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We compute the nonlinear memory contributions to the gravitational-wave amplitudes for compact
binaries in eccentric orbits at the third post-Newtonian (3PN) order in general relativity. These
contributions are hereditary in nature as they are sourced by gravitational waves emitted during the
binary’s entire dynamical past. Combining these with already available instantaneous and tail contributions,

we get the complete 3PN accurate gravitational waveform.
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I. INTRODUCTION

The observation of the first gravitational-wave (GW)
signal by LIGO and Virgo opened up the new field of
gravitational-wave astronomy [1-4]. So far, ten confirmed
binary black hole mergers and one binary neutron star
coalescence have been reported [5-10]. KAGRA [11] is
expected to join the global network of detectors later this
year, followed by LIGO-India in 2025 [12], leading to
improved parameter estimation and source localization.
These ground-based detectors are sensitive to the deca-
hertz—kilohertz frequency of the GW spectrum. In the
future, the space-based detector LISA [13] will probe
lower frequencies (around the millihertz range), and pulsar
timing arrays (PTAs) may measure ultralow (nanohertz)
frequency GWs [14].

Currently (and this will most probably not change in the
future), compact binaries are the most important sources of
observable GW signals. The events detected so far have all
been found using circular templates. However, we know
that binaries with substantial eccentricity exist, e.g., the
Hulse-Taylor binary with an eccentricity of e ~ 0.6 [15].
Nonetheless, at the time this binary enters the detection
band of ground-based GW detectors, it will have circular-
ized to a negligible e ~ 107 and not be distinguishable
from a circular binary with current detector sensitivity [16—
18]. In particular, in globular clusters and galactic nuclei
there are expected to be binaries with non-negligible
eccentricity (e > 0.1) emitting detectable GWs [19-24].
Hence, the detection of GWs from eccentric compact
binaries could provide important information on compact
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object populations in globular clusters and galactic
nuclei [25].

As soon as LISA is operational, it will be able to
observe compact binaries in our galaxy emitting GWs of
much lower frequency. At this point they still are expected
to have moderate eccentricities [26,27]. On the other
hand, LISA should be able to detect supermassive black
hole binaries forming in the aftermath of galaxy mergers.
Notably, triple-induced coalescences are expected to have
large eccentricities that remain significant until merger
[28-32].

The above anticipated prospects of future GW observa-
tions have motivated the development of eccentric wave-
form models. In the inspiraling phase one usually uses the
post-Newtonian (PN) formalism to model the dynamics
of the binary. This introduces three distinct time scales.
The first two, the orbital and periastron precession time
scales, are associated with the conservative dynamics and
commonly described by the quasi-Keplerian parametriza-
tion [33,34]. The third time scale appears when the
dissipative radiation-reaction effects are taken into account
[35,36]. Several waveform models have been built using
this description of a binary [18,37-46]. In general, the far-
zone gravitational radiation field receives instantaneous and
hereditary contributions. The instantaneous part is deter-
mined by the state of its source at a given retarded time,
while the hereditary part depends on the entire dynamical
history of the source. In particular, the latter contains tail
and memory pieces.

In this work, we concentrate on the memory contribu-
tions to the waveform from eccentric binaries. Normally we
think of gravitational waves as oscillatory perturbations

© 2019 American Physical Society
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propagating on the background metric at the speed of light.
However, all GW sources are subject to the so-called
gravitational-wave memory effect, which manifests in a
difference of the observed GW amplitudes at late and early
times:

Ahppe = lim k(1) = lim h(1). (1)
>+ t——00

In an ideal, freely falling GW detector the GW memory
causes a permanent displacement after the GW has passed.
There are two main types of GW memory. The linear
memory [47] originates from a net change in the time
derivatives of the source multipole moments between early
and late times, present mainly in unbound (e.g., hyperbolic
binary) systems. For bound systems the linear memory is
negligible, as long as the components were formed,
captured, or underwent mass loss long before the GW-
driven regime. The nonlinear memory, also called the
“Christodoulou  memory” [48-52], is a phenomenon
directly related to the nonlinearity of general relativity. It
arises from GWs sourced by previously emitted GWs.
Since the nonlinear memory is not produced directly by
the source but rather by its radiation, it is present in all
sources of GWs. From a more theoretical perspective, the
memory effect and its variants can be interpreted in terms
of conserved charges at null infinity and “soft theorems”
[53,54]. Several methods to look for the memory effect
have been devised. PTAs would observe a sudden change in
the pulse frequency of a pulsar [55-58] and ground-based
detectors like LIGO—although not sensitive enough to the
memory of a single event—could allow for a detection from
the accumulation of several events. [59-61].

For circular binaries, the nonlinear, nonoscillatory
memory contributions to the waveform were computed
at the 3PN order in Ref. [62]. Regarding eccentric binaries,
the leading-order zero-frequency or the so-called direct
current (DC) memory terms were obtained in Ref. [63]. In
this paper, we extend these computations to the 3PN level
by computing all terms coming from the memory contri-
bution to the radiative mass multipoles. Note that this yields
not only the “genuine” DC memory, but also oscillatory
contributions. In the circular limit, the latter have been
computed in Ref. [64]. Due to complicated hereditary
integrals, we calculate the memory contributions within
a small-eccentricity expansion. We present all of our results
in modified harmonic (MH) gauge in terms of the post-
Newtonian parameter x = (Gm@/c>)*3 and the eccentric-
ity e = &,, with @ = (1 + k)i being the orbital frequency
and 7 = 2z/P the mean motion. With the instantaneous
contributions already available [65], and the tail and post-
adiabatic contributions computed in a companion paper
[66]—hereafter called Paper I—this work aims to complete
the knowledge of the 3PN waveform valid during the early
inspiral of eccentric binary systems.

This paper is structured as follows. In Sec. II we discuss
how the nonlinear memory arises from the gravitational-
wave energy flux and how it can be computed by
integrating this flux over the binary’s past history. In
Sec. IIT we explicitly evaluate the past-history integrals,
which lead to two types of memory terms—DC memory
and oscillatory memory—that are discussed separately
in Secs. III B and III C. We next combine our results with
the already available instantaneous and tail contributions
and discuss the full 3PN waveform in Sec. IV. In Sec. V we
give a brief summary and conclude our work. Most
expressions in this paper are presented only to leading
order in eccentricity for convenience, though we provide
the complete results to O(e®) in a supplemental Mathematica
notebook [67].

II. PREREQUISITES

A. Memory contribution to the mass multipole moments

Here we briefly state the essentials of the memory
calculation. The conventions and notations used are the
same as those outlined in Sec. II of Paper L.

The gravitational waveform polarizations can be
uniquely decomposed into the spherical harmonic modes
h?™ via

o 4
hy —ihe =YY" Wmyn(e. @), (2)
=2 m=-¢

where the basis is formed by the spin-weighted spherical
harmonics Y7 (®, ®) and the amplitude modes

G i
‘m __ __ ‘m _ _yfm
= V2R 2 (U CV ) 3)

are given in terms of radiative mass and current multipoles,
U’™ and V‘". These contain both instantaneous and
hereditary parts. In the latter, we can further distinguish
between tail and memory contributions (some of which
may actually be tail induced) at the 3PN order by
schematically writing

U = Ui 4+ UGh + Ul + 68U, (4a)
V= Vi Vi + oV, (40)

where SU?™ and SV‘™ represent possible higher-order
hereditary terms. Note that there is no memory contribution
to the radiative current-type moments [51]. Now, employ-
ing the multipolar post-Minkowskian post-Newtonian (PN)
formalism, the radiative moments can be written in terms of
the source moments. These relations can be found in
Sec. Il A of Ref. [65] for the instantaneous parts, which
only require the knowledge of the source motion at a given
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moment in retarded time 7's, and in Sec. II B of Paper I for
the hereditary parts, which involve integrals over the entire
dynamical past of the source.

