECCENTRICITY FORMULAS

Since the primary results of this work are analytical expressions for the PN approximants in the low-eccentricity
limit, it is helpful to determine the range of eccentricities for which these expressions are valid. To do this we compare
our O(e20) analytic expression for the orbital phase 〈φ(f)〉 = λ(f) [Eq. (4.26) or (6.6)] against a numerical solution
that is valid for arbitrary e0 < 1. (We neglect oscillatory pieces of the phasing which were investigated in Sec. IVA.)
For simplicity (and since we only wish to test the low-eccentricity approximation) we perform the comparison using
only 2PN order accurate expressions.
The numerical phase evolution for the secular phasing as a function of frequency is determined by the following

system of ODEs:

dλ

dξφ
=

dλ/dt

dξφ/dt
=

1

M

ξφ
dξφ/dt

=
5

η
ξ
−8/3
φ

(

ΛN + Λ1PN + Λ1.5PN + Λ2PN
)

, (8.1a)

det
dξφ

=
det/dt

dξφ/dt
=

et
3ξφ

(

Et
N + Et

1PN + Et
1.5PN + Et

2PN
)

, (8.1b)

where the detailed expressions on the right-hand-side are given in App. D. To derive Eqs. (8.1), first Eq. (3.9) was

differentiated with respect to time to obtain dξφ/dt as a function of ξ, et, ξ̇, and ėt. Equations (B1) (see also [17])
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FIG. 4. (color online). Difference in the number of gravitational wave cycles between a numerical evolution of λ (valid for any
et) and the analytical formula (valid for small et); see Eq. (8.2). Different binaries are labeled according to their masses (in
solar mass units). We show three groups of sources that correspond to those studied in Tables III, IV, and V (using the same
frequency ranges discussed there). LIGO-band sources are shown in blue; SMBH binaries in red; EMRIs in black. δNgw ∼ 1
roughly represents where the phase error becomes significant and our approximation breaks down.

were then substituted for ξ̇ and ėt. Lastly, ξ was replaced with ξφ via Eq. (3.10) and the result was PN expanded in
ξφ.
Using the substitutions ξφ → (πMf) and ξφ,0 → (πMf0), we numerically integrated Eqs. (8.1) over a frequency

interval f ∈ (f1, f2) for various fiducial LIGO and eLISA sources, using λ(f1) = 0 as our initial condition and setting
f0 = f1. (Appendix B discusses how we approximated the tail terms.) We then calculated the difference in the
number of in-band GW cycles between our numerical solution λnum and the analytical formula λanl in Eq. (6.6),26

δNgw =
1

π
[λnum(f2)− λanl(f2)] . (8.2)

The results are plotted in Figure 4 for the same binary systems and frequency ranges considered in the previous
section. Using the criterion that phase errors should satisfy δNgw . 1, the plot indicates that the small eccentricity
approximation is valid if e0 . 0.06–0.15 for comparable mass systems and e0 . 0.005–0.01 for EMRI systems.

In addition to the 2PN order comparison, we have also performed the comparison using only 0PN, 1PN, and 1.5PN
accurate expressions (in both the analytical and numerical parts). The resulting phase errors δNgw show the expected
convergence behavior for PN series as the PN order is increased. For the systems investigated above, the fractional
error between the 2PN and 1.5PN calculation of δNgw at the value where the 2PN δNgw(e0) ≈ 1 varies from ∼ 1%
(comparable mass systems) to ∼ 10% (EMRI systems). This gives us confidence that including 3PN corrections (for
which the evaluation of the tail terms becomes difficult) will not significantly change our assessment of the range of
validity in e0 for our low-eccentricity formulas.

IX. CONCLUSIONS AND DISCUSSION

Our main objective has been to reduce the complexity of fully eccentric waveforms to a level comparable to that
of the standard circular PN approximants. This is achieved by working at O(e20) in the secular GW phasing. The
resulting low-eccentricity PN approximants are found in Sec. VI.27 We have clearly illustrated how these results follow
from a more general treatment, starting with fully eccentric formulas for the GW amplitude and phase (Sec. III and
App. A). We provided enough detail for the reader to generate arbitrarily eccentric waveforms including all effects
in the quasi-Keplerian formalism [15, 17]. We have also reexamined previous arguments [15] concerning the realm of
validity of the quasi-Keplerian formalism and argue that it should be extendable to frequencies comparable to (but

26 The constant φc = cλ was chosen to enforce λ(f1) = 0.
27 The formulas in Sec. VI are available as a Mathematica notebook [138].
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less than) circular waveforms, provided the eccentricity is small (Sec. IIID). While all of our results are expressed in
terms of the eccentricity variable et and the radial or azimuthal dimensionless frequencies ξ or ξφ, we show in App. E
how to replace et in favor of the gauge invariant periastron advance constant k.

