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GKM THEORY FOR ORBIFOLD STRATIFIED SPACES AND

APPLICATION TO SINGULAR TORIC VARIETIES

SOUMEN SARKAR AND JONGBAEK SONG

Abstract. We study the GKM theory for a equivariant stratified space having

orbifold structures in tis successive quotients. Then, we introduce the notion
of an almost simple polytope, as well as a divisive toric variety generalizing the
concept of a divisive weighted projective space. We employ the GKM theory
to compute the generalized equivariant cohomology theories of toric varieties
associated to almost simple polytopes and divisive toric varieties.

1. Introduction

A toric variety of complex dimension n is a complex algebraic variety with an
action of the algebraic torus (C∗)n having an open dense orbit. It is equipped with
a natural action of compact n-dimensional torus T n. The category of toric varieties
has been one of the main attractions in algebraic and symplectic geometry from the
beginning of 1970s. One of the reasons is their rich interaction with different fields
of mathematics, such as representation theory and combinatorics. For instance,
one may get a lattice polytope P from a projective toric variety X by the convexity
theorem [Ati82, GS82] and vice versa by Delzant’s construction [Del88, Gui94].
Moreover, the lattice points in P give a weight decomposition of H0(X,L) as a
torus representation, where L is a very ample line bundle over X .

From the topological point of view, such a correspondence leads us to ask how to
extract topological invariants for a toric variety from the associated combinatorics,
i.e., lattice polytopes or their normal fans. Indeed, there is a rich and vast literature
dealing with this question for several invariants. For example, we refer to [Dan78,
DJ91, Jur85], [Mor93], [BB00], [BR98] for non-equivariant cohomology theories,
and [Bag07, VV03] for equivariant cohomology theories. However, most of the
computations are focused on the category of smooth toric varieties.

Now, we change gears to singular toric varieties. Simplicial toric varieties, namely
toric varieties having at worst orbifold singularities, may be the mildest class of sin-
gular toric varieties. Their ordinary cohomology and Borel equivariant cohomology
over rational coefficients behave in a similar manner to smooth toric varieties (see
[CLS11, Section 12.3]), while their integral cohomology theories are known only for
particular classes under some hypothesis [Kaw73, AA97, BSS17, BNSS19].

For even worse singular toric varieties, their topological invariants are far away
from the situation of smooth toric varieties. For example, their ordinary cohomol-
ogy may not vanish in odd degrees in general, which complicates the computation
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of some spectral sequences such as Leray–Serre or Atiyah–Hirzebruch spectral se-
quences.

In this paper, we introduce the concept of an orbifold stratified G-space X for
some topological group G, i.e., X is a finite G-CW complex with an equivariant
stratification

(1.1) X1 ⊆ X2 ⊆ · · · ⊆ Xℓ = X

such that each of the successive quotients Xj/Xj−1 is homeomorphic to the Thom
space of an orbifold G-vector bundle and Xj −Xj−1 is equipped with an effective
orbifold structure. We note that the total space X may have arbitrary singularities.
For instance, toric varieties associated to polytopes illustrated in Examples 3.2, 3.3
and 3.4 are singular, but not orbifolds. A relevant concept of an orbifold stratified
space is studied in [CLW16, Definition 1.1] in the language of Lie groupoid.

The main purpose of this paper is to study the generalized GKM theory for
the category of orbifold G-stratified spaces as in (1.1). Over this category, we give
a concrete description of complex-oriented generalized equivariant cohomologies
with rationals, namely, we consider E∗

G(−) ⊗Z Q. For example, E∗
G can be Borel

equivariant cohomologyH∗
G or complex equivariantK-theoryK∗

G following [Seg68].
In particular, if the orbifold singularity of Xj −Xj−1 is trivial for all j, we recover
the main results of [HHH05, HHRW16].

This paper is organized as follows. In Section 2, we discuss the notion of a simple
orbifold G-bundle and the equivariant Thom isomorphism as a foundation of the
GKM theory for orbifold stratified spaces. Then, we introduce the definition of an
orbifold G-stratification and verify how the generalized GKM theory of [HHH05]
can be extended to the category of orbifold G-stratifications.

Section 3 is devoted to a combinatorial characterization of toric varieties for
which our main results hold. Such a class of toric varieties may have arbitrary toric
singularities beyond orbifold singularities. Here, we bring the idea of retraction
sequence [BSS17] of a simple polytope and extend this to the category of general
convex polytopes. This allows us to give an orbifold torus-equivariant stratification
on the corresponding toric variety, see Theorem 3.6. For these toric varieties, we give
the GKM theoretic description of generalized cohomology theories in Proposition
3.9.

In Section 4, we summarize the concept of a piecewise algebra associated to a
fan, which is studied in [HHRW16, Section 4]. Then, we establish Theorem 4.3
describing E∗

Tn(X) ⊗ Q where X is a singular toric variety discussed in Section 3
and T n is the compact torus acting on X .

Finally, generalizing the idea of a divisive weighted projective space, we introduce
the notion of a divisive toric variety in Section 5 to compute generalized equivariant
cohomologies with integers. The conclusion is stated in Proposition 5.4.

We close the introduction with some previous works relevant to the study of
this article. The author of [Gon14] considers ‘Q-filterable spaces’ and if they are
projective T -varieties then they have a stratification similar to (1.1) where Xj −
Xj−1 is a ‘rational cell’ which may not be an orbifold. Under the assumption of
‘T -skeletal’, he studies GKM-theory to obtain the Borel equivariant cohomology of
those spaces. Nevertheless we are also interested in other generalized equivariant
cohomology theories.