The nonlinear memory may be expressed in terms of the
time derivative of the gravitational waveform by solving
one component of Einstein’s equations near future null
infinity in Bondi coordinates [53,68]. In this approach,
the complex wave amplitude h, —ih, is decomposed
into even-parity and odd-parity pieces, the former
being parametrized by a scalar function of the retarded
time Ty and the angles (@, ®), namely, ®.(Tk, 0, D) =
Y50, mi<e PEM(TR)Y™ (O, ®), where the ®L"(Tg) turn

out to be equal to /2(¢ —2)!/(£+2)! with our con-
ventions. The memory then manifests itself as a low-
frequency shift of those modes. Since this effect is sourced
by GWs, the consequent change for U4, is a functional

of the gravitational-wave “flux”"

dEGW C3R2
drdQ ~ 162G

(i + ). (5)

More precisely, the nonlinear memory contribution to the
radiative mass moment U™ (Ty) is given by [53]

3271' l/ﬂ 2 TR
m 1/ 103 vomq
Unem 2(7 +2)! / / qa 1),

(6)

This formula was first shown to hold at quadratic order in G
[51] before its validity was extended to the general case (see
also Ref. [69], which indicates how to perturbatively
construct a radiative-type gauge in which the derivation
proposed in Ref. [51] can be adapted in principle to
arbitrarily high orders). We will start from Eq. (6) to
compute the memory contributions to the GW amplitude
to the 3PN order.

Inserting the mode decomposition defined in Eq. (2) into
Eq. (5), we find the GW energy flux in terms of the time
derivatives of the h’" modes:

drdQ 167zG L= i =, =
X YO (0,) Y73 (0, ). (7)

We insert this expression in turn into Eq. (6). The time

derivative of the memory contribution to the mass multi-

pole moment, U?Zr(n) = dU4m, /dTg, which is nothing but

'In Eq. (5), at future null infinity the product of R? with the
term between brackets reduces to N,z N4%/2 in the notation of
Ref. [68].

the memory contribution before integration over past
history, may thus be expressed as

41 D2 o 4 %4
oy - R PEZDIS S S S
mem -

G f + 2 Lﬂ/ 2 f”:2 m/:_l/ﬂ/ m//:—f”

fflf” f/ ;2 Lﬂ// "
Gmm m” h h ’ (8)

where G‘) - 5) » is the angular integral of a product of three

spin- welghted spherical harmonics,

mm'm

G, = / dQymy 'y’ 9)

Reference [70] provides an explicit formula for this
integral:

(2" +1)

e, = (oo [T DR T

mm'm A
Lﬂ f/ f// Lﬂ f/ f//
x <0 -2 2 > <—m m' —m”)' (10)
The brackets denote the Wigner 3-j symbols.

B. Instantaneous and tail parts of the spherical
harmonic modes

Remembering that the dominant modes correspond to
the quadrupolar case # = 2, with h*" = O(c™*), we see
from Eq. (8) that the memory integrands are of 2.5PN order.

However, as discussed below, in addition to oscillatory
0(1)

complex exponentials the Uﬁlem also contain nonoscilla-
tory terms. Due to the integration over the past history, their
contributions at times ¢t < T accumulate and enhance the
result by a net factor ¢. It follows that the leading memory
effect in the polarizations actually arises at the relative
Newtonian order. Thus, Eq. (8) implies that, as an input

for the computation of the 3PN-accurate Uﬁﬁ&f’ , we need

a priori all nonmemory 4™ modes to 3PN order. It is in
fact not surprising that part of the waveform is required to
calculate the full waveform since the nonlinear memory
originates from gravitational waves sourced by the energy
flux of gravitational waves emitted in the past, as shown by
Eq. (6). Note that the contribution from the memory to the
memory itself turns out not to enter the waveform up to the
3PN order. In Ref. [62] it was argued that for circular
binaries these contributions would appear at the SPN level,
though for eccentric binaries we find, by explicit calcu-
lation, that these appear already at the 4PN order. This is
due to additional oscillatory memory contributions that will
be discussed in Sec. III C below. However, for the present
work, these memory-of-memory terms can be safely
ignored.
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The instantaneous parts of the 3PN-accurate 2" modes
describing inspiraling eccentric binaries have been com-
puted in Ref. [65]. The tail contributions were derived in
Paper I, as well as the post-adiabatic corrections to the
instantaneous contributions. The instantaneous mode
amplitudes from Ref. [65] are written in terms of the
post-Newtonian parameter x and time eccentricity e,, and
are parametrized by the eccentric anomaly u. They are valid
for arbitrary eccentricities, while the tail contributions in
Paper I are given in a small-eccentricity expansion, para-
metrized by the mean anomaly /. The same will hold for the
memory parts. Inverting the 3PN-accurate Kepler equation
by means of the solution developed in Ref. [71], the
instantaneous terms can be parametrized by the mean
anomaly as well. Instead of restating the quasi-Keplerian
parametrization and the phasing formalism describing the
dynamics of the binary, we refer the reader to Secs. II C and
IT D of Paper I where those aspects are summarized with the
same conventions and notations.

The A" modes including instantaneous, tail, and post-
adiabatic contributions are given in the following form:

8G .
hfm _ ;;Ux\/?e—lmy/Hfm’ (11)
C

where the H?™ are written in terms of the adiabatic post-
Newtonian parameter x = X and time eccentricity e = e,
and are parametrized by the angles & and w. See, for
instance, Eq. (76) of Paper I for the dominant mode (4>%)
expression. The phase angles £ and y arise naturally when
applying a certain shift to the time coordinate aimed
at eliminating the arbitrary constant x, appearing in
both the instantaneous and tail parts [72,73] through the
redefinitions

3GM X
3GM
de=A- (c;3 (1+k)nln<;,>, (12b)
0

where M = m(1 —vx/2) denotes the Arnowitt-Deser-
Misner (ADM) mass, m = m; + m, is the total mass,
v=mym,/m? is the symmetric mass ratio, and x} is
related to xq by

11 2 4 2
lnx6:———yE—§ln2+§lnx0, (13)

with y¢ being Euler’s constant. We refer to the Appendix B
of Paper I for the relations between the orbital elements
(I, 4, ¢) and their redefined counterparts (&, /15, W).

