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Quantum mechanics with a generalized uncertainty principle arises through a representation of
the commutator [x̂, p̂] = if(p̂). We apply this deformed quantization to free scalar field theory
for f± = 1 ± βp2. The resulting quantum field theories have a rich fine scale structure. For
small wavelength modes, the Green’s function for f+ exhibits a remarkable transition from Lorentz
to Galilean invariance, whereas for f− such modes effectively do not propagate. For both cases
Lorentz invariance is recovered at long wavelengths.

Introduction One of the most important problems
in fundamental physics is an understanding of the high
energy behaviour of quantum fields. This question is inti-
mately connected with the structure of spacetime at short
distances, because the background mathematical struc-
ture that underlies quantum field theory (QFT), namely
a manifold with a metric, may come into question in this
regime. A part of the problem is that the spacetime
metric forms a reference not only for defining the parti-
cle concept, but also for the Hilbert space inner product;
if the metric is subject to quantum fluctuations then its
use in an inner product becomes an issue.

There are many approaches that have been deployed
to probe such questions, including string theory, non-
commutative geometry, loop quantum gravity and causal
sets. Some of these suggest that the fundamental com-
mutator [x̂, p̂] = i of quantum mechanics is modified at
high energies. For example, the particular modification

[x̂, p̂] = if(β1/2p̂), f(β1/2p̂) = 1 + βp̂2, (1)

with (dimensionful) constant β > 0 has been studied for
a number of systems, including the simple harmonic oscil-
lator [1]. It has also been used in the cosmological context
to compute modifications to the spectrum of fluctuations
in cosmology [2]. Recent experiments have attempted to
put constraints on β [3]. However no direct application
to QFT has so far been studied.

In this paper, we apply the commutator algebra (1)
to QFT in flat spacetime for both generic and specific
choices of the function f . Our approach involves ap-
plying a 3-dimensional spatial Fourier transform to the
classical phase space variables, and then enforcing the
deformed commutator in k-space. This approach was
used for polymer quantization of the scalar field in [4]
following work on a Fock-like quantization in [5].

Quantized scalar field We start with the Hamilto-
nian of a free scalar field in Minkowski space time:

Hφ =

∫

d3x
1

2

[

π2 + (∇φ)2
]

, (2)

where (φ, π) satisfy {φ(t,x), π(t,y)} = δ(3)(x − y). The
Fourier modes are

φ(t,x) =
1√
V

∑

k

φk(t)e
ik·x, (3)

with a similar expansion for π(t,x); V =
∫

d3x is a fidu-
cial volume for box normalization. After a suitable re-
definition of independent modes to enforce that φ is real,
the Hamiltonian becomes

Hφ =
∑

k

Hk =
∑

k

1

2

[

π2
k
+ k2φ2

k

]

, k = |k|, (4)

where the k-space canonical variables satisfy the Poisson
bracket {φk, πk′} = δk,k′ . The structure of the Hamilto-
nian is that of a collection of decoupled simple harmonic
oscillators labelled by k, therefore the obvious Hilbert
space for constructing the quantum theory is a tensor
product H = ⊗kHk.
We quantize field theory by representing the modified

commutator on the k-space canonical variables:

[φ̂k, π̂k] = if(π̂k/M
1/2
⋆ ), (5)

where f is a dimensionless function and M⋆ is an en-
ergy scale. In the momentum space representation with
ψ(πk) ∈ Hk = L2(I, f−1dπk), the modified commutator
is realized by the operator definitions

φ̂kψ(πk) = if(πk/M
1/2
⋆ )∂πk

ψ(πk) (6a)

π̂kψ(πk) = πkψ(πk). (6b)

The interval I must be selected such that f ≥ 0 for all
πk ∈ I. Although the function f may be arbitrary up to
the action of operators still giving L2 functions, we im-
pose the additional condition that f(0) = 1 to recover the

standard commutator for small momenta πk ≪ M
1/2
⋆ .

This enforces the requirement that the effects of defor-
mation are confined to short wavelengths, as we shall see
in the following.
In this representation, the energy eigenvalue equation

Hkψ = Ek

nψ reads

Ek

nψn(πk) =

{

π2
k

2
− k2

2

[

f

(

π̂k

M
1/2
⋆

)

∂

∂πk

]2
}

ψn(πk).