The authors of [HW19] studies equivariant K-theory of toric varieties associated
to ‘fans with distant singular cones’, where they use Mayer–Vietories sequence to
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show their main theorem [HW19, Theorem 7.2]. There are many singular toric
varieties beyond their consideration with stratification as in (1.1). For instance,
simplicial toric varieties such that all fixed points are singular are excluded from
their study.

We also note that [DKU19], [SU] and [Sar20] discuss integral equivariant coho-
mology theories for (quasi)toric manifolds, toric orbifolds [DJ91] and locally stan-
dard torus orbifolds [HM03], respectively. We emphasize that there are many inter-
esting toric varieties which are not orbifolds, such as the Gelfand–Zetlin toric variety
in Example 5.5 or see [KV19], whose integral generalized equivariant cohomology
theories (H∗

T ,K
∗
T and MU∗

T ) can be described by using Proposition 5.4.

Acknowledgements. The authors would like to express sincere gratitude to anony-
mous referees for helpful comments. The first author would like to thank the
international relation office of IIT-Madras and SERB India for MATRICS grant
MTR/2018/000963. The second author has been supported by Basic Science Re-
search Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (NRF-2018R1D1A1B07048480) and a KIAS Individ-
ual Grant (MG076101) at Korea Institute for Advanced Study.

2. GKM theory for orbifold stratified spaces

The goal of this section is to apply the GKM theory studied in [HHH05] to the
category of equivariant stratified G-spaces, where certain orbifold structures are
involved in their successive quotients. By a G-space we mean a finite G-CW com-
plex for a topological group G. In this paper, we are interested in G-equivariant
cohomology theory E∗

G associated to a ring G-spectrum E as defined in [May96,
Chapter XIII]. We note that E∗

G(X) is a commutative ring together with the struc-
ture of E∗

G(pt)-algebra induced from the equivariant collapsing map X → {pt}. In
particular, we study E∗

G(X) ⊗ Q for a G-space X . For simplicity, we use E∗
G(X)

in place of E∗
G(X) ⊗ Q. Note that for Borel equivariant cohomology H∗

G, we have
H∗
G(X)⊗Q ∼= H∗

G(X ;Q).
To establish the structure of stratification of a G-space, we begin with a complex

E-orientable G-vector bundle ξ : V → B and a finite group A acting linearly each
fiber of ξ, which commutes with G-action on V and preserves E-orientation of
ξ. (See [May96, Chapter XVI, Definition 9.1] for the definition of E-orientation.)
Then, one may consider the induced fiber bundle

ξA : V/A→ B,

which we call a simple orbifold G-bundle. The associated disc bundle D(V ) → B
and the sphere bundle S(V ) → B of ξ are invariant under A-action, as A acts
linearly on each fiber. Hence, one can define a q-disc bundle D(V/A)(= D(V )/A) →
B and a q-sphere bundle S(V/A)(= S(V )/A) → B in the usual manner, which
yields the Thom space Th(V/A) := D((V/A)/S(V/A)) of ξA and the map

ξ̃A : Th(V/A) → B.

We refer to [PS10, Section 4] and [BNSS19, Section 2] for the notions of a q-disc
and a q-sphere.

When the cohomology theory E∗
G is Borel equivariant cohomology H∗

G or equi-
variantK-theoryK∗

G (see [Seg68]), then we have the equivariant Thom isomorphism
for a simple orbifold G-bundle.
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Proposition 2.1 (Thom isomorphism). Let ξA : V/A → B be a simple orbifold

G-bundle of rank n. For cohomology theories E∗
G = H∗

G or K∗
G, there exists a

cohomology class ηA ∈ EnG(Th(V/A)) such that

∪ηA : E∗
G(X) → E∗+n

G (Th(V/A))

is an isomorphism.

Proof. Consider the commutative diagram

Th(V ) EG×G Th(V ) BG

Th(V/A) EG×G Th(V/A) BG,

=

where vertical maps are projections induced from the A-action and two horizontal
compositions are Borel fibrations. Applying Leray–Serre spectral sequence for two
Borel fibrations, we get the isomorphisms

H∗
G(Th(V )) ∼= H∗(Th(V ))⊗Q H

∗(BG)(2.1)

H∗
G(Th(V/A))

∼= H∗(Th(V/A)) ⊗Q H
∗(BG).(2.2)

We note that H∗(V ) ∼= H∗(V/A) and H∗(V0) ∼= H∗(V0/A) with rational coeffi-
cients, where V0 denotes the complement of the zero section. Now, the long exact
sequence of the pair (V, V0) together with the Five Lemma shows thatH∗(Th(V )) ∼=
H∗(Th(V/A)). We refer to [PS10, Section 5.1] for more details. Hence, the left-
hand sides of (2.1), (2.2) and H∗

G(Th(V/A)) are isomorphic.
Consider the commutative diagram

V V/A

B B,

ξ

ρ

ξA

=

where ρ is the canonical projection given by the action of A on V . This induces
the diagram

H∗+n
G (Th(V )) H∗+n

G (Th(V/A))

H∗
G(B) H∗

G(B),

ρ∗

∪η

=

where the left vertical map ∪η is the equivariant Thom isomorphism (see [May96,
Theorem 9.2, Chapter XVI]) given by the cup product of the equivariant Thom
class η ∈ Hα