III. COMPUTATION OF THE NONLINEAR
MEMORY

A. Memory contributions to the time derivative
of the radiative moments

The computation of the memory contributions to the
radiative mass multipole using Eq. (8) involves products of
the time derivatives of the 4“" modes given in Eq. (11).
These are obtained by expressing y in terms of & and 4 and
applying the following time derivative operator:

de d

d [d d] drd
R S il e e
dr "[d.»:” * )dAJJ“dzde“dtde (14)

where we have used the facts that d¢/dt = dI/dt = n and
dAg/dt = dA/dt = (1 + k)n to the required PN order. The
secular time evolution of x and e is given, at leading order,
by the formulas of Peters and Mathews [16,74]

dx x° 64 584 , 74 ,
P T (22T ), (s
dr Gm(l—e2)7/2<5+15€ +156> (15a)

de v ex* 304 121 ,
— = — . 15b
it~ Gm(1-e&) " < 5715 ¢ ) (15)

Note that they cause a 2.5PN correction, and thus the
leading order is sufficient here. When computing the time
derivatives of the amplitude modes 2*" ~ x?/? /%, we have
the following leading-order PN scaling:

W™~ (w/c?)x!1? ~ ex?12H312, (16)

As the dominant mode # =2 is of order cx*/?, the
knowledge of the waveform to 3PN order requires modes
up to £ = 8. According to this argument, the sums in

Eq. (8) consisting of products R e may be truncated
at £ =¢" =8. Moreover, the appearance of the 3-j
symbols in Eq. (10) imply some selection rules: the three
lower entries have to add up to zero, i.e., m = m' —m’".
Since the mode products appearing in Eq. (8) scale like

f'lf’m/};lf”m” ~ x/2g=i(m'=m")2s (17)

for some integer n, only memory modes with m = 0 will
contain DC terms, as was previously found for circular
orbits [62]. The scaling being the same as in that case,
we have to compute the Uf;%) up to £ = 10. On the other
hand, a mode separation property holds for planar orbits
[75,76]: the h?™ only depend on the mass (current)
radiative moments if £ + m is even (odd). Thus, as there
is no memory effect in the current radiative moment, there
is no memory effect when ¢ + m is odd.
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As an example, we show the leading-order part of the
20-mode up to O(e?), which will represent the dominant
memory contribution:

5.2 2
0) @ v (256 5008e” 768 ..
Umen' = 15 G X ( 7 + 21 + 7 ee

768 5176 5176 )
22 —16262‘5>. (18)

+ ?eei‘f +57 e?ei

We observe two different type of terms: oscillatory terms
proportional to e="'¢, and nonoscillatory ones, which give
rise to the well-known leading-order DC memory.

As argued above, the m # 0 modes only contain oscil-
latory terms since they are proportional to e™"*. For
instance, the leading order of the 22-mode explicitly is

21 V2 . (40 32
Uﬁqze(r}q) = — ?ﬂ%xSG—Zlié <7 62 - ﬁee_“f

32 ee€ — 172 e?e 4 + 2 6262i5> .

21 21 21 (19)

However, in Eq. (8) (used for the calculation of the Uﬂgﬁf))
there is no need to average the mode products izﬂm’}_zﬂ/mﬂ
over several wavelengths. Other derivations of the memory
effect, making use of the Isaacson gravitational-wave
stress-energy tensor [77], resort to such a procedure. In
Ref. [63], which follows this approach, the orbital average
entering the calculation of the leading-order eccentric
memory effectively removes the terms proportional to
e'¢ in the U2 5o that only the terms yielding the
DC memory are left over, while the discarded pieces do not
affect the amplitude of the DC memory. In the absence of
the orbital average, these pieces lead to small-amplitude
oscillatory contributions to the waveform, which here
we will call oscillatory memory contributions. It would
actually be difficult to introduce an orbital average in the
m # 0 modes because these terms oscillate not only on the
orbital time scale, but also on the much longer precession
time scale.

B. DC memory

The next step consists in evaluating the hereditary time
integral

Ty
ulm, = / deuml). (20)

00

To do so, we need a model for the secular evolution of the
binary undergoing gravitational radiation-reaction forces.
The secular 3PN-order evolution equations of the orbital
elements for a quasielliptical, inspiraling binary were
obtained in Refs. [78-80]. This model is an idealization
since it assumes that the two components start at infinite

separation and the orbital energy decreases solely due to the
emission of gravitational waves.

The explicit integrals appearing in Eq. (20) are of two
different types. The first one consists of a product of x
and e, each with some power p and ¢, respectively:

L. ~ /_ " dxr (1)e (1), (21)

o]

The leading Newtonian order corresponds to p =>5.
The possible values of the integer ¢ range from 0—the
quasicircular limit—to the order of the eccentricity expan-
sion. These integrals give the nonoscillatory contributions
to the waveform, i.e., the DC memory. Note that, as argued
above, these terms are only present in the m = 0 modes.
The second type of integrals will lead to oscillatory terms
appearing at 1.5PN, 2.5PN, and 3PN order in the wave-
form. We will discuss these in Sec. III C.

The strategy to evaluate the integral in Eq. (21) is to
express the PN parameter x in terms of the eccentricity e
and change the integration variable from time ¢ to e, so that
the integral runs from some initial eccentricity e; at early
times to e(7Tg) at the current retarded time:

e(Tk) de\ !
Ug%rv/ de(d—j> xP(e)el. (22)

The time evolution of x and e due to radiation reaction is
stated to leading order in Egs. (15a)-(15b). Here, we need
the evolution equations up to 3PN order, which are
provided in Appendix B. We form the ratio of the two
equations, thereby canceling the time dependence, and
expand the right-hand side in x and e. This yields a
differential equation with the following structure:

d
d_)ef = fn(e)x + fi(e)x* + f15(e)x>/?

+ f2(e)x® + frs5(e)x"? + f3(e.Inx)x*.  (23)

Here, the f;(e) terms represent the coefficients of xi*!
in the expansion of dx/de, with fy = f,. To solve this
differential equation, we search for the unknown function
x(e) in the form of a perturbative expansion, according to

3/2 5/2

x:xN—l—exl +e x1'5+€2x2—|—€ X2'5+€3)C3, (24)
where € is a formal parameter that allows one to keep track
of the PN order. Inserting this expansion into Eq. (23) and
identifying the coefficients of € on the left- and right-hand
sides of the resulting equation, we find the set of differential
relations satisfied by the post-Newtonian orders of x. This
system can be straightforwardly solved by quadrature.
Putting the pieces together yields the PN parameter x as
a function of eccentricity. At leading order in the PN and
eccentricity expansion, we recover [35]
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(25)

12/19
)= (2)

where x is the value of x at some reference eccentricity e
The full 3PN result to leading order in eccentricity is
provided in Appendix B. Note that for the expansion in
eccentricity to be valid, the eccentricity has to be small at all
times, and hence ¢ has to be small as well.

We are now in the position to insert the evolution equation
for e and the solution for x(e) into Eq. (22). Expanding again
in x and e yields elementary integrals, which must be
calculated. We then reexpress this result in terms of the time-
dependent quantities x and e by solving their relation
[Egs. (25) and (B8)] for x, and reinsert the expression of
this quantity in terms of x and e into the calculated memory

20 5
DC 14\/6

12/19
()"
€;

_ 4075
4032

HZO

Newt

67
48

20
HIPN -

L(e) (2838 19T\ | (e
e; 3192 ' 114 e;
" 377x <£) 12/19 N (f) 30/19
€ €
20512

371
Hispy = — ﬁ

228

20 20 3/2 1720 27720 5/2 1720 37720
(HRewt + XHipy + X7 “Hspy + x°Hapy + X/ “Hypy + X° H3py),

)

terms. A final Taylor expansion then yields the DC memory
pieces of the mass multipole moments.

We present the memory contributions to the spherical
harmonic modes in the following form:

G
‘m _ __ —  yifm
_ 8Gmv

(26)

T
—im ‘m
X \/;e llllfmem .