Although we have focused on computing the secular contributions to the GW phasing via the various PN approx-
imants, our work also contains the necessary formulas to fully describe both secular and oscillatory contributions to
the orbit and waveform in terms of analytic functions of time or frequency [working to O(e20); Sec. IVD and App. C].
Using these results we have evaluated the relative importance of periodic contributions to the phasing arising from
both (i) Newtonian orbital effects and (ii) perturbations from the radiation reaction force, with the latter being neg-
ligible (see Secs. IVA and V). The oscillatory terms in (i) do not exceed 0.07 GW cycles for e0 = 0.1 at 10 Hz. While
these oscillatory terms are small, they are comparable to the 2.5PN secular eccentric corrections to the phasing that
we compute here. It is not entirely clear that these oscillatory terms are completely negligible and their effect on
parameter estimation will be investigated in future work. [For large eccentricities e0 ∼ O(1), oscillatory terms will
contribute ∼ O(1) GW cycles.] We have also briefly discussed how these oscillatory terms can be included in the
time-domain low-eccentricity PN approximants (Sec. VI).

In addition to the secular approximation, our PN approximants ignore O(e0) corrections to the waveform amplitude
(i.e., we treat the amplitude as circular). Our low-eccentricity approximation has been tested by comparing the orbital
phase to a numerical calculation valid for any eccentricity; our analytic expressions are valid up to e0 . 0.1 (the precise
upper limit depends on the specific system and one’s accuracy threshold).

The relative importance of the low-eccentricity PN corrections to the secular phasing is quantified in Sec. VII
and Tables III, IV, and V for various compact binary sources. There we investigated three measures for gauging
the importance of each PN term, including an improved version of the useful cycles contribution introduced in [124].
Except for EMRI systems (for which the PN series is known to converge very slowly), our 3PN order phase corrections
are likely to be sufficient for any low-eccentricity binary with comparable masses.

While compact object binaries observable by ground-based detectors are likely to be nearly circular, binaries with
a small eccentricity are more likely than those with a large one. The low-eccentricity case—despite its obvious
limitations—is thus of compelling interest. Our expressions also have the advantage of being relatively simple (only
slightly more complex than for circular binaries); they will thus be useful for situations where computational speed
is a priority (e.g., parameter estimation). While we have focused on compact binaries relevant to LIGO and eLISA,
these results may be applicable to modeling very low-frequency SMBH binaries that could be sources for pulsar timing
arrays (PTAs). Eccentricity effects will also be important for third generation ground-based detectors (such as the
Einstein Telescope [139]), where systematic errors from ignoring eccentricity can easily swamp statistical errors [11].

Additionally, many of the explicit expressions that we derive could be useful for numerical relativity (NR) or
gravitational self-force (GSF) calculations. In both of those areas it has been fruitful to compare numerical calculations
with PN results (e.g., [24, 25, 28, 30, 119, 140]). We provide the needed formulas to enable these comparisons (including
orbital variables and waveform phasing as explicit functions of frequency or time). The conversion of our results to a
set of gauge-invariant variables (App. E) might be helpful in this regard.

In the case of NR, our results could also be useful for reducing the initial eccentricity in binary merger simulations
[104, 141–149]. For example, eccentricity removal typically involves fitting NR data to Newtonian-order expressions
that depend on r(t), φ(t), or their derivatives. Small eccentricities in NR simulations might be reduced more efficiently
by instead fitting to some of the explicit analytic expressions provided here.

Lastly, our work could be useful for attempts to extend recent phenomenological inspiral-merger-ringdown (IMR)
waveform templates [31–37] to eccentric binaries. Our extension to the SPA/TaylorF2 approximant could be easily
added on to the existing framework used to treat the inspiral portion of the analytic IMR models. This may be useful
for parameter estimation of compact binaries that have both their inspiral and merger in the detector’s frequency
band.
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Appendix A: Waveform polarizations for eccentric binaries

Here we provide more explicit formulas for the GW polarizations. We first compute the Newtonian-order polar-
izations in terms of the true anomaly for general elliptical orbits. We then express the polarizations in terms of the
mean anomaly as an eccentricity expansion to O(e3t ). The latter expressions more clearly illustrate the time-domain
nature of the waveform and clarify the approximations made in this work.
Using the Newtonian-order expressions in Eqs. (2.2), the + and × polarizations can be written in terms of the

eccentric anomaly (for arbitrary et) using the Newtonian-order equations for (r, ṙ, φ, φ̇) given in Sec. III A. Plugging
in and simplifying gives

h+ = −ηM
D

ξ2/3

(1− et cosu)2

(

(1 + C2)
{

[

2(1− e2t )− et cosu(1− et cosu)
]

cos 2φ

+ 2et

√

1− e2t sinu sin 2φ
}

− S2et cosu(1− et cosu)

)

, (A1a)

h× = −2
ηMC

D

ξ2/3

(1− et cosu)2

{

[

2(1− e2t )− et cosu(1− et cosu)
]

sin 2φ+ 2et

√

1− e2t sinu cos 2φ
}

. (A1b)

To evaluate these expressions as a function of time (neglecting radiation-reaction effects) one must numerically invert
Kepler’s equation to determine u[l(t)]. While the amplitude here is at Newtonian order, the PN order of the waveform
phasing depends on the expressions used for φ and Kepler’s equation [e.g., Eqs. (3.4c), (3.4d), & (3.7)].