G(Th(V )). Therefore, the right vertical map is an isomorphism given
by the cup product of the pull back ηA := (ρ∗)−1(η) ∈ Hn

G(Th(V/A)).
Next, to show the claim for the equivariant K-theory, we consider the composi-

tion ch◦ψ, where ch denotes the Chern character from Borel equivariant K-theory
to equivariant cohomology and ψ is the canonical monomorphism from KG(Th(V ))
to K(EG ×G Th(V )) defined by assigning the vector bundle EG ×G ξ to each G-
equivariant vector bundle ξ, we refer to [AS69]. Applying the same composition to
Th(V/A) and the usual Thom isomorphism theorem for a genuine vector bundle,
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we have the commutative diagram:

K∗
G(B) K∗+n

G (Th(V )) K∗+n(EG×G Th(V )) H∗+n
G (Th(V ))

K∗
G(B) K∗+n

G (Th(V/A)) K∗+n(EG×G Th(V/A)) H∗+n
G (Th(V/A)),

∼= ψ ch

φ

=

ψA

f∗

ch

∼=

where we claim that φ is an isomorphism. Indeed, Chern characters are injective
as we are working with rationals. Hence, the surjectivity and the injectivity of f∗

follow from the commutativity of the left most square and right two squares of
the diagram, respectively. Therefore, we have K∗

G(B) ∼= K∗+n
G (Th(V/A)), induced

from the Thom isomorphism K∗
G(B) ∼= K∗+n

G (Th(V )) for a genuine vector bundle
V → B. �

Throughout this paper, we consider a simple orbifoldG-bundle with rank n over a
topological space B and assume that a complex-oriented G-equivariant cohomology
theory E∗

G has the Thom isomorphism

E∗
G(B) ∼= E∗+n

G (Th(V/A))

for a simple orbifold G-bundle given by the cup product of the equivariant Thom
class ηA ∈ E∗

G(Th(V/A)). Then, one can define the equivariant Euler class eG(ξ
A) ∈

E∗
G(B) of a simple orbifold G-bundle ξA by the restriction of ηA to the zero section.
Now we consider an equivariant stratification

(2.3) {pt} = X1 ⊆ X2 ⊆ · · · ⊆ Xℓ−1 ⊆ Xℓ = X

of a G-space X such that each of the successive quotients Xj/Xj−1 is homeomor-
phic to the Thom space Th(Vj/Aj) of a simple orbifold G-bundle ξAj : Vj/Aj →
Bj . Therefore, X can be built from X1 inductively by attaching q-disc bundles
D(Vj/Aj) to Xj−1 via some G-equivariant maps

φj : S(Vj/Aj) → Xj−1,

which gives us a cofibrations

(2.4) Xj−1 → Xj
q
−→ Th(Vj/Aj)

for j = 2, . . . , ℓ. Now, one gets the following proposition by the induction on the
stratification (2.3).

Proposition 2.2. Let X be an orbifold stratified G-space as in (2.3). If each

equivariant Euler class eG(ξ
Aj ) ∈ E∗

G(Bj) of the associated simple orbifold G-
bundle ξAj is not a zero divisor, then the map

(2.5) ι∗ : E∗
G(X) →

∏

j

E∗
G(Bj).

induced from the inclusion ι :
⊔

Bj →֒ X is injective.

Proof. Essentially, the argument is similar to the proof of [HHH05, Theorem 2.3].
Here we briefly make the foundation for the orbifold stratification (2.3). If the
stratification (2.3) has length 1, then X1 = B1 is a point. Therefore, (2.5) is an
isomorphism.

Let the stratification (2.3) have length ℓ and assume that (2.5) is an injective
map for any stratification (2.3) of length less than ℓ. By the assumption on the
stratification, we have the cofiber sequence (2.4) for each j < ℓ. Since equivariant
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Euler classes are not zero divisors and a cohomology theory E∗
G is considered to

have the equivariant Thom isomorphism, we get a short exact sequence

0 → E∗
G(Th(Vj/Aj))

q∗

−→ E∗
G(Xj) → E∗

G(Xj−1) → 0.

Hence, we have a commutative diagram

0 E∗
G(Th(Vj/Aj)) E∗

G(Xj) E∗
G(Xj−1) 0

0 E∗
G(Bj)

∏

i≤j

E∗
G(Bi)

∏

i<j

E∗
G(Bi) 0,

q∗

where the left vertical map is injective, as eG(ξ
Aj ) is not a zero divisor. The right

vertical map is also injective by the induction hypothesis. Now the Five Lemma
completes the proof. �

To describe the image of ι∗ in (2.5), we set up the following assumptions on a
stratified G-space X .

(A1) Simple orbifold bundles ξAj : Vj/Aj → Bj for j = 2, . . . ℓ are E-orientable
and have decompositions

(2.6) (ξAj : Vj/Aj → Bj) ∼=
⊕

s<j

(ξAj,s : Vj,s/Aj,s → Bj)

into simple orbifold bundles ξAj,s , possibly Vj,s can be trivial. We note that
(2.6) is inherited from the decomposition

(ξ : Vj → Bj) ∼=
⊕

s<j

(ξ : Vj,s → Bj)

of vector bundles and Aj,s’s are the quotients of Aj by non-effective kernels.
(A2) The restriction φj |S(Vj,s/Aj,s) of the attaching map φj : S(Vj/Aj) → Xj−1

to S(Vj,s/Aj,s) satisfies

φj |S(Vj,s/Aj,s) = fj,s ◦ ξ
Aj,s

for some G-equivariant map fj,s : Bj → Bs, identifying Bs with its image
in Xj−1 for each s < j.