With this convention, the memory pieces directly add to the
waveform modes stated in Eq. (11). As the expressions are
quite long, we present here only the H2%. mode to 3PN and
leading order in eccentricity:

2R

(27a)

(27b)

145417 284
5417 28 91/)’ (27¢)

76608 912

(27d)

" 151877213 123815 e
Hoen = 352 1 \e

T 67060224 44352
e 825950

L (e 24/19 1411966361 N
e; 122266368 68229 51984

> 12/19 <358353209 738407y

366799104 727776 17328
561253y2)

205971/2>

n e 36/19 50392977379+7642953071/
e; 24208740864 48033216

2 2537 253w (e

116542092
1143648 )’

(27e)

e

T (_
€;

) 12/19 (37639037z

25PN T T 336 T T gy 7277760
e

n (_
€

127887797y
1819440

30/19 /53402057 37134570 N e\ 42/19
1455552 51984 e;

24/19 (548222097
> ( 8733312
270491877y

3638880 )’

1074073 7w

e; 103968 )

4240207337
43666560

(27¢)

695279512 132198143

20 4397711103307 (700464542023 2057:2) )

3PN T 7532580106240 13948526592 96

3317y

166053888 5930496

10309531979

n e 12/197 4942027570449143 8102572
e; 96592876047360 103968
26735173312

399
120911In2  780031n3

+_39777[2
7466981760 v

77258313
82966464 2222316 5985 5320

3648
3317Inx| 71064572 e 30/19
798 103968 \e;

167260391424

€

n e 24/19 7 31102835980319  279737759653v
14049872879616

267304662831> 39717624113
1991195136 23704704
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€;

n <£> 48/19 [385621605844415513
€;

31945362464631% 167294871313

e\36/19 / 142763304914707 ~48901891428821y 400181473249,2 229587917317
+<_> <_ 25758100279296 ' 919932152832 3650524416 43458624 )
15740572 3317y 49590995147570629 127172
5740376633671680 25992 399 <_ 478364719472640 | 1216 >”

34514049024 45653504 5985

120911n2 78003In3 3317Inx 6634ln e
2527 e;

(27g)

5320 798

All nonzero DC memory modes are presented to leading order in eccentricity in Appendix D and to O(e®) in the

Supplemental Material [67].

An important check is to take the circular limit of our calculated memory modes and compare to the circular 3PN memory
modes computed in Ref. [62]. To illustrate this fact, we take the circular limit of the 20-mode stated in Egs. (27) by setting

e = 0 and find

20

151877213

123815v

5
HO = -2 1+
be 14%{

4032 48 67060224 44352

N 20512 Y 253rx n 2537y
352 336 84

5| 4397711103307 700464542023 20572
13948526592 96

532580106240

in perfect agreement with Eq. (4.3a) of Ref. [62]. The
higher DC modes up to Z = 10 in the circular limit are
consistent with Eq. (4.3) of Ref. [62] as well. Moreover, we
can check the leading eccentricity part at Newtonian order
against Eq. (2.35) in Ref. [63]. They are found to be equal.
Note that at Newtonian order the computation of the DC
memory is in principle possible for arbitrary eccentricities
[see Eq. (2.34) in Ref. [63]]; however, this becomes
difficult at higher PN orders, especially when tail terms
come into play.

C. Oscillatory memory

Before considering the oscillatory integrals, let us
recall some properties of the nonlinear memory. As
mentioned at the beginning of Sec. II B, the memory
contribution to the radiative mass multipole is formally of
2.5PN order. But due to the hereditary nature, the non-
oscillatory terms are raised by 2.5PN orders to appear
already at the Newtonian level. From the oscillatory terms
we cannot expect the same behavior, due to the fact
that the oscillations in the remote past effectively cancel
each other out. Thus, we expect that only the recent past
will contribute.

Examining the remaining oscillatory integrals, we notice
that they are of the following form:

Ty .
Ui ~ / dx? (t)e?(1)e! 4 +79),

(e8]

(29)

Note that we have s = —m. Here we provide a formula to
evaluate these integrals, its derivation is presented in
Appendix C. Using the fact that 4: = (14 k)¢ and &=

nt to the required PN order as well as the notion that the

) 6952795112

3
1321981y }} (28)

166053888 5930496

integral is essentially given by the contributions at the
current time, we find

i

Ufm ~
0s¢ n(r+s(1+k))

xpeqei(‘yj”§+r§)’ (30)

where the time dependence on T’ is not written explicitly.
Expanding the denominator, we have to distinguish
between two different cases. The first applies if r # —s;
we then find

Uim ~ — L p-3/2pa0i(sktrE)

r+s S

Since p =5 at Newtonian order and the leading terms in
the waveform are of order x, these integrals lead to 2.5PN
contributions to the waveform. As we have expected, these
kinds of terms oscillating on the orbital time scale keep
their formal PN order, and we call them the fast oscillatory
memory.

On the other hand, for »r = —s we find

i 3 Tv
usn ~ 3 {xP-S/Z + xP~3/2 <—§ + ?)]

x eleBe=¢) 4 O(e?12), (32)
This corresponds to terms that oscillate solely on the
periastron precession time scale, and we therefore call
these terms the slow oscillatory memory. Because of the
much slower oscillations, they are enhanced by 1PN order
(corresponding to the PN order of precession) and enter the
waveform at 1.5PN. Note also that in Eq. (32) eccentricity
corrections of O(e?+?) appear, whereas Eq. (31) would
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only be affected by eccentricity corrections starting at
3.5PN order.

We provide the oscillatory memory contributions to the
spherical harmonic modes in the same form as for the DC
memory, according to Eq. (26). Besides the DC memory
contribution, the 20-mode also contains fast oscillatory
memory at 2.5PN:

1616 _ 64
Hg(s)c = iT\/_l/e)CS/2 (—e_lf delé

(33)

Note that while the DC memory is purely real and therefore
only affects the plus polarization (with the usual conven-
tions on the polarization triad), the oscillatory contributions
influence both polarizations.

In the m # 0 modes, only the oscillatory memory is
present. For the dominant 22-mode we find

H22 _ 2i&
e =ieve {252 336 216 126"

13 (@ ~ 865u>x5 297 ]

19 4 _ .. 65 A
+21ix>%ev [66 + ge“f — 4l > ee—zlé] )
(34a)

Here the slow oscillatory part in the first and second lines
is proportional to e*¢, as we factored out e 2% according to
Eq. (26). Three different PN orders of slow oscillatory
memory terms appear in this mode. The first one at 1.5PN
arises from the leading-order memory contribution to the
radiative mass multipole at 2.5PN, so as expected it is
enhanced by one post-Newtonian order. At 2.5PN, there is
the 1PN correction to the first term as well as a part coming
from the 1PN correction to the multipole. Finally, at 3PN
there is a term originating from the 1.5PN correction to
the memory part of the multipole; this corresponds to the
memory of the gravitational-wave tail. The terms in the
second line correspond to fast oscillatory memory entering
at the 2.5PN level.

IV. FULL 3PN ECCENTRIC WAVEFORM

In this section we summarize the results necessary
to construct the full waveform for eccentric binaries at
third post-Newtonian order, including all instantaneous,
hereditary, and post-adiabatic contributions, as described
in Sec. V of Paper I. Rather than listing the lengthy
expressions, we give an overview at which PN order the
individual terms enter the waveform and where they
can be found. Explicit expressions for all spherical
harmonic modes are given in a supplemental Mathematica
notebook [67].

We present the waveform in terms of the secular evolving
PN parameter X and the time eccentricity e, parametrized by
the angles & and y. We refer to Sec. V C of Paper I for their
definition, and to Appendix B therein for various relations
between the orbital elements (/, 4, ¢) and (&, 4¢, y). The
secular evolution of the parameters X and é is given in
Appendix B. The spherical harmonic modes describing the
waveform are then written in the following form:

8G .
hfm _ 2”;1/ \/ge—lmWHfm. (35)

Modes with m < 0 can be calculated from

h'=m = (=1)h™. (36)
In general, the individual modes can be split into three
types of contributions:
m _ gt ¢ ¢
H™ = Hiyg + Hierea + Hposea- (37)
The instantaneous terms depend only on the instantaneous
state of the source at a given retarded time, with contri-

butions at different orders relative to the leading order for
each mode given as

Hfr?;t = (Hf;st)Lead + ( mst)]PN + ( mst)l 5PN
+ (Hilst)ZPN + ( 1nst)2 SPN + ( 1nst)3PN (38)

These are given in terms of x, e, and u in Egs. (5.09)—(5.11)
and Eq. (A1) of Ref. [65]. The parametrization in terms of u
has to be transformed to & using Eq. (B2b) in Paper L.