(7a)
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This can be recast as a conventional time-independent
Schrödinger equation,

κnΨn(z) =

[

−1

2

∂2

∂z2
+ V (z)

]

Ψn(z), (7b)

via the change of variables

πk =M
1/2
⋆ P (z), P ′(z) = f(P (z)), P (0) = 1,

Ψn(z) =M
1/4
⋆ ψn(M

1/2
⋆ P (z)), (8)

and the definitions

κn =
Ek

n

g2M⋆
, V (z) =

P 2(z)

2g2
, g =

k

M⋆
. (9)

This shows that each deformation of the commutator
maps uniquely to a potential in the Schrödinger equation
governing the canonical variables describing each Fourier
mode. The parameter g plays a central role in what fol-
lows: large wavelength modes with g ≪ 1 (k ≪ M⋆) be-
have as in standard physics, but small wavelength modes
with g ≫ 1 (k ≫M⋆) exhibit exotic behaviour.

Free field propagator Given solutions to the eigen-
value problem (7), it is possible to calculate the scalar
field propagator. This can be accomplished with a purely
quantum mechanics calculation. We begin with spa-
tial Fourier transform of the vacuum two point function,
which is given by the matrix element

Dk(τ) ≡ 〈0k|φ̂k(t+ τ)φ̂k(t)|0k〉, τ > 0. (10)

Inserting into this the Heisenberg formula for the evolved
operator φ̂k(t) and assuming a complete energy eigen-
function basis for Hk yields

Dk(τ) =

∞
∑

n=0

e−i∆Ek

n
τ |cn|2 =

∮

C

dω

2π
G(ω,k) eiωτ , (11a)

G(ω,k) ≡ −2i

∞
∑

n=1

∆Ek

n |cn|2
−ω2 + (∆Ek

n)
2
, (11b)

where ∆Ek

n = Ek

n−Ek

0 , cn = cn(k) = 〈0k|φ̂k|nk〉, and the
contour C encircles all poles on the positive real axis. This
is a direct generalization of the conventional prescription
for the Wightman function; other Green functions can be
obtained in a similar way.

The formulae (11) are general and apply to any quan-
tum theory defined by the modified commutator (5). The
only inputs required are the energy differences ∆Ek

n and

the matrix elements 〈0k|φ̂k|nk〉 obtained from solutions
of (7). It is illustrative to consider three specific choices
of the function f appearing in (5); the corresponding po-
tentials appearing in the Schrodinger equation are shown
in Fig. 1.

FIG. 1: Potentials appearing in the eigenvalue equation (7b)
for various choices of f . We take g = 0.225. Note that the
number of bound states in case (iii) is directly determined
by the height of the finite potential; i.e., it is a function of
g = k/M⋆.

(i) f(x) = 1. This case is the conventional quantiza-

tion with [φ̂k, π̂k] = i; the potential in the Schrödinger
equation (Fig. 1 is that of the simple harmonic oscillator.
Hence,

∆Ek

n = nk, 〈0k|φ̂k|nk〉 = (2k)−1/2δn,1. (12)

This gives the usual answer for the Green’s function

G(ω,k) = −i/(−ω2 + k2). (13)

We emphasize two key features responsible for the emer-
gence of Lorentz invariance in the final step: (i) the exact
cancellation of k factors in the numerator of Eq. (11b),
and (ii) the fact that in standard quantization, ∆Ek

1 = k,
which gives the combination −ω2 + k2 in the denom-
inator. This provides a curious connection between the
simple harmonic oscillator and Lorentz invariance, which
does not exist for the potentials associated with the de-
formed commutator.

(ii) f(x) = 1 + x2. This form is motivated by in-
cluding the gravitational interaction in discussions of the
Heisenberg microscope gedanken experiments [6]. It has
been widely studied at the quantum mechanics level, see
eg. [7], but not in QFT. The commutator algebra is of the
form (1) with β > 0. The potential in the Schrödinger
equation (7b) is V (z) = tan2(z)/2g2, and is plotted in
Fig. 1. The change of variables introduced in obtain-
ing (7b) implies that the Hilbert space for this case is
L2([−π/2, π/2], dz). The solution of the eigenvalue prob-
lem can be written down analytically in terms of hyper-
geometric functions [1] or Gegenbauer polynomials. The
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FIG. 2: Matrix elements M⋆|cn|2 for f = 1 + x2 (red),
f = 1− x2 (blue), and f = 1 (purple dashed). These are pro-
portional to the residues associated with the resonant poles
of the Green’s function.

energy eigenvalues yield

∆Ek

n

k
=

(

g

2
+

√

1 +
g2

4

)

n+
g

2
n2. (14)

We have obtained analytic expressions for cn(k), which
are plotted in Fig. 2. Note that c2n = 0 for all g due to
parity. The nonzero matrix elements have the following
limiting behaviour

|c2n−1|2 ≈ 1

M⋆















4Γ3(n+ 1/2)g2n−3

π3/2(2n− 1)2Γ(n)
, g ≪ 1,

64n2

π2 (4n2 − 1)
2 , g ≫ 1.