In the limit of small eccentricity, Kepler’s equation [Eq. (3.7)] can be solved as a series expansion in both et and the
PN expansion parameter ξ. This is done by first expanding the 3PN order Kepler’s equation [Eq. (3.7) or Eq. (27) of
[17]] for small et, then writing a similar expansion for the inverted series, u = l+ c1(l)et + c2(l)e

2
t + . . .. The unknown

coefficients ci(l) are determined by substituting one series into the other, requiring that the resulting coefficients of
the appropriate powers of et vanish. After expanding in the PN variable ξ, the O(e3t ) solution to the 3PN Kepler’s
equation is

u = l +

[
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Using this expansion one can then replace u = u(l) in the equations for r, ṙ, φ, and φ̇ [Eqs. (3.4)] and expand to the
appropriate order in et. The resulting equations to 2PN order and to O(e2t ) are:

r ≈Mξ−2/3
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(A3a)

ṙ ≈ ξ1/3et sin l
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+O(e2t ) +O(ξ2)

}

, (A3b)

φ = λ+W (l), (A3c)

W (l) ≈
[

2+(10−η)ξ2/3+
(

72− 259

12
η+

1

12
η2
)

ξ4/3

]

et sin l+

[

5

4
+

(

31

4
−η
)

ξ2/3+

(

447

8
− 187

12
η+

1

12
η2
)

ξ4/3

]

e2t sin 2l

+O(e3t ) +O(ξ2), (A3d)
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2
η

)

ξ4/3 + cos 2l

[

5

2
+

(

31

2
− 2η

)

ξ2/3 +

(

447

4
− 187

6
η +

1

6
η2
)

ξ4/3
]

}

e2t +O(e3t ) +O(ξ2)

)

.

(A3e)

To express the polarizations in terms of the mean anomaly one plugs Eq. (A2) into (A1) and expands in et. The
result is

h+ = −ηMξ2/3

D

(

(1 + C2)

{[

2 + 3et cos l + (4 cos 2l − 1)e2t + (43 cos 3l − 19 cos l)
e3t
8

]

cos 2φ

+

[

2et sin l + 3e2t sin 2l + (17 sin 3l − 7 sin l)
e3t
4

]

sin 2φ

}

− S2

[

et cos l + e2t cos 2l + (9 cos 3l − cos l)
e3t
8

]

+O(e4t )

)

,

(A4a)

h× = −2
ηMξ2/3C

D

{[

2 + 3et cos l + (4 cos 2l − 1)e2t + (43 cos 3l − 19 cos l)
e3t
8

]

sin 2φ

+

[

2et sin l + 3e2t sin 2l + (17 sin 3l − 7 sin l)
e3t
4

]

cos 2φ+O(e4t )

}

. (A4b)

Equations (A4) provide the Newtonian order waveform as a function of et, ξ, l, and φ. (Note that unlike the amplitude,
the phases l and φ are not yet restricted to any PN order or expansion in et.) Expressed in this way, the polarizations
contain three types of terms proportional to expressions of the form A1(et) cos(2φ + α1), A2(et) cos(jl + α2), and
A3(et) cos(2φ± jl+α3). Here the Ai(et) represent amplitude terms which depend also on the orbital inclination and
satisfy A2(et = 0) = A3(et = 0) = 0. The αi represent phase constants and j = 1, 2, 3 . . .. These three different terms
correspond to components of the signal with respective frequencies 2(1 + k)n, jn, and [2(1 + k) ± j]n. The signal
power in these different harmonics is determined by the functions Ai(et).

For non-evolving orbits (no radiation reaction), the explicit phasing as a function of time is determined by l =
n(t− t0)+cl and λ = (1+k)n(t− t0)+cλ. Note that in addition to the two intrinsic constants of the motion n and et,
one must also specify two extrinsic constants corresponding to the phase variables cl and cλ. Unlike circular waveforms
which contain one phase function (and an associated reference phase constant), eccentric waveforms depend on two
evolving phase functions l(t) and φ(t); the constants (cl, cλ) set the values of those phases at some reference time t0.
These two extrinsic constants are equivalent to specifying the argument of periastron ̟ and the initial orbital phase
φ(t0) (see Fig. 1). Given the constants [̟,φ(t0)] the constants (cl, cλ) are then determined by numerically solving
the equations

̟ = cλ − (1 + k)cl , (A5)

φ(t0) = cλ +W (l = cl). (A6)