The post-adiabatic contributions are introduced by
radiation-reaction corrections to the quasi-Keplerian para-
metrization, at relative 2.5PN order:

H SS& = (H ggét-ad)z.spN- (39)

They are given in Eqgs. (66)—(67) of Paper I.

The hereditary contributions, on the other hand, depend
on the entire dynamical past of the binary system. They can
be further split into tail and memory parts:

H{m = Hm+ Hom (40)

tail

For the tails we find contributions at different orders
relative to the leading order for each mode as

H = (H{) sen + (Hgasen + (Hiisen- (41

These are given in Eqs. (47)—(48) of Paper L
There is both DC memory and oscillatory memory:

Hity = HEL + HYE. (42)
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DC memory enters the waveform in the m = 0 modes at all
relative orders,

Hgsmc = (Hsﬁowosc)l spN T ( slowosc)2 5PN
+ <Hsﬁ0w osc)3PN + (Htastosc)Z 5PN (44)

Hgoc — Hgoc Voo + (H DC)IPN +( DOC )1 spx Slow oscillatory'memo.ry is duﬁ: to the doul?le-periQQic
nature of eccentric motion and is not present in quasicir-
+ (HEL)apn + (HE: )2 spn + (HEE)3pns  (43)  cular binary systems. All memory modes are computed in
this paper and are listed in Appendixes D and E.
As an example, we present here the dominant H%> mode

while slow and fast oscillatory memory enter as including all contributions to O(e):
|
HZ =1+e¢ : e ¢+ §ei’5 (45a)
Newt — 4 4 ’
107 55v . 257 169y 31 35v
H2 — 7 ) > | a—ié i& - 4
IPN x{ i) +42+e[e < 68 " 168)+ ( 24+24)]}’ (45b)

[ . (Nx 27i (3 w137 3
el (1)) (2o )

2w 2173 1069u+2047y2+_ i 2155 16551/+3711/2 e _ 4271 351311/+4211/2
N T 1512 216 1512 252 672 288 756 6048 864

Q

(45d)
107 347 9i 229z 14579 61z 4731 3iv
HZ o =32 ——— 4 [ —24i +=—— ¢ el - — — ") In(2
25pN = { 21 +< l+21)””{ < 2+168+< 140 +42)”+<28 7>n( )>
27i 1081z 1291i  137x 27i 3
—i¢ _ =
te < 27168 +< 180 42 >”+(4 +9w> 1“(2))”’ (45¢)
o 27027409+428izr 272 856y 278185+417r 2026127 N 1146357 17121n(2) 428In(X)
= X _ = — —
3PN 646800 105 3 105 33264 96 2772 99792 105 105
+ o[ 219775769+749in+497r2 749y 121717  41x2 865312  33331.°
1663200 60 24 30 20790 192 8316 399168
N 2889+8117z n 3\ 81 2 3\ 749In(2) 749In(x)
70 2 2 2 2 15 60
¢ (55608313 N 3103ix N 2972 3103y 199855 . 4172 996712 N 3557913
1058400 420 24 210 3024 48 1008 36288
6527 3ir 3In2(2) 3103 1n(%)
) In(2 - ) 45f
+< 210+2>n()—|— 2 420 (450)

Note here the difference at 2.5PN order between Eq. (40) and Eq. (76) of Paper I, due to additional memory terms not yet
considered in Paper 1. Complete expressions for all modes to O(e®) are given in the Supplemental Material [67].

By taking the quasicircular limit of our modes as described in Sec. V E of Paper I, we can compare the instantaneous, tail,
and (fast) oscillatory memory contributions of our waveform modes with Ref. [64] and the DC memory terms with
Ref. [62]. In all of them we find perfect agreement.

V. BRIEF SUMMARY

In this paper we computed the memory contribution to the gravitational waveform from nonspinning compact binaries in
eccentric orbits at the third post-Newtonian order. Our results complete the previous work on the instantaneous parts [65]
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and on the tail and post-adiabatic contributions [66]. These
waveforms form the basis for the construction of increas-
ingly accurate GW templates from binary systems in
eccentric orbits.

There are two fundamentally different types of memory.
DC memory is a slowly increasing, nonoscillatory con-
tribution to the gravitational-wave amplitude, entering at
Newtonian order, leading to a difference in the amplitude
between early and late times. Oscillatory memory, on the
other hand, enters at higher PN orders as a normal periodic
contribution. Due to the double-periodic nature of the
eccentric motion, slow oscillatory memory contributions
on the periastron precession time scale are enhanced by a
factor of 1PN, and thus already enter the waveform at
1.5PN order. This is unlike the quasicircular case, where
oscillatory memory only enters at 2.5PN order.
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o0

756

APPENDIX A: COMPUTATION OF THE
MEMORY VIA THE RADIATIVE
MASS MULTIPOLES

The computation of the nonlinear memory in the paper is
done effectively via the GW energy flux with the formula
given in Eq. (8). An alternative way is to directly compute
the required moments of the memory contribution to the
radiative mass multipole. The leading-order memory piece
of the mass quadrupole moment contributes at 2.5PN;
however, due to the hereditary integral the DC terms are
raised by 2.5PN orders such that they contribute at leading
order in the waveform polarization. Reference [81] lists the
memory contributions up to 3.5PN. From this we are able
to compute the DC memory to 1PN accuracy. The
hereditary integral enhances the slow oscillatory memory
terms by 1PN; therefore, by knowing the 3.5PN contribu-
tion to the mass moments we find the leading-order 2.5PN
terms contributing at 1.5PN and 2.5PN in the waveform,
and that the 3PN terms appear at 2PN and 3PN and the
3.5PN terms at 2.5PN. However, what we miss are the 4PN
terms that appear in the waveform at 3PN level. On the
other hand, the fast oscillatory memory is not affected by
the hereditary integral in its PN order, and we recover it at
2.5PN and 3PN. The required memory contributions at
3.5PN to the radiative mass moments are

5 32
M) (@M, (7) = = S S (7)

teani (g S OME 0 - T M @S0 )| (A1)

() = 5 [ e |3 MM, 0) = S et @540 | (Alb)
o) =5 [ e fmGomio)] + & [T | Zulom, o - g om0

+ 33500 + e (- M @300, 0) + 3O, )| (AL

g (o) = [ as G M oM, 0] (Ald)

Ut =5 [ ar M om0, 6) - 30w, o)) (Ale)

Note that the symmetric trace-free (STF) projection (...) only applies to the free indices ijk.... The integrand in those

equations consists of products of canonical mass and current moments, M(L"> (7) and S<L"> (7), and the superscript in brackets
stands for the nth derivative with respect to 7. The canonical moments are related by a gauge transformation to the source
moments /; and J; along with some more gauge moments that enter at 2.5PN in the 6/;,8J; terms,