(A3) The equivariant Euler classes eG(ξ
Aj,s) are not zero divisors and pairwise

relatively prime in E∗
G(Bj).

We remark that the G-invariant stratifications with trivial Aj ’s are studied in
[HHH05]. Nevertheless, under the above assumptions on a G-space X with the
property as in (2.3), one may obtain the following proposition.

Proposition 2.3. Let X be an orbifold stratified G-space as in (2.3) and satisfy

assumptions (A1) to (A3). Then the image of ι∗ : E∗
G(X) →

∏

j E
∗
G(Bj) is

ΓX :=
{

(xj) ∈
∏

1≤j≤ℓ

E∗
G(Bj)

∣

∣

∣
eG(ξ

Aj,s) | xj − f∗
j,s(xs) for s < j

}

.

Proof. The proof can be obtained from proof of [HHH05, Theorem 3.1] by replacing
genuine G-vector bundles Vj,s → Bj and their equivariant Euler classes into sim-
ple orbifold G-bundles ξAj,s : Vj,s/Aj,s → Bj and corresponding equivariant Euler
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classes eG(ξ
Aj,s). For the reader’s convenience, we briefly outline the argument

here.
The proof goes by the induction on the filtration. For X1 = {pt}, the claim holds

as eG(ξ
A1) = 1. Now, we suppose that the claim holds for Xj−1. From assumptions

(A1) – (A3) on the filtration, we have subspaces Xj,s of X for 1 ≤ s < j such that

Xj,s = Bs ∪fj,s◦ξAj,s D(Vj,s/Aj,s).

Then, following the proof of [HHH05, Lemma 3.5] and Proposition 2.1, one can show
eG(ξ

Aj,s) divides xj − f∗
j,s(xs) where xj and xs are pull-backs of a class x ∈ E∗

G(X)
under Bj →֒ X and Bs →֒ X , respectively.

Now we consider the natural restriction map γj : Γj → Γj−1, where

Γi :=
{

(xk) ∈
∏

k≤i

E∗
G(Bk)

∣

∣

∣
eG(ξ

Ak,r )|xk − f∗
k,r(xr) for r < k

}

.

Then (A3) verifies that ker(γj) ∼= eG(ξ
Aj )E∗

G(Bj). Moreover, one can obtain a
commutative diagram

(2.7)

0 E∗
G(Xj , Xj−1) E∗

G(Xj) E∗
G(Xj−1) 0

0 ker(γj) Γj Γj−1 0,

∼= ∼=

where the exposition about the validity of (2.7) is given in [HHH05]. Finally, one
can complete the proof by the Five Lemma. �

Remark 2.4. If all Aj ’s associated to the stratification (2.3) are trivial, then
Th(Vj/Aj) = Th(Vj) which is the Thom space for a genuine vector bundle for
each j = 1, . . . , ℓ. A class of examples satisfying this condition will be discussed in
Section 5. With this assumption, Proposition 2.2 and Proposition 2.3 agree with
the first part of Theorem 2.3 and Theorem 3.1 in [HHH05], respectively. In this
case, the cohomology theory E∗

G can also be the complex cobordism MU∗
G.

3. Toric varieties over almost simple polytopes

In this section, we give a combinatorial characterization of toric varieties which
is essential for the main results of this paper. Let Σ be a full dimensional rational
polytopal fan in Rn and P the lattice polytope whose normal fan is Σ. The corre-
sponding toric variety XΣ is equipped with an action of compact torus T n ⊂ (C∗)n.
Here, we identify Rn with the Lie algebra of T n.

Following the result of [Jur81] (we also refer to [CLS11, Theorem 12.2.5]), there
is a T n-equivariant homeomorphism

f : XΣ

∼=
−→ (T n × P )/∼,

where (t, p) ∼ (s, q) whenever p = q and t−1s is an element of the subtorus
TF (p) ⊆ T n whose Lie algebra is generated by the outward normal vectors of the
codimension-1 faces of P which contain p if p is not in the interior of P . When p is
in the interior of P , we consider TF (p) to be trivial.

Here, we notice that T n-action on (T n×P )/∼ is induced from the multiplication
on the first factor of T n × P and the corresponding orbit map,

(3.1) π : (T n × P )/∼ → P,
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is given by [t, p]∼ 7→ p, where [t, p]∼ denotes the equivalence class of (t, p). There-
fore, the topology of a toric variety can be studied by the combinatorics of the orbit
space P and its geometric data, namely, outward normal vectors of codimension-1
faces of P .

We discuss the combinatorics of P in Subsection 3.1 and study some topological
information of XP obtained from the geometry of P in Subsection 3.2.

3.1. Retraction sequence of a convex polytope. The goal of this subsection
is to introduce a combinatorial characterization of certain convex polytopes which
was initiated in [BSS17].

Let P be a convex polytope of dimension n. Regarding P as a polytopal complex
[Zie95, Definition 5.1], i.e., P is the set of all its faces, we consider a finite sequence
of triples

(P1, Q1, v1) → (P2, Q2, v2) → · · · ,

where Pj is a polytopal subcomplex of P , Qj is a face of Pj and vj is a vertex of
Qj, which are defined inductively as follows.