The above follow from Eqs. (3.2) along with the fact that the argument of periastron corresponds to the angle φ = ̟
when l = v = u = W = 0. In the Newtonian limit, these equations simplify slightly because k → 0, but they still
must be solved numerically or via a series expansion. In the limit of circular (but post-Newtonian) orbits, W → 0
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and one finds that cλ = φ(t0) and cl = [φ(t0)−̟]/(1 + k). However, cl becomes irrelevant as any dependence on l(t)
drops out of the expressions (A4) in the et → 0 limit.
In this paper we consider only O(e0t ) terms in the amplitude [but O(e2t ) in the phasing]. In that case any explicit

dependence on l(t) (and hence cl) again drops out of the expressions for h+,× in (A4), yielding Eqs. (2.3). However,
since φ(t) = λ(t) +W [l(t)], a dependence on cl enters the oscillatory piece of the phasing via W (l) (see, e.g., Sec. V).
If we ignore those oscillatory contributions to the phasing (as we do when deriving the PN approximants in Sec. VI)
then dependence on cl drops out completely and only one phase constant (equivalent to cλ) enters our expressions.

In this Appendix we have so far neglected radiation reaction. If it is present then ξ and et will evolve secularly
according to Eqs. (B1), supplemented by (much smaller) periodic correction terms ξ̃ and ẽt that vary on multiples of

the orbital timescale (Sec. IVA). The evolution of the phase variables l(t) = l̄(t) + l̃(t) and φ(t) = λ̄(t) + λ̃(t) +W (t)
are governed by the ODEs

dl̄

dt
=
ξ̄(t)

M
, (A7)

dλ̄

dt
=

(1 + k̄(t))ξ̄(t)

M
, (A8)

which must be solved numerically along with the secular evolution equations (B1) and the initial conditions l̄(t0) = c̄l
and λ̄(t0) = c̄λ [these are related to ̟ and φ(t0) as above]. The numeric solutions l̄(t) and λ̄(t) are then combined with

the semi-analytic periodic components W , λ̃, l̃, c̃l, and c̃λ (the latter four quantities provide relative 5PN corrections
and can be ignored for our purposes). In the main text, we focus on solving Eqs. (A7) analytically in terms of ξφ
rather than ξ and including only terms to order O(e2t ). The above description clarifies how one could additionally
compute waveforms for arbitrary elliptical orbits.

Appendix B: 2PN order secular evolution equations for n̄ and ēt

Here we list explicit equations for the secular (orbit averaged) evolution equations for the mean motion n and
time-eccentricity et. Defining ξ̄ ≡Mn̄, the harmonic gauge evolution equations for n̄ and ēt to 2PN order are:

dξ̄

dt
=

η

M
ξ̄11/3

(

˙̄nN + ˙̄n1PN + ˙̄n1.5PN + ˙̄n2PN
)

, (B1a)

dēt
dt

= − η

M
ξ̄8/3 ēt

(

˙̄eNt + ˙̄e1PN
t + ˙̄e1.5PN

t + ˙̄e2PN
t

)

, (B1b)

where the bars emphasize that these are the orbit-averaged quantities (the bars are dropped in parts of the main text
where their meaning is clear). The various contributions in (B1) to 2PN order are [17]:

˙̄nN =
96 + 292ē2t + 37ē4t

5(1− ē2t )
7/2

, (B2a)

˙̄n1PN =
ξ̄2/3

280(1− ē2t )
9/2

[

20368− 14784η + (219880− 159600η)ē2t + (197022− 141708η)ē4t + (11717− 8288η)ē6t
]

,

(B2b)

˙̄n1.5PN =
384

5
πκEξ̄ , (B2c)

˙̄n2PN =
ξ̄4/3

30240(1− ē2t )
11/2

[

12592864− 13677408η + 1903104η2 + (133049696− 185538528η + 61282032η2)ē2t

+ (284496744− 411892776η + 166506060η2)ē4t + (112598442− 142089066η + 64828848η2)ē6t

+ (3523113− 3259980η + 1964256η2)ē8t + 3024(96 + 4268ē2t + 4386ē4t + 175ē6t )(5− 2η)
√

1− ē2t

]

, (B2d)

˙̄eNt =
304 + 121ē2t
15(1− ē2t )

5/2
, (B2e)

˙̄e1PN
t =

ξ̄2/3

2520(1− ē2t )
7/2

[

340968− 228704η + (880632− 651252η)ē2t + (125361− 93184η)ē4t
]

, (B2f)

˙̄e1.5PN
t =

128

5

π

ē2t
ξ̄

[

(1− ē2t )κE −
√

1− ē2tκJ

]

, (B2g)
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TABLE VI. Maximum values {Emax, Jmax} of the summation index p needed to evaluate the tail corrections κE and κJ

[Eqs. (B3)] to a fractional accuracy of 0.1% for a given eccentricity ēt. [I.e. we show the values of {Emax, Jmax} that satisfy
κE,J(Emax, Jmax)/κE,J(Emax = Jmax = 500)−1) < 0.001 for a given value of ēt.]. Note that the number of needed terms rapidly
increases for large eccentricities.