ML:IL+G6]L+O(G2),

(A2a)
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For our purpose of calculating the memory contribution to
next-to-leading order, we only need the 1PN part of the
source moments. Here we list the relevant source moments
at 1PN for two nonspinning compact objects in general
orbits [65]. The source moments are written in terms of x;
and v;, which denote the binary’s relative separation and
relative velocity. Moreover, r is the distance between the
two objects, and thus » = |x| and 7 is the radial velocity. For
the mass quadrupole moment we have

ri r
l; =vm {Alxng) + A, 2 X) + Aj ?U<i1jj>:| . (A3)

where
1 29 29y Gm 5 8v
A =14+— |0 =22 — -+ = A4
! +c2{” (42 14)7L r ( 7 7)} (Ada)
12v
Ay = ——+4+—, A4b
2 7+ 7 ( )
11 11w
= ——_——, A4
372177 (Ade)
The 1PN mass octupole is
rr 2
Iijk = —z/mA le(ijk> + Bz ?XOJ"UI() + B3 ZXU’l}jk) s
(AS)
where
1 5 19v Gm{ 5 13v
B =1+—= | [=2-—= — | —=+—]1, A6
! +c2[”<6 6>+r<6+6>} (A6a)
B, = —(1-2v), (A6D)
B;=1-2u, (A6c)

and A = (m; —m,)/m is the mass difference ratio.
Moreover, we need also the leading-Newtonian-order part
of the mass hexadecapole,

Liji = me(ijkl)(l - 3v). (A7)
From the current source moments we need the quadrupole,
which is

rr
Jij = —vmA | CreqpiXjyavp + ng%b(ﬂ)j)bxa . (AB)

where

L[ ,/13 17\ Gm (27 150
C] —1+?|:1) (ﬁ_7> +T<ﬁ+7>:|, (A9a)
5

szﬁ(

1-2v), (A9b)

and finally the leading order of the current octupole is

Jijk = UmeqpiXjpavp(1 = 3v). (A10)
Having the source moments in hand (and thus in our case
also the canonical moments), we can calculate the products
of time derivatives of the canonical moments occurring
in the integrands of Eq. (Ala)—(Ale). Before treating the
hereditary integral, we transform from the STF moments
U™ computed here to the scalar version of the radiative
mass moments using Eq. (4) of Paper I. These are the same
moments that we find when computing the memory with
Eq. (8). The hereditary integral is evaluated in the same way
as described in Secs. III B and III C. Using this method, we
find the 1PN DC memory and the 1PN oscillatory memory.
Be aware that the DC memory appears in the waveform at
leading Newtonian order, while the first slow oscillatory
memory terms appear at 1.5PN and the fast oscillatory
memory at 2.5PN.

This method of computing the memory contribution
serves as a check. We can compare the relative 1PN pieces
of the DC and oscillatory memory calculated before and
here, and they are found to be in perfect agreement.

APPENDIX B: RADIATION-REACTION
EVOLUTION EQUATIONS

In this Appendix we provide the secular 3PN-accurate
evolution equations for x and e [78-80] in MH gauge. The
instantaneous terms are exact, whereas the eccentricity
enhancement functions appearing in the hereditary con-
tributions are given in an eccentricity expansion. We begin
by listing the pieces needed for the evolution of x:

dx 2c%ux’
dr W<XNBWt +xX 1px X2 Xopy + X7 X3pn + Xhered)

(B1)
where

1 6 2928 37¢
{9 92¢ e}, (B2a)

XNewt = (1 _ 32)7/2 3 +75 + 3

1 1486 2640 (2193
LA — 570
(1—e2)9/2{ 35 5 ”( 7 70 ”)

4ot 12217 5061v Lo 11717 148v
e - e - ,
20 10 280 5

(B2b)

XIPN =
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Xy — { 11257 " 15677y n 944,72 ) <_ 2960801  2781v n 1823871/2>
(1—e2)11/2 945 105 15 945 5 90
_ 68647 1150631y 3964431/2> 6 <925073 _ 199939 + 1929431/2>
1260 140 72 336 48 90

|
e
391457 6037 2923,2 6 4268
8( - ”+ ”>+\/1—e2{48—¥+e2<2134— 5”)

e

3360 45
4 17
2193 — 386”) + e <75—35 )” (B2¢)
614389219 ( 57265081 3697r2> 160732 112117
— D—

X _
PN - )13/2{ 148500 11340 2 140 27

19769277811 66358561 n 42571 x? 316170122 1287385.°
693000 3240 80 g 840 324

1
e?
4< 3983966927 <6451690597 124037r2> 348770192 337695971/3)

o4

2

8316000 90720 64 1120 1296
4548320963 59823689 24256372\ 4114018572 3200965
5544000 <_ 4032 640 )” 6720 108 )
19593451667 <_ 6614711 _ 12177;:2) 9276207 9826451/3>
2464000 480 640 7 162

10 (33332681 1874543 + 10973312 : 8288.° + \/1_72 1425319 9874 4 r? 63212
197120 10080 840 81 1125 105 10 5

ef

8

2

933454 (2057181 4596172 125278,
375 63 240 )¥ 15

4<840635951 ( 4927789 6191712) +317273y2)
- v

21000 60 + 32 15

702667207 6830419 n 287x° 2321772 ¢ (56403 427733v " 47392
31500 252 960 30 112 840 30

+Vvl-e )} (54784 465664¢> n 4426376¢* n 1498856¢° 31779e8> }

6

(1
] B2d
+log { x(1=e2) |\ 175 105 525 525 1350 (B2d)

96 4159 189
Xhered = 3 {47TX3/2€0(3> + mx3/? {—ml/fw(‘f) - T”Cw(‘f)}

116761 162> 1712y 1712 4x3/?
3 - — E_ 1 F . B2
T [ 3675 K(e)+( 3 105 105 °g< X0 )) (e)H (B2e)

The helper functions appearing in the hereditary contribution are given by

ule) = s 1= ey [V 1= 21 =5€)0le) ~ 4p(0)] + 2w (B3a)

583 16

Z.:a)(e) = %€(6> _%

9(e). (B3b)
The various enhancement functions appearing in these equations are listed below.
Next we state the evolution equation for the eccentricity. Note that we observed errors in the 2PN- and 3PN-order
expressions in Egs. (C10) and (C11) of Ref. [80]. These are likely due to the fact that only the relation between eM" and

e"PM was inserted, but one also has to transform de*PM/dt to deMH /dz,
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where

de Arext
= (En + xE1pn + X2EpN + X E3pN + Ehered)- (B4)

dr Gm

1 304 12162
- 52\15 " 15 B
gNewt (1 _ €2>5/2 { 15 + 15 }7 ( 53.)
1 039 4084y (29917 7753 13920 1664
_ _939_ _ , B5b
Eie (1—e2)7/2{ 35 45 ( 105 30 ”) ¢ < 280 45 )} (BSb)

1
Epn = -
2 (1—e2)9/2{ 890 4 s

1336 2672 2321 2321
+\/—[336 6 ”+e2<3 23 ”>+e4

949877 18763v 75204 [ 3082783 9884231/%_644331/2
2520 840 40

4 (23289859  13018711v n 12741122 420727 362071v n 82112
15120 5040 90 3360 2520 9

<¥ _ 1133y>] } (B5<)

15 2 5

e B 1
3PN = (1= &)l 6237000

2271304 26991 237° 4332,°
+m[_ 30 9+<_55 699 +83 37r>y+5 332u

5

54208557619 50099023 . 7797 3 408892112 3 610012°
113400 10 2520 486

46226320013 28141879 13903172 3 2128390722 3 86910509.°
6237000 900 960 3024 19440

o
4< 116987170177 <11499615139 2718717r2> 6109367512 22232411/3)

16632000 907200 1920 4032 180

5891934893 5028323 65192 2475766704 117920693
1232000 560 640 2520 2430

g (302322169 1921387v n 4117912 3 1933961°
1774080 10080 216 1215

eb

15750 945 180 45

5 (89395687 38295557 n 94177 7% 681989.2
7875 1260 960 90

4<5321445613 <26478311 2501772) 2251061/2>

378000 512 2880 45
6 <186961 289691y N 31971/2>} 730168
336 504 18 23625(1 + V1 —e?)