(15)

From this formula or Fig. 2, we see that for small g,
the first matrix element coincides with the f(x) = 1 re-
sult |c1|2 = (2k)−1. The higher n contributions are sup-
pressed by successive powers of g2, therefore the sums in
(11) are dominated by the first term. Since ∆Ek

n ≈ nk in
this regime, the propagator (13) is recovered for k ≪M⋆.

For g & 1, the n > 1 terms in (11) cannot be neglected;
each of these contributes a pair of poles at ω = ±∆Ek

n to
the Green’s function G(ω,k) as depicted in Fig. 3. These
poles may be interpreted as discrete resonant modes with
dispersion relation ω2 = (∆Ek

n)
2. Since the residues of

the n = 1 poles are always greater than those for n > 1,
we call it the “principal resonance”; its dispersion rela-
tion is shown in Fig. 4.
Finally, we note that for g ≫ 1, the Green’s function

reduces to

G(ω,k) ≈ i

M⋆

∞
∑

n=1

αn

(

1

ω − k2

2meff
n

− 1

ω + k2

2meff
n

)

, (16)

with αn = 64n2/π2(4n2 − 1)2 and meff
n = M⋆/(4n

2 − 1).
The terms in brackets are the Fourier-space propagators

FIG. 3: Bound state contributions to the Green’s function
in the complex ω plane for f = 1 ± x2. Each pair of spikes
indicates a resonant mode. The f = 1 − x2 case has only
two bounds states for this choice of parameters, and hence
exhibits fewer poles than the f = 1 + x2 case.

FIG. 4: Dispersion relations for the principal n = 1 resonance
ofG(ω,k) for various choices of f . Note that for the f = 1−x2

case, the n = 1 bound state transitions to the continuum at
k = M⋆/

√
2; hence the termination of the ω = ω(k) curve.

Dispersion relations for the higher order excitations are qual-
itatively similar.

of the non-relativistic Schrödinger equation for a free par-
ticle of mass meff

n . This result is a curious surprise: the
small wavelength limit of the propagator exhibits the
Galilean symmetry of Newtonian mechanics, and indi-
cates non-locality in space in this regime. The positive
and negative energy poles reflect the fact that this comes
from a relativistic theory in the long wavelength limit.

(iii) f(x) = 1 − x2. The commutator algebra in
this case is of the form (1) with β < 0. The po-
tential appearing in the Schrödinger equation (7b) is
V (z) = tanh2(z)/2g2 which is a vertical translation of
the well-known Pöschl-Teller potential V (z) = − 1

2j(j +

1)sech2(z), but with arbitrary amplitude (see eg. [8]).
The eigenvalue problem is again analytically solvable.
However, there is a crucial difference between this case
and the previous two: the fact that V (z) has a finite
height implies that for any given value of g = k/M⋆,
there is a finite number of normalizable energy eigen-
states in L2(R, dz). These states are labelled by integers
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FIG. 5: Scattering to bound state matrix elements |c(ν)|2 for
the f(x) = 1− x2 case.

n = 0 . . . nmax, where nmax = floor[(
√

4 + g2 − g)/2g].
The energy differences ∆Ek

n for this case are given by
(14) if we substitute g 7→ −g. There are no normaliz-
able eigenstates in L2(R, dz) with energy greater than
Emax =M⋆/2.
Because of their finite number, energy eigenfunctions

do not form a complete basis of L2(R, dz) and the for-
mulae (11) are not directly applicable. However, there
is a complete energy eigenfunction basis if we instead
use the Hilbert space L2([−ℓ, ℓ], dz). With this choice,
the “scattering” energy eigenstates with E > M⋆/2 are
normalizable and discrete, and the sums in (11) are well-
defined. Taking the ℓ → ∞ limit, the scattering states
approach a continuum and the Green’s function is

G(ω,k) = −2i

nmax
∑

n=1

∆Ek

n |cn|2
−ω2 + (∆Ek

n)
2

− i

π

∫ ∞

0

dν
∆Ek(ν)|c(ν)|2
−ω2 +∆E2

k
(ν)

. (17)

The integration is over the scattering states, which are
labelled by the continuous parameter ν. The energy of a
given scattering state is

Ek(ν) =
M⋆

2
(ν2g2 + 1), ∆Ek(ν) = Ek(ν)− Ek

0 . (18)