ēt Emax Jmax

0.1 4 4
0.3 9 8
0.5 17 15
0.7 42 37
0.9 239 212

˙̄e2PN
t =

ξ̄4/3

30240(1− ē2t )
9/2

[

20815216− 25375248η + 4548096η2 + (87568332− 128909916η + 48711348η2)ē2t

+ (69916862− 93522570η + 42810096η2)ē4t + (3786543− 4344852η + 2758560η2)ē6t

+ 1008(2672 + 6963ē2t + 565ē4t )(5− 2η)
√

1− ē2t

]

. (B2h)

The tail contributions ˙̄n1.5PN and ˙̄e1.5PN
t were derived in Sec. VI of [15] using the Keplerian orbital parametrization

and the tail corrections to the orbit-averaged expressions for the far-zone energy and angular momentum fluxes derived
in [82, 88]. The κE and κJ appearing in the tail terms are expressed as infinite sums involving quadratic products of

the Bessel function Jp(p ēt) and its derivative J ′
p(p ēt) ≡

dJp(p ēt)
d(p ēt)

:

κE = lim
Emax→+∞

Emax
∑

p=1

p3

4

{

(Jp(p ēt))
2

[

1

ē4t
− 1

ē2t
+

1

3
+ p2

(

1

ē4t
− 3

ē2t
+ 3− ē2t

)]

+ p

[

− 4

ē3t
+

7

ēt
− 3 ēt

]

Jp(p ēt) J
′
p(p ēt) + (J ′

p(p ēt))
2

[

1

ē2t
− 1 + p2

(

1

ē2t
− 2 + ē2t

)]}

, (B3a)

κJ = lim
Jmax→+∞

Jmax
∑

p=1

p2

2

√

1− ē2t

{

p

[

3

ē2t
− 2

ē4t
− 1

]

(Jp(p ēt))
2 +

[

2

ē3t
− 1

ēt

+ 2 p2
(

1

ē3t
− 2

ēt
+ ēt

)]

Jp(p ēt) J
′
p(p ēt) + 2 p

(

1− 1

ē2t

)

(J ′
p(p ēt))

2

}

. (B3b)

They satisfy κE(ēt = 0) = κJ(ēt = 0) = 1. Expanding these functions for small ēt gives
28

κE = 1 +
2335

192
ē2t +

42955

768
ē4t +

6204647

36864
ē6t +

352891481

884736
ē8t +O(ē10t ) , (B4a)

κJ = 1 +
209

32
ē2t +

2415

128
ē4t +

730751

18432
ē6t +

10355719

147456
ē8t +O(ē10t ) . (B4b)

Note that the expression for ˙̄e1.5PN
t in (B2g) is convergent in the et → 0 limit. In practical applications the sums in

Eqs. (B3) must be evaluated to some finite number of terms {Emax, Jmax}. To maintain a specified level of accuracy
for κE,J, the required number of terms in the sum increases dramatically as the eccentricity approaches 1. In Table
VI we indicate the values of {Emax, Jmax} that are needed to keep κE,J accurate to within 0.1%.
The time evolution of n̄ and ēt for arbitrary ēt < 1 is obtained by solving Eqs. (B1) numerically. This evolution is

“adiabatic” in the sense that i) the above equations become invalid when the radiation reaction timescale becomes
comparable to the orbital timescale, and ii) it neglects rapidly varying contributions to n and et that average to zero
on an orbital timescale. These oscillatory contributions ñ and ẽt are discussed in Sec. IVA. For simplicity we have
only provided the 2PN order secular evolution equations. The 2.5PN and 3PN order terms (both instantaneous and
hereditary contributions) can be found in [92].

28 To consistently expand κE and κJ to a given order O(ēnt ) requires that the infinite sum be expanded to sufficiently high values of
p = {Emax, Jmax}. For the O(ē8t ) accurate expressions shown here, Emax = Jmax = 6 is sufficient.
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Appendix C: Secular evolution for the eccentricity and mean anomaly

Here we collect some additional long expressions which are not essential to the main text. The full 3PN expression
for the time evolution of the eccentricity et(t) [see Eq. (4.23)] is given by

et(t) = e0

(

τ

τ0

)19/48{

1 +

(

−4445

6912
+

185

576
η

)

(

τ−1/4 − τ
−1/4
0

)

− 61

5760
π
(

τ−3/8 − τ
−3/8
0

)

+

(

854531845

4682022912

−15215083

27869184
η +

72733

663552
η2
)

τ−1/2 +

(

1081754605

4682022912
+

3702533

27869184
η − 4283

663552
η2
)

τ
−1/2
0 +

(

−19758025

47775744
+

822325

1990656
η

− 34225

331776
η2
)

τ−1/4τ
−1/4
0 +

(

104976437

278691840
− 4848113

23224320
η

)

πτ−5/8 +

(

−101180407

278691840
+

4690123

23224320
η

)

πτ
−5/8
0

+ π

(

− 54229

7962624
+

2257

663552
η

)

(

τ−1/4τ
−3/8
0 + τ−3/8τ

−1/4
0

)