We set the initial term (P1, Q1, v1) such that P1 = P , v1 is a vertex of P1 having a
neighborhood homeomorphic to Rn≥ as manifold with corners and Q1 = P1 as an ele-

ment of polytopal complex P1. Given (Pj , Qj , vj), the next term (Pj+1, Qj+1, vj+1)
is defined by setting

Pj+1 =
⋃

{Q ∈ Pj | vj /∈ V (Q)},

where V (Q) is the set of vertices of Q. Next we choose a vertex vj+1 of Pj+1 such
that vj+1 has a neighborhood homeomorphic to Rd≥ as manifold with corners for
some 1 ≤ d ≤ n. We call vj+1 a free vertex of Pj+1. A face Qj+1 is defined to be
the unique maximal face of Pj+1 containing vj+1. Note that a free vertex may not
exist in general, see Remark 3.5. Hence, we proceed to define a sequence if a free
vertex exists. A sequence as defined above is called a retraction sequence of P if
the sequence ends up with (Pℓ, Qℓ, vℓ) such that Pℓ = Qℓ = vℓ for some vertex vℓ
of P , where ℓ denotes the cardinality of V (P ).

Definition 3.1. A convex polytope is called almost simple if it admits at least one
retraction sequence.

A simple convex polytope is almost simple. Indeed, for a simple convex polytope
P in Rn, a height function φ : Rn → R which is generic in the sense that each vertex
of P has different height defines a retraction sequence of P . We refer to [BSS17,
Proposition 2.3] for the details. Notice that not every retraction sequence can be
obtained from a height function. Below, we introduce several examples of non-
simple polytopes which are almost simple.

Example 3.2. A cone C(P ) on a simple polytope P has a retraction sequence.
Indeed, let

(P1, Q1, v1) → · · · → (Pℓ, Qℓ, vℓ)

be a retraction sequence of P . Then,

(C(P1), C(Q1), v1) → · · · → (C(Pℓ), C(Qℓ), vℓ) → (∗, ∗, ∗)

is a retraction sequence for C(P ), where ∗ is the apex of C(P ). Notice that C(P )
is not a simple polytope unless P is a simplex.
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x

y

z
v1

P1

v2

P2

v3

P3

v4

P4

v5

P5

v6

P6

v7

P7

Figure 1. A retraction sequence of 3-dimensional Gelfand–Zetlin polytope.

Example 3.3. Let P be a 3-dimensional polytope given by the system of inequal-
ities described as follows:

0 1 2≤
≤

≤
≤

x y
≤

≤
z

It is a 3-dimensional example of Gelfand–Zetlin polytopes which plays an important
role particularly in the algebro-geometric study of flag varieties. See Figure 1 for a
pictorial description of a retraction sequence of P . One can also construct different
retraction sequences beginning with other vertices except for v7.

Example 3.4. Some retraction sequences for 3-dimensional Bruhat interval poly-
topes [TW15] are illustrated in [LM20, Figures 25, 27], which are not simple poly-
topes.

Remark 3.5. Not every convex polytope has a retraction sequence, for instance
the convex hull of {±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)}. It is a 3-dimensional convex
polytope with 6 vertices and each of the vertices does not have any neighborhood
homeomorphic to R3

≥.

In terms of toric varieties, above examples shows that the category of toric
varieties over almost simple polytopes is strictly larger than the category of all
simplicial toric varieties.

3.2. Torus-equivariant stratifications. From now on, we consider a toric variety
X whose orbit space, via the orbit map η : X → P defined in (3.1), is an almost
simple polytope P . Such a toric variety have the following property, which is one
of the main observations in this paper.

Theorem 3.6. A retraction sequence (P1, Q1, v1) → · · · → (Pℓ, Qℓ, vℓ) of P yields

a T n-equivariant stratification of X

X1 ⊆ X2 ⊆ · · · ⊆ Xℓ = X

such that the quotient Xj/Xj−1 is homeomorphic to the Thom space Th(ξAj ) of

the simple orbifold T n-bundle

(3.2) ξAj : Ckj/Aj → η−1(vℓ−j+1),

for some kj ∈ N and finite abelian group Aj, where vi ∈ V (P ) denotes the free

vertex of Pi to define Pi+1, for i = 1, . . . , ℓ− 1.
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Proof. We define Xj := π−1(Pℓ−j+1) for j = 1, . . . , ℓ. Then, Xj+1 ⊂ Xj as Pj ⊃
Pj+1, see the diagram

(3.3)

X1 ⊆ · · · ⊆ Xj−1 ⊆ Xj ⊆ Xj+1 ⊆ · · · ⊆ Xℓ

Pℓ ⊆ · · · ⊆ Pℓ−j+2 ⊆ Pℓ−j+1 ⊆ Pℓ−j ⊆ · · · ⊆ P1.

π ππ ππ

Since π is the orbit map with respect to T n-action, (3.3) is T n-equivariant.
To prove the second assertion, we consider the unique maximal face Qℓ−j+1 of

Pℓ−j+1 which contains the free vertex vℓ−j+1 and denote by Uℓ−j+1 ⊂ Qℓ−j+1 the
union of all relative interiors of faces in Qℓ−j+1 containing vℓ−j+1. For instance,
the colored faces in Figure 1 are Uℓ−j+1 for ℓ = 7 and 2 ≤ j ≤ 7. Then, one can see

from the property of a free vertex that Uℓ−j+1 is homeomorphic to R
kj
≥ as manifolds

with corners, where kj := dimUℓ−j+1 = dimQℓ−j+1. Also, we note that

Xj −Xj−1 = η−1(Uℓ−j+1).