304 (/82283 n 297674 , 1147147 , n 61311 In x(1+V1-¢?)
e e e ;
1995 1995 15960 21280 2x0(1 — €?)

(B5d)

SS6OL 4 19067
1344 V') 06

[(89789209 874191n2 780031113) (e)
769

——Snx3/2(pe(e) + 7x 5/2{ (e )]

352800 630 i 560

769 (162° 1712y 1712 (4x*?
e - 1 F . B5
9 ( 3 0105 105 n( w ) ) (BSe)
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The additional functions in the hereditary contribution are

0ul0) = 2V LT o) - )] (B6)
o= tome L [Vim(1- 50~ (1-3¢)a0)] + le A [Vi= eyt -ate)],
(B6b)
R (B L70) B Ve TR ) T
k,(e) = Jle;—& [mk(e) - zz(e)] <% - %m 2+ ?;22?;2 In 3) o (B6d)
F,(e) = 79669\/162—62 [ 1= e2F(e) - F(e)] : (B6e)

The eccentricity enhancement functions arise from hereditary contributions to the energy flux (nontilde) and the
angular momentum flux (tilde). Most of them do not admit closed forms and have to be computed numerically or in a
small-eccentricity expansion. Here we list them in an eccentricity expansion to O(e):

2335 | 42955 , 6204647
— 1 2 4 6 B7
ple) =1+ g+ =+ 3ger ¢ (B7a)
209 ., 2415 , 730751
~ =1 =72 4 6 B7b
Ple) =1t 55 e+ e e + 5432 ¢ (B7b)
22988 , 36508643 , 1741390565
_1_ _ _ B
yle) 8191 ¢ ~ 524224 ¢ T 4718016 ¢ (B7c)
17416 , 14199197 , 467169215
~ =1= 2 _ 4 6 B
v(e) 8191 ¢ ~ 524224 ¢ T 4718016 < (B7d)
01+ 62 4613840 24570945 .\ (9177 271636085 466847955
k(e) = —- e -
3~ 350283 1868176 64 ' 1401132 7472704
L (T6615 4553279605 14144674005 914306640625
P - S T N3 4 0y 5 ) (B7e)
128 2802264 119563264 1076069376
o) =142 3892056005 8190315 N (3577, 50149295 155615985
k(e) = el =—- e -
32 233522 934088 64 | 467044 3736352
. (43049 12561332945 4709431125 182861328125 570
256 16813584 59781632 538034688 :
1011565 , 106573021 , 456977827
_ , B7
&le) 48972 ¢ T 783552 854784 ¢ (B7g)
i 102371 . 14250725 , 722230667
. 2 4 6 B7h
40 8162 ¢ " 261184 ¢ T 4701312 ¢ (B7h)
62 . 9177 , 76615
Fle)=1+42¢2 4211t 6 B7i
() =TH et 128 ¢ (B7i)

084043-14



GRAVITATIONAL-WAVE AMPLITUDES FOR COMPACT ... PHYS. REV. D 100, 084043 (2019)

Fle) = H@ 357764 43049
- 32 64 256

e°. (B7j)

By dividing the evolution equations for x and e and expanding in these variables, we can find a solution for the evolution
of x in terms of e at each order as described in Sec. III B. Here we provide x(e) at 3PN and to leading order in eccentricity:

x(e) = Xnewt T X1pN + X1 5pN T XopN + X25pN T X3pNs (B8)
where
e 12/19
XNewt — ; (B9a)
24/19 2833 197v ey '2/19 (2833  197v
- ki € 2997 : BOb
PN = on ) < 3192 F 114)+<e> (3192 114)] (B9b)
37 7% 12/19 37771- 30/19
5/2
B
X1.5PN = [228 <e> 598 < ) ], (B9c)

s (eo\'?1 [ 358353209 + 738407y + 205972 eo\ 2419 [ 8025889 + 558101y 388092
XopN =Xy | | — - — - -
2PN o1\ e 366799104 = 727776 17328 5094432 90972 6498

" € 36/19 1936217217 5781?>51/+2486811/2
e 366799104 80864 51984 '

e

(B9d)

12| (eo'?/"?( 3763903% 127887797 e\ 2419/ 1068041x N 742691
X =X — - - — -
25PN 720 e 7277760 1819440 e 363888 12996

e\ 319 [ 53402057  371345mw o\ /19 (12956437 265148971
+{ —~ + +{ - , (BYe)

1455552 51984 1819440 454860

12/1974942027570449143 n 810257% 3317y 12091In2 78003In3 3317Inx,
X3pN = X - - - -
N 96592876047360 103968 399 5985 5320 798

+

10309531979 39777/7 267351733>  7725831° € 30/19 7 7106457
7466981760 3648 82966464 2222316 103968

( 0> 24/19 (605942457431 3267214507y 54379692702 274635731/3>
e

+

585411369984 2986792704 82966464 + 2963088

36/19 /2652303375761 4497675374591/_|_27545799831/2 48990157.°
390274246656 13938365952 55310976 1975392

>48/19[ 1628129474693173  1574057> 3317y; 120911n2 78003In3 6634 <e0)

_|_

+ 27597964584960 + 25992 399 5985 * 5320 +2527 1

n 3317 Inx, <668655 1181963 39777:2) 6641442629, 2823 106391/3} }

e

Bof
798 209075489280 + 3648 165932928 + 17778528 (B91)

APPENDIX C: OSCILLATORY MEMORY INTEGRAL

Here we derive the formula to evaluate the oscillatory memory integrals in Eq. (30). For convenience we set G = ¢ = 1 in
this Appendix. We define the integral that has to be computed as

Tg .
I = / drx? (1)t (1) il 9) (1)

(o]
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We follow the approach of Ref. [73], where this integral
was evaluated in the case of circular orbits (¢ = 0). The
eccentric orbit is assumed to evolve only with the secular
radiation-reaction equations given in Egs. (15a)-(15b)
starting from x =0 and e = 1 in the remote past. Every
astrophysical process like capture or mass loss possibly
happening to the binary is ignored. We start by restating the
evolution equation for x at leading order in x and e,

{1 +%ez(t)} .

and integrate it over a time interval up to some coalescence
time 7', where the orbital frequency and therefore x tends

to infinity:
/Tcdt:/‘x’ dx(t) .
t x(1) (dx/dt)

Thereby, we find an explicit relation between the orbital
frequency (related to x) and time t:

dx() _ 64vx3 (1)

C2
dr Sm (€2)

(C3)

157 ,

We can now invert the x(e) relation derived in Eq. (25)
to find e as a function of x. Considering only the leading
order, we find

5mo 1 { )

Te—t=-—
¢ 256u x*(1)

(C5)

e(t) = e(Ty) <X<TR)> e

x(1)

Using Egs. (C4) and (C5), we get x as an explicit function
of t:

1/ Sm \'A[ 157, Te—t )19/
x(”‘i(u(Tc—r)) [l‘ﬁe ”’”(rc—u) ]

(Co)

A quick check reveals that this expression indeed solves the
differential equation in Eq. (C2). Since the memory integral
runs up to the current time Ty, we introduce a new
integration variable y which is better suited to the integra-
tion limits we have:

T —1t

y:

8(T¢ - TR)X3/2(TR)
Sm

&(t) = &(Tg) -

1 1 =
A+ =11 = 7606 ¢

Next, we express the time-dependent quantities in the
integral in terms of y and their values at the current time
Tx. For x we find

157

X(y) =x(T) (1) |1 =552 (TR) (143) P = 1) |
(C8)

and for the eccentricity we find
e(y) = e(Tr)(1+y)"/*. (€9)

Note that while going back in time, with increasing y, we
only let the eccentricity evolve until e =1 is reached.
Furthermore, we need the redefined mean anomaly &(¢) in
terms of y and its value at the current time. Because ¢ is

defined in terms of & = n, we have to calculate the integral

£(1) = E(T¢) - / "drn(r)

Tc

—e(re) o [ @)
Tc

m

=&(Tc) - (Tcm;TR)/_) dy'x¥2(y").