+

(

− 686914174175

4623163195392
− 10094675555

898948399104
η +

501067585

10701766656
η2

− 792355

382205952
η3
)

τ−1/4τ
−1/2
0 − 3721

33177600
π2τ−3/8τ

−3/8
0 +

(

542627721575

4623163195392
− 122769222935

299649466368
η +

2630889335

10701766656
η2

− 13455605

382205952
η3
)

τ−1/2τ
−1/4
0 +

[

255918223951763603

186891372173721600
− 15943

80640
γE − 7926071

66355200
π2 +

(

−81120341684927

13484225986560

+
12751

49152
π2

)

η − 3929671247

32105299968
η2 +

25957133

1146617856
η3 − 8453

15120
ln 2 +

26001

71680
ln 3 +

15943

645120
ln τ

]

τ−3/4

+

[

−250085444105408603

186891372173721600
+

15943

80640
γE +

7933513

66355200
π2 +

(

86796376850327

13484225986560
− 12751

49152
π2

)

η − 5466199513

32105299968
η2

+
16786747

1146617856
η3 +

8453

15120
ln 2− 26001

71680
ln 3− 15943

645120
ln τ0

]

τ
−3/4
0

}

. (C1)

The full 3PN expression for the secular frequency evolution of the phase variable l [Eq. (4.30)] is given by

l(ξφ)− cl = − 1

32ηξ
5/3
φ

(

1 +

(

−1325

1008
+

55

12
η

)

ξ
2/3
φ − 10πξφ +

(

−41270555

1016064
+

20845

1008
η +

3085

144
η2
)

ξ
4/3
φ −

(

1675

2016

+
65

24
η

)

πξ
5/3
φ ln ξφ +

[

15398147061251

18776862720
− 1712

21
γE − 160π2

3
+

(

−22272871555

12192768
+

6355

96
π2

)

η +
96935

6912
η2

−127825

5184
η3 − 856

21
ln
(

16ξ
2/3
φ

)

]

ξ2φ − 785

272
e20

(

ξφ,0
ξφ

)19/9{

1 +

(

117997

2215584
+

436441

79128
η

)

ξ
2/3
φ +

(

2833

1008
− 197

36
η

)

ξ
2/3
φ,0

− 1114537

141300
πξφ +

377

72
πξφ,0 +

(

−732350735

68366592
+

271164331

31334688
η +

36339727

2238192
η2
)

ξ
4/3
φ +

(

334285501

2233308672
+

151648993

9970128
η

−85978877

2848608
η2
)

ξ
2/3
φ ξ

2/3
φ,0 +

(

−1193251

3048192
− 66317

9072
η +

18155

1296
η2
)

ξ
4/3
φ,0 +

(

270050729

33827220
− 268652717

9664920
η

)

πξ
5/3
φ

+

(

−3157483321

142430400
+

219563789

5086800
η

)

πξφξ
2/3
φ,0 +

(

44484869

159522048
+

164538257

5697216
η

)

πξ
2/3
φ ξφ,0 +

(

764881

90720
− 949457

22680
η

)

πξ
5/3
φ,0

+

(

−2074749632255

68913524736
+

15718279597553

189512193024
η − 1296099941

752032512
η2 − 7158926219

80574912
η3
)

ξ
4/3
φ ξ

2/3
φ,0 − 420180449

10173600
π2ξφξφ,0

+

(

− 140800038247

6753525424128
− 614686144279

241197336576
η − 37877198551

957132288
η2 +

7923586355

102549888
η3
)

ξ
2/3
φ ξ

4/3
φ,0 +

[

−231385908692247049

1061268280934400

+
12483797

791280
γE +

365639621

13022208
π2 +

(

43054867314787

137827049472
− 14711579

1446912
π2

)

η +
55988213933

1640798208
η2 +

5885194385

175799808
η3

+
89383841

2373840
ln 2− 26079003

703360
ln 3 +

12483797

1582560
ln
(

16ξ
2/3
φ

)

]

ξ2φ +

[

26531900578691

168991764480
− 3317

126
γE +

122833

10368
π2

+

(

9155185261

548674560
− 3977

1152
π2

)

η − 5732473

1306368
η2 − 3090307

139968
η3 +

87419

1890
ln 2− 26001

560
ln 3− 3317

252
ln
(

16ξ
2/3
φ,0

)

]

ξ2φ,0

})

.