Also, c(ν) = limℓ→∞〈νk|φ̂k|0k〉 where |νk〉 is an odd-
parity scattering mode of energy Ek(ν) with normaliza-
tion 〈νk|νk〉 = 2ℓ. (Even parity modes do not contribute
by symmetry.)
We have computed closed form expressions for both

|cn|2 (plotted in Fig. 2) and |c(ν)|2 (plotted in Fig. 5).
At small g, the bound state residues match those for the
f(x) = 1 + x2 case, as do the energy differences ∆Ek

n .
Furthermore, we find |c(ν)| → 0 as g → 0, which guar-
antees that (13) is recovered for long wavelengths.
Unlike the previous case, the bound state matrix ele-

ments go to zero for finite g. In fact, for g ≥ 1/
√

n(n+ 1)

we have cn = 0. The vanishing of cn at particular values
of g = k/M⋆ indicates the threshold where the nth eigen-
state swtiches from a bound to scattering state, or vice
versa. It follows that for g ≥ 1/

√
2, the only non-zero

contribution to Green’s function (17) is from the contin-
uum integral. For g ≫ 1, it can be shown that

Dk(τ) ≈
8
√
2πe−i(M3

⋆
τ/2k2+3π/4)

k(M⋆τ)3/2
F

(

τM3
⋆

k2

)

, (19)

where F (u) = 1 + O(1/u) is a non-oscillatory expres-
sion involving error functions. The τ3/2 factor in the
denominator implies that short wavelength modes decay
to zero with characteristic timescale M−1

⋆ , and the ar-
gument of the exponential gives an effective dispersion
relation ω = M3

⋆/2k
2. That is, disturbances of physical

size ≪ M−1
⋆ will not generate any long distance wave

propagation in this model. It is interesting that some of
the features of the f(x) = 1−x2 case appear to naturally
incorporate recent ideas on the ultraviolet completion of
non-renormalizable theories via a so-called “classicaliza-
tion” [9], where propagating quantum degrees of freedom
do not exist at short distance scales.

Discussion We have shown that if modified canoni-
cal commutators are directly implemented in k space, the
resulting QFTs exhibit novel short wavelength behaviour:
propagation amplitudes have multiple poles, Lorentz in-
variance is broken, and there is spatial non-locality.

The expression for the propagator Eq. (11b) resembles
the Lehmann-Kallen spectral representation for an inter-
acting Lorentz invariant scalar field theory of mass m,

− iG(ω,k) =
1

−ω2 + k2 +m2
+

∞
∫

4m2

dµ2 ρ(µ2)

−ω2 + k2 + µ2
,

(20)
where ρ(µ2) is the density of particle resonances of mass
µ. Although purely mathematical, this analogy suggests
a multi-particle nature of deformed quantization, even for
a free theory. (Our result on multiple poles support an
argument to that effect in [10] for QFTs with a minimal
length scale based on higher derivative theories.)

Another interesting outcome of this work is an ex-
plicit non-locality in space at short distance scales. This
may be seen in at least two distinct ways. One is sim-
ply due to Lorentz violation; in the large k regime for
the case f = 1 + x2, the non-localilty is exactly New-
tonian action-at a-distance, as evident from the form of
the propagator. The other follows directly from inverse
Fourier transformation of the deformed k space commu-
tator, which would lead to non-local terms of the form
M−1

⋆

∫

d3z π̂(t,y − z) π̂(t, z) in the equal time commu-

tator [φ̂(t,x), π̂(t,x + y)]. The Heisenberg equations of
motion derived from this commutator would be non-local
integro-differential equations.
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The above observation appears to resonate with the re-
cently proposed hypothesis of relative non-locality [11],
in which locality in a postulated curved momentum space
leads to non-locality in physical space. In our approach,
space non-locality is evident in the above commutator,
and the “relative” part may be connected with the fact
that our quantization depends on a choice of time co-
ordinate. Since that hypothesis is motivated by earlier
works on deformed Lorentz symmetry, perhaps such a
connection is not unexpected, with the caveat that in our
approach it arises at the level of a dynamical quantum
field, rather than at the kinematical level in [11].
There are several directions for further work using the

deformed quantization we have discussed. It is apparent
that the approach may be followed for other spin fields
in flat space time. Of particular interest is the scalar
field on a black hole background; for example, modi-
fied dispersion relations of the type computed for the f−
case, with vanishing group velocity for short wavelength
modes, have been used to study Hawking radiation [12].
For interacting theories, perhaps of most interest for

observational consequences is quantum electrodynamics.
Of related interest is whether Lorentz violation from this
type of deformed quantization gives rise to order one ef-
fects due to loop corrections, as discussed in the context
of effective field theory (EFT) in [13]. However, many
components of conventional quantization are prima-facie
absent in our deformed quantization, so it is not clear
whether the axioms of EFT apply. Indeed, space non-
locality at short wavelengths appears to complicate the
Wilsonian program of integrating out high energy degrees
of freedom and capturing their effects in local counter-
term; related comments on this appear in [9]. Thus, any

arguments on Lorentz violation based on EFT would
have to be carefully reformulated before making state-
ments concerning renormalization and loop corrections.
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