Let R(Qℓ−j+1) be the subspace of Rn generated by the normal vectors of facets
of P intersecting Qℓ−j+1. Notice that R(Qℓ−kj+1) is of dimension n−kj as Qℓ−j+1

is kj-dimensional face of P . Since vℓ−j+1 is a free vertex of Pℓ−j+1, there are kj-

many facets, say F1, . . . , Fkj , such that vℓ−j+1 =
⋂kj
i=1(Qℓ−j+1 ∩ Fi). Consider the

projection

(3.4) Zn → Zn/(Zn ∩ R(Qℓ−j+1)) ∼= Zkj

and the images µ1, . . . , µkj of primitive outward normal vectors of F1, . . . , Fkj via
(3.4), respectively.

Now, the result of [BNSS19, Proposition 4.4] shows

(3.5) π−1(Uℓ−j+1) ∼= D2kj/Aj ,

where

(3.6) Aj = ker(exp
[

µ1 | · · · | µkj
]

: T kj → T kj).

Here, one can regard the space (3.5) as a q-disc bundle of a simple orbifold
T kj -bundle

(3.7) ξAj : Ckj/Aj → π−1(vℓ−j+1),

where the standard T kj -action on Ckj induces an action on Ckj/Aj and T kj acts
on the fixed point π−1(vℓ−j+1) trivially. Note that T n acts on this bundle via
the projection of T n → T kj determined by (3.4). Hence we have T n-equivariant
homeomorphisms

Xj/Xj−1
∼= π−1(Qℓ−j+1)/π

−1(Qℓ−j+1 ∩ Pℓ−j+2) ∼= Th(ξAj ).

�

We refer to [BNSS19, Proposition 4.4] for a relevant interpretation of a retraction
sequence from the viewpoint of q-CW complexes.

Next corollary extends the result of [CLS11, Theorem 12.3.11] from the category
of simplicial toric varieties to the category of toric varieties over almost simple
polytopes.
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vℓ−j+1

⊃

vℓ−j+1v1

v2

v3

fj,1

fj,2
fj,3

Figure 2. An attaching map.

Corollary 3.7. The ordinary cohomology with rational coefficients of a toric vari-

ety X over an almost simple polytope vanishes in odd degrees, i.e., H2k+1(X ;Q) = 0
for all k.

Proof. The identifications (3.5) for each j realizes a building sequence defined in
[BNSS19, Definition 2.4] of X . Since each (3.5) is even dimensional, the result
directly follows from [BNSS19, Theorem 1.1]. �

Proposition 3.8. The T n-equivariant stratification in (3.3) satisfies assumptions

(A1), (A2) and (A3) in Section 2.

Proof. Recall that π−1(vℓ−j+1) in (3.2) is a fixed point. Observe that the total
space of (3.7) is a quotient of a T n-representation on Ckj by a finite subgroup Aj
of T n. Therefore, Ckj can be decomposed into 1-dimensional representations as

Ckj ∼= C(α1)⊕ · · · ⊕ C(αkj )

for some characters αs : T
n → S1. Since each C(αs) is invariant under Aj , we have

(ξAj : Ckj/Aj → π−1(vℓ−j+1)) ∼=

kj
⊕

s=1

(

ξAj,s : C(αs)/Aj,s → π−1(vℓ−j+1)
)

for some finite groups Aj,1, . . . , Aj,kj . This proves assumption (A1).
The quotient of the 1-dimensional representation C(αs) by T n-action is iden-

tical to R≥0 which corresponds to an edge, say es, of Uℓ−j+1. Indeed, since
π−1(Uℓ−j+1) → π−1(vℓ−j+1) is the q-disc bundle associated with ξAj : Ckj/Aj →
π−1(vℓ−j+1), one can see that two projections C(αs)/Aj,s → π−1(vℓ−j+1) and
π−1(es) → π−1(vℓ−j+1) are identical. Note that one can write the attaching map φj
explicitly by the proof of [BSS17, Theorem 4.1]. Therefore, the image of φj |S(C(αs))

is a vertex vs of es which is opposite to vℓ−j+1. A pictorial explanation is given in
Figure 2. Considering

fj,s : π
−1(vℓ−j+1) → π−1(vs)

as a map between two fixed points, we conclude Assumption (A2).
Assumption (A3) follows from [HHH05, Lemma 5.2], as the vectors µ1, . . . , µkj

defined by (3.4) are linearly independent. �

The following is an application of Proposition 2.3 to the category of toric varieties
over almost simple polytopes.

Proposition 3.9. Let X be a toric variety over an almost simple polytope with an

orbifold G-equivariant stratification as in Theorem 3.6. Let E∗
Tn be a generalized
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T n-equivariant cohomology theory discussed in Section 2. Then,

E∗
Tn(X) =

{

(xi) ∈
∏

1≤i≤ℓ

E∗
Tn(pt)

∣

∣

∣
eTn(ξAj,s) | xℓ−j+1−f

∗
j,s(xs) for s < ℓ− j+1

}

.

We note that H∗
Tn(pt) and K∗

Tn(pt) are isomorphic to the ring of polynomials
and the ring of Laurant polynomials with n-variables, respectively. For MU∗

Tn(pt),
though its structure is unknown, it is referred as the ring of T n-cobordism forms in
[HHRW16].