(C2)
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Using the same techniques as in deriving Eq. (4.27), the time evolution of l(t) to 3PN order is

l(t)− cl = −1

η
τ5/8

(

1 +

(

−6365

8064
+

55

96
η

)

τ−1/4 − 3

4
πτ−3/8 +

(

−36010585

14450688
+

294955

258048
η +

1855

2048
η2
)

τ−1/2

+

(

1675

172032
+

65

2048
η

)

πτ−5/8 ln τ +

[

999649208535757

57682522275840
− 107

56
γE − 53

40
π2 −

(

159394981085

4161798144
− 1435

1024
π2

)

η

+
1403375

5505024
η2 − 1179625

1769472
η3 − 107

56
ln
(

2τ−1/8
)

]

τ−3/4− 7065

11696
e20

(

τ

τ0

)19/24{

1 +

(

−968824373

983719296
+

3559001

11710944
η

)

τ−1/4

+

(

4445

3456
− 185

288
η

)

τ
−1/4
0 − 256883

2260800
πτ−3/8 +

61

2880
πτ

−3/8
0 +

(

−3948564655159

6586984406016
+

1084152188431

3450325165056
η

+
1557035831

20537649792
η2
)

τ−1/2 +

(

1024948915

1170505728
− 1026871

6967296
η +

14971

165888
η2
)

τ
−1/2
0 +

(

−615203476855

485676269568
+

9061588285

8853473664
η

−17795005

91155456
η2
)

τ−1/4τ
−1/4
0 +

(

56295003356801

53829119877120
− 449103385817

640822855680
η

)

πτ−5/8 +

(

−12410299

17418240
+

576391

1451520
η

)

πτ
−5/8
0

+

(

− 59098286753

2833111572480
+

217099061

33727518720
η

)

πτ−1/4τ
−3/8
0 +

(

− 228368987

1562664960
+

9504671

130222080
η

)

πτ−3/8τ
−1/4
0

+

(

− 992995489931905295

1151449070712127488
+

1879169839629227

4569242344095744
η − 2423726613325

18131914063872
η2 +

53281803971

1942705078272
η3
)

τ−1/4τ
−1/2
0

− 15669863

6511104000
π2τ−3/8τ

−3/8
0 +

(

−2507338556025965

3252088301027328
+

21958237212008275

27823422131011584
η − 34557938365535

331231215845376
η2

− 7785179155

159860625408
η3
)

τ−1/2τ
−1/4
0 +

[

1414005101903318632008197

262931339138059468800000
− 1290927929

1266048000
γE − 9863961577

20835532800
π2

+

(

−326342634216461209

21680588673515520
+

18186821

30867456
π2

)

η +
7463874079487531

9033578613964800
η2 − 3935072194303

64525561528320
η3

− 914957

118692000
ln 2− 1121397129

1125376000
ln 3 +

1290927929

10128384000
ln τ

]

τ−3/4 +

[

−55579234653596057

23361421521715200

+
15943

40320
γE +

3968617

16588800
π2 +

(

21736949245913

1685528248320
− 12751

24576
π2

)

η − 1742350567

4013162496
η2 +

4790953

143327232
η3

+
8453

7560
ln 2− 26001

35840
ln 3− 15943

322560
ln τ0

]

τ
−3/4
0

})

. (C3)

Appendix D: Frequency evolution of et and λ

Here we will list the full expressions for dλ/dξφ and det/dξφ that were numerically solved in Sec. VIII. The equations
for the frequency derivative of λ and et have the form:

dλ

dξφ
=

dλ/dt

dξφ/dt
=

1

M

ξφ
dξφ/dt

=
5

η
ξ
−8/3
φ

(

ΛN + Λ1PN + Λ1.5PN + Λ2PN
)

, (D1a)

det
dξφ

=
det/dt

dξφ/dt
=

et
3ξφ

(

Et
N + Et

1PN + Et
1.5PN + Et

2PN
)

. (D1b)

(Recall that we have dropped overbars; the quantities λ, ξφ, and et here contain only secular pieces.) Section VIII
outlines how Eqs. (D1) were derived. The various PN contributions to these equations are:

ΛN =
(1− e2t )

7/2

96 + 292e2t + 37e4t
, (D2a)

Λ1PN =
(1− e2t )

5/2

56(96 + 292e2t + 37e4t )
2
ξ
2/3
φ

[

16(743 + 924η) + (−731 + 1330η)120e2t

+(−12217 + 10122η)14e4t + (−11717 + 8288η)e6t
]

, (D2b)
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Λ1.5PN = − 384(1− e2t )
7πκEξφ

(96 + 292e2t + 37e4t )
2
, (D2c)

Λ2PN =

(

1− e2t
)3/2

(96 + 292e2t + 37e4t )
3 ξ

4/3
φ

{

22395332
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+

282944

7
η + 39488η2 +
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1092911608
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3
η +
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3
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)

e2t

+
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2482558957
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− 20856653

3
η +

34607570

9
η2
)

e4t +

(

11491137626
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− 94648088

7
η + 5059075η2

)

e6t

+

(

41598328573

7056
− 827463337

84
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220841935

72
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)

e8t +

(

12550222
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− 353621581

336
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1545527

6
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)

e10t

+

(

209089541

9408
− 2351387

56
η +
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9
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)

e12t +
√

1− e2t
[

−23040 + 9216η + (−1094400 + 437760η)e2t

+(−4177160 + 1670864η)e4t + (−3638570 + 1455428η)e6t + (−533455 + 213382η)e8t +

(

−32375

2
+ 6475η

)

e10t

]}

,

(D2d)