1

(C10)

We can now evaluate the latter integral by inserting the
expression for x(y) given in Eq. (C8). This leads to

8(T¢ - TR)X3/2(TR)
Sm

2(T)(15(1 + )19/ 34)}

(1) =&(Te) - (1+y)*

[ 471
X

11696 °¢
(C11)

where &(T ) is the value of £ at the moment of coalescence.
Thus, at the current time 7', the mean anomaly is given by

8949
T 11696° (TR)]'
(C12)

&(Tr)=¢(Tc) -

8(Tc—Tg)x**(Tg)
Sm [

Now we are able to express &(7) in terms of £(Tg) and y,

471 19 = 34(1 + )8 + 15(1 + y)'7/12

Z(TR) (] +y)5/g —1

], (C13)

where x(Tg) and e(Ty) stand for the respective current values of x and e.
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At this point, we introduce a dimensionless “adiabatic parameter” y(Tg), which is connected with the inspiral rate at
the current retarded time 7,. We define it as the ratio between the current period and the time left until coalescence,

1
y(Tg)=—F—, Cl4
T = T T =T 1
where n(Tg) = x*?(Tg)/m at leading order. Explicitly in terms of x(7%) and e(Ty), it reads
256y 157
A1) =B 21|14 ()| c15)
Inserting y(Ty) into Eq. (C13), we find
8 471 19 = 34(1 4+ y)>8 + 15(1 4 y)17/12
1) =&(Tg) - L4+y)8 =1]|1 = —— (T C16
{0 = &(T) - s {(1-43)7 - 1) 1= e e (c16)
Now we put Egs. (C8), (C9), and (C16) into the oscillatory integral and write it as an integral over y:
-]mem = (TC - TR> /oo dyxp(y)eq(y)ei(sié(y)+rf(y))
0
: o 8i 1 +k
= (T¢c - TR)el<r+s(1+k))<§(TR)/ dyx?(y)ed(y) exp{_w [(14 )38 1]
0 5x(Tx)
471 19 = 34(1 + y)%/8 4+ 15(1 + y)'7/12
_ A(T) (L+y)" +15(1+y) . c17)
11696 (14+y)/8 -1
Let us look at the form of this integral:
o i
S~ [ 1) exp |- (c18)
0 (Tx)
The strategy is to integrate by parts, and therefore we need to know the following type of integral:
[ et = - 4 O(g (). (c19)
og (v)
This formula is valid as long as ¢/(y) is sufficiently large. Integrating Eq. (C18) by parts, we get
ix(Tx) i © . ©  f) i
Jmem ~ f (¥ [— expL{ gy” + (T / dy——=exp gy)|. C20
D500 & L W IR V) [y ) (€20

As y approaches infinity in the remote past, we notice that f(y) = x”(y)e?(y) goes to zero. This is because at early times the
frequency reaches zero and the eccentricity cannot grow past e = 1 in our model. Evaluating the first term at y = 0, we
recover x and e at the current time and the exponential factor is just 1 since g(0) = 0. The derivative ¢(y) in the
denominator evaluated at y = 0 is effectively 1 multiplied by some constants. What remains in the first term of Eq. (C20) is
therefore of order y(Tk). Looking at the second term, we find the same integral form as in Eq. (C18). Successively
integrating by parts would yield another factor of y(Ty) each time. Since this parameter is already of order 2.5PN, the
higher-order y(Tk) contributions can be safely ignored. Including everything of order y(7Tk), we find the formula

iy(Tk)

Joem =—(T.—T xpeqei(s25+r§) _ ANVKR]
( ® (r+s(1+k))

i .
- _ P edeilsAstre) C21
n(rtsd1 k) ©° ’ (C21)

which allows us to compute the oscillatory hereditary integrals in Sec. III C.
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APPENDIX D: LIST OF DC MEMORY MODES

Here we list the 3PN-accurate DC memory contributions to the A" modes at leading order in eccentricity in the
following form:

8Gmv b3
‘m ¢
o ==, [ZHER, (1)

where HZ® is a function of x and e. The nonzero modes read

20 5 (H20

DC — 14 \/6 Newt

12/19
Hw =1- (i) : (D2b)

€;

o 4075+@+ e\ 12/ 2833+1971/ (e 24/19 (145417 2849y (D2¢)
IPN"" 4032 48 e; 3192 114 e; 76608 912 )’

377x (e \'2/19 377z [ e)30/19
HO e = D2d
15PN 228 <e,-> 228 (e,-) ’ (D2d)

+ xH%gN + x3/2H%.OSPN + XQH%gN + XS/ZH%.OSPN + x3H§]O:’N)’ (D2a)

20 7_151877213_123815v+205v2 e\ 12/19 358353209_7384071/_205971/2
PN 67060224 44352 352 366799104 727776 17328

<e>24/19<411966361 825950v 561253v2>

€;

122266368 68229 + 51984

n e\ 3¢/19 /50392977379 n 764295307y 1165420942
24208740864 48033216 1143648 )’

€

€;

w0 253z n 2537y e 12/19 37639037 n 12788779nv e 24/19 (548222097 _ 10740737y
25PN 336 84 e; 7277760 1819440 e; 8733312 103968

N <e>30/19 (5340205,; 371345771/) <e)42/19( 424020733% 270491877:1/)

(D2f)

1455552 51984 e; 43666560 + 3638880

€

HO 4397711103307 n 700464542023 20572 695279512 n 132198122
3PN 532580106240 13948526592 96 166053888 5930496

L (e 12/1974942027570449143  81025z> 3317yg 10309531979 n 3977x°
— - - - v
96592876047360 103968 399 7466981760 3648

26735173312 n 7725830 n 12091 1n2 n 78003 1n3 n 3317Inx|  7106457> [ e\ 30/19
82966464 2222316 5985 5320 798 103968

n e\ 219 7 31102835980319 n 279737759653v n 2673046628317  397176241.°
14049872879616 167260391424 1991195136 23704704

n e 36/19 1 142763304914707 n 48901891428821y  400181473249.2 n 229587917313
25758100279296 919932152832 3650524416 43458624

+<e>48/19[385621605844415513 1574057% 3317y <49590995147570629 12717r2>

€;

€;

€;

€;

5740376633671680 25992 399 478364719472640 + 1216
31945362464631% 167294871312  120911In2  78003In3 3317Inx 6634 <e>}

34514049024 45653504 5985 5320 798 2527 '\e;

€;
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1
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APPENDIX E: LIST OF OSCILLATORY MEMORY MODES

(D4c)

(D4d)

(D4e)

(D5a)

(D5b)

(D5c¢)

(D6a)

Here we list the nonzero oscillatory memory contributions to the 4*” modes at 3PN order and to quadratic order in

eccentricity in the following way:

hfm — 8Gm1/x Ee—imy/Hfm
S S 9
0sc CQR 5 osc

(E1)

where HS is a function of x, e, and the modified mean anomaly & To improve readability in the odd-m expressions, we

define A = (m; —m,)/m=+/1—4v:
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