4. Piecewise algebras and Applications

We begin this section with a summary of the concept of some piecewise algebras
associated to a fan, studied in [HHRW16, Section 4]. The authors apply those
algebras to weighted projective spaces to get a description of generalized equivariant
cohomology theories. Here, we generalize their several results to a wider class of
singular toric varieties discussed in Section 3.

Recall that if σ is a cone in a fan Σ, then all of the faces of σ belong to Σ.
This leads us to form a small category cat(Σ) whose objects are elements of Σ
and morphisms are face inclusions. The zero cone {0} is the initial object of this
category.

Let Σ be an n-dimensional rational fan in Rn, namely, one-dimensional cones
are generated by rational vectors in Rn. Here we may identify Rn with the Lie
algebra of T n. Given a k(≤ n)-dimensional cone σ ∈ Σ, we consider a subtorus Tσ
generated by primitive vectors spanning 1-dimensional cones in σ. For the category
T n-top of T n-spaces, we define a diagram

(4.1) V : cat(Σ) → T n-top

by V(σ) := T n/Tσ and V(σ ⊆ τ) = (T n/Tσ ։ T n/Tτ ), where the projection
T n/Tσ ։ T n/Tτ is induced from the natural inclusion Tσ ⊆ Tτ . Then, the toric va-
riety XΣ associated to Σ is homotopy equivalent to the homotopy colimit hocolimV
of (4.1), see for instance [HHRW16, Section 4] as well as [Fra10, WZZ99]. Next,
regarding E∗

Tn as a functor from T n-top to the category gcalgE of graded com-
mutative E∗

Tn -algebras, we consider the composition

(4.2) EV : cat(Σ)
V
−→ T n-top

E∗

Tn

−−−→ gcalgE ,

which leads us to the following definition.

Definition 4.1. [HHRW16, Definition 4.6] Let Σ be an n-dimensional rational fan
in Rn. We call lim EV the piecewise algebra over E∗

Tn .

We note that the object EV(σ) can be calculated explicitly as follows. The
natural action of T n on V(σ) = T n/Tσ yields a T n-representation ησ on which
Tσ acts trivially. Since T n is abelian, ησ can be decomposed into 1-dimensional

representations, say ησ ∼=
⊕n−k

i=1 ησ(i), where k = dimTσ. We denote by S1
ησ(i)

the

corresponding circle for each i = 1, . . . , n− k. The inclusion of S1
ησ(i)

into the unit

disc Dησ(i) gives an equivariant cofiber sequence

(4.3) S1
ησ(i)

→֒ Dησ(i) → Dησ(i)/S
1
ησ(i)

.

Regarding each term of (4.3) as an S1-bundle, disc bundle over a point and the
associated Thom space, respectively, we may consider the equivariant Euler class
eTn(ησ(i)) ∈ E∗

Tn for each i = 1, . . . , n− k.
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Proposition 4.2. [HHRW16, Section 4, (4.11)]

EV(σ) ∼= E∗
Tn(T n/Tσ) ∼= E∗

Tn(pt)/(eTn

(

ησ(1)), . . . , eTn(ησ(n− k))
)

.

The proof of the following theorem is almost same as the proof of [HHRW16,
Theorem 5.5] with very few modifications in notation. To be more precise, one
needs to replace the equivariant Euler classes [HHRW16, (3.8)] corresponding to
the filtration of a divisive weighted projective space by the equivariant Euler classes
for simple orbifold bundles defined in Section 2.

Theorem 4.3. Let XP be a toric variety over an almost simple polytope P and

ΣP the normal fan of P . Let E∗
Tn be a T n-equivariant cohomology theory discussed

in Section 2. Then, E∗
Tn(XP ) is isomorphic to the piecewise algebra lim EV, as

ETn(pt)-algebras.

Remark 4.4. Compact symplectic toric orbifolds are toric varieties with fans de-
fined by their moment polytope which are simple, see [LT97, Section 9]. Therefore
they satisfy the hypotheses of Theorem 3.6 and Theorem 4.3.

5. Divisive toric varieties

In this section, we introduce the notion of divisive toric varieties motivated by
divisive weighted projective spaces [BFR09]. They are singular toric varieties which
may have singularities beyond orbifold singularities, whose generalized equivariant
cohomologies can be obtained over integers. We follow the same arguments as we
discussed in Section 4. Here, the cohomology theory E∗

Tn in this section can also
be MU∗

Tn without taking tensor with Q.

Definition 5.1. Let X be a toric variety satisfying the hypothesis of Theorem 3.6.
If the finite groups Aj ’s in (3.7) are trivial, then we call X a divisive toric variety.

Example 5.2. Recall the 3-dimensional Gelfand–Zetlin polytope P described in
Example 3.3. The outward normal vectors of facets intersecting v1 = (0, 2, 2) in P1

of Figure 1 are (−1, 0, 0), (0,−1, 1) and (0, 1, 0), which form an integral basis of Z3.
See Figure 3 for the vertices and primitive outward normal vectors of P . Hence,
the finite group A7 defined in (3.6) is trivial. To compute A6, we consider the facet
given by {x = 1} whose primitive outward normal vector is (1, 0, 0). In this case,
the map (3.4) yields the projection T 3

։ T 2 onto the last two coordinates. Hence,
A6 = ker(ρ : T 2 → T 2), where ρ(t1, t2) = (t−1

1 t2, t1), which is trivial. We refer to
[BSS17, Proposition 4.3] for the general statement about this computation. Finally,
one can conclude by similar computations for the other vertices v2, . . . , v6 that the
associated toric variety XP is divisive.