Et
N = − (1− e2t )(304 + 121e2t )

96 + 292e2t + 37e4t
, (D2e)

Et
1PN = −

(1− e2t )ξ
2/3
φ

84(96 + 292e2t + 37e4t )
2

[

−768 (−2833 + 5516η) + (−1384161 + 821716η) 8e2t

+(4607952− 3626672η) e4t + (−192543 + 219632η) e6t
]

, (D2f)

Et
1.5PN =

384π(1− e2t )
7/2ξφ
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2
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√
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, (D2g)
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. (D2h)

Appendix E: Gauge-invariant parametrization for eccentric waveforms

In this work we have presented our results in terms of a frequency-like variable (ξ or ξφ) and a particular
“eccentricity-like” parameter et. The latter reduces to the Newtonian definition of eccentricity in the Newtonian
limit and allows us to easily read off the circular 3PN limit of our expressions when et → 0. However, the choice
of et is somewhat arbitrary: we could have chosen to use the other eccentricity variables er or eφ, or a definition
based on the angular frequencies at pericenter and apocenter [150, 151]. All of these eccentricity parameters are
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gauge dependent. For example, expressions for et, er, or eφ in terms of the conserved energy per reduced mass E
and reduced orbital angular momentum h depend on the choice of gauge [see Eqs. (345) of [74] and the subsequent
discussion there]. However, the quantities n and k have expressions in terms of E and h that do not depend on the
coordinate system; these quantities are gauge invariant. Likewise, the related quantities ξ, ξφ, K = k + 1, as well as
E and h themselves, are also gauge invariants.
To obtain a gauge invariant form for the expressions derived in this paper it is necessary to eliminate et and to

express our results in terms of k and either ξ or ξφ. The relation et = et(k, ξ) can be derived from Eqs. (25d) and

(28) of [16].29 These provide e2t (E, h) along with E(ξ, k/ξ2/3) and h(ξ, k/ξ2/3). Substituting for E and h into et (and
using the fact that ξ ∼ c−3 and k ∼ c−2) gives the 3PN accurate result:

e2t = 1− 3ξ2/3
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+
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−43

4
+
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+
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ξ2. (E1)

Note that terms of order O(ξ2/3/k) are formally Newtonian order (since k ∼ ξ2/3).
To derive et = et(k, ξφ) we use series reversion on Eq. (3.12), assuming a result of the form (E1) with ξ → ξφ.

However, because the expansion (3.12) contains only relative 2PN corrections beyond its leading-order term, we can
only derive relative 2PN corrections to e2t if we use k as our starting point.30 Specifying a solution with the form

e2t = 1−
3ξ

2/3
φ

k
+

[

A+B

(

ξ
2/3
φ

k

)]
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2/3
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
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√
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)


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4/3
φ +O(ξ2φ), (E2)

the coefficients A through G are determined by plugging Eq. (E2) into Eq. (3.12). The result is series expanded.31

Coefficients of the appropriate powers of ξφ are then equated to zero, resulting in a system of equations which is
solved for the coefficients A through F . The result is
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Using the results above, one could eliminate et from our expressions in favor of the gauge invariant variable k. For
example, our final expressions for the secular PN approximants depend on an eccentricity e0 at a reference frequency

29 Note that the k′ in [16] is related to k via k′ = k/3. Also Ref. [16] uses the notation x to mean ξ2/3.
30 Note that the leading-order term in k represents a 1PN effect in the equations of motion. In the derivation of Eq. (E1) we started from

relative 3PN accurate expressions for et(E, h), E(ξ, k), and a relative 2PN accurate expression for h(ξ, k) (which is sufficient as it enters
the relevant expressions only in terms of the combination Eh2).

31 This is done by taking ξφ → ǫ3ξφ and k → ǫ2k and then series expanding in the small parameter ǫ (which is then set to 1 at the end of
the calculation). We note that this procedure was also used to check the derivation of (E1) at the 2PN level starting from Eq. (3.3).
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ξφ,0 = (πMf0). This constant could be replaced with a value k0 corresponding to the periastron advance rate at the
reference frequency. However, we feel that it is more sensible to parametrize our waveforms in terms of quantities
that have simple physical interpretations in the Newtonian limit.
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[98] B. Mikóczi, P. Forgács, and M. Vasúth, Phys. Rev. D 92, 044038 (2015), arXiv:1502.00276 [gr-qc].
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Rev. D 92, 124007 (2015), arXiv:1507.07100 [gr-qc].
[111] V. Paschalidis, W. E. East, F. Pretorius, and S. L. Shapiro, Phys. Rev. D 92, 121502 (2015), arXiv:1510.03432 [astro-

ph.HE].
[112] W. E. East, V. Paschalidis, F. Pretorius, and S. L. Shapiro, Phys. Rev. D 93, 024011 (2016), arXiv:1511.01093 [astro-

ph.HE].
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