The following proposition is straightforward from Corollary 3.7 and the definition
of a divisive toric variety.

Proposition 5.3. The ordinary cohomology with integer coefficients of a divisive

toric variety X is torsion free and vanishes in vanishes in odd degrees.

Note that [HHRW16] defines the piecewise algebras of a fan with integers. To
be more precise, the map EV in (4.2) is a composition of V and the T n-equivariant
cohomology theories without taking tensor with Q. In particular, we denote the
associated piecewise algebras by

• PP [Σ], the algebra of piecewise polynomials if E∗
Tn = H∗

Tn ;
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x

y

z
(0, 2, 2)

(1, 2, 2)

(1, 2, 1)

(0, 2, 0)(0, 1, 0)

(0, 1, 1)

(1, 1, 1)

x

y

z

(1, 0, 0)

(0,−1, 1)

(0,−1, 0)

(1, 0 − 1)

(0, 1, 0)

(−1, 0, 0)

Figure 3. A 3-dimensional Gelfand–Zetlin Polytope.

• PL[Σ], the algebra of piecewise Laurant polynomials if E∗
Tn = K∗

Tn ;
• PC[Σ], the algebra of piecewise T n-cobordism forms if E∗

Tn =MU∗
Tn .

If a toric variety is divisive, then it is equipped with a T n-equivariant stratification
in the sense of [HHH05, Section 2]. So one can apply their results to divisive toric
varieties, which yields the following proposition over integers.

Proposition 5.4. Let X be a divisive toric variety over an almost simple polytope

P and ΣP the normal fan of P . Then,

(1) H∗
Tn(XP ;Z) is isomorphic to PP [ΣP ] as an H∗

Tn(pt;Z)-algebra;
(2) K∗

Tn(XP ;Z) is isomorphic to PL[ΣP ] as a K∗
Tn(pt;Z)-algebra;

(3) MU∗
Tn(XP ;Z) is isomorphic to PC[ΣP ] as an MU∗

Tn(pt;Z)-algebra.

To exhibit an example of piecewise algebra, we revisit the 3-dimensional Gelfand–
Zetlin polytope discussed in Example 3.3 and Example 5.2.

Example 5.5. Let P be the 3-dimensional Gelfand–Zetlin polytope and ΣP its
normal fan. For each face Q in P of dimension k (0 ≤ k ≤ 3), we denote by σQ
the associated (3 − k)-dimensional cone in ΣP , i.e., σQ is the cone generated by
normal vectors of facets intersecting the relative interior of Q. For example, σ(1,1,1)
is the cone generated by (0,−1, 1), (0,−1, 0), (1, 0,−1) and (1, 0, 0). Particularly
when E∗

T 3 = H∗
T 3 ,

EV(σv) ∼= H∗
T 3(pt) ∼= Z[u1, u2, u3]

for each vertex v of P . Hence, the ring PP [ΣP ] of piecewise polynomials with
rational coefficients is the set of tuples

(fσv
)v∈V (P ) ∈

⊕

v∈V (P )

Z[u1, u2, u3]

such that fσv
|σe

= fσw
|σe

whenever v and w are connected by an edge e. Here, we
list some of its elements as follows:
See Figure 4 for the description of those elements on the original polytope P .

Remark 5.6. The first element in Table 1 or Figure 4 is the multiplicative iden-
tity of PP [ΣP ]. The faces or the unions of faces in Figure 4 whose vertices have
nontrivial elements in Z[u1, u2, u3] are dual Kogan faces [KM05] and polynomials
are related to Thom classes defined in [MMP07, MP06].
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σ(1,1,1) σ(0,1,0) σ(0,2,0) σ(0,1,1) σ(1,2,1) σ(1,2,2) σ(0,2,2)

1 1 1 1 1 1 1
0 0 u2 0 u2 u2 + u3 u2 + u3

u1 + u3 0 0 u3 u1 + u3 u1 + u3 u3
0 0 0 0 u2(u1 + u3) u1(u2 + u3) 0
0 0 0 0 0 u3(u2 + u3) u3(u2 + u3)
0 0 0 0 0 u1u3(u2 + u3) 0

Table 1. Some elements in PP [ΣP ].

1
1

1

11

1
1

u2 + u3

u2 + u3

u2

u2
0

0
0

u3

u1 + u3

u1 + u3

00

u3

u1 + u3

0
u1(u2 + u3)

u2(u1 + u3)

00

0

0

u3(u2 + u3)

u3(u2 + u3)

0

00

0

0

0
u1u3(u2 + u3)

0

00

0

0

Figure 4. Dual description of Table 1.
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mas for combinatorial applications. J. Reine Angew. Math., 509:117–149, 1999.

[Zie95] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.

Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036,

India

Email address: soumensarkar20@gmail.com

School of Mathematics, KIAS, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of

Korea

Email address: jongbaek.song@gmail.com


	1. Introduction
	Acknowledgements

	2. GKM theory for orbifold stratified spaces
	3. Toric varieties over almost simple polytopes
	3.1. Retraction sequence of a convex polytope
	3.2. Torus-equivariant stratifications

	4. Piecewise algebras and Applications
	5. Divisive toric varieties
	References

