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Abstract

In this paper we show that, contrary to finite matrices with entries taken from finite field, an invertible

infinite matrix could have generalized inverses that are different from classical inverses.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: Primary 15A09

Keywords: Moore–Penrose inverse; Group inverse; Matrices over finite fields; Infinite matrices

1. Introduction

Let A be a finite matrix. Recall that a matrix X is called the Moore–Penrose inverse of A if it

satisfies the following Penrose equations:

AXA = A; XAX = X,

(AX)T = AX; (XA)T = XA.

Such an X will be denoted by A†. The group inverse (if it exists) of a finite square matrix A

denoted by A# is the unique solution of the equations

AXA = A; XAX = X; XA = AX.
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It is well known that the group inverse of A exists iff the range space R(A) of A and the null

space N(A) of A are complementary. For specific applications, for example in solving linear

system of equations, it is sufficient to look for X satisfying the equation AXA = A. Such an

X is called a generalized inverse or a g-inverse of A. A generalized inverse X satisfying the

equation XAX = X is called a reflexive generalized inverse of A and will be denoted by A−
r

(see for instance [10]). It is well known that, in general for any A there are infinitely many

generalized inverses and reflexive generalized inverses [1]. We also refer the reader to the recent

books [13,14].

Pearl [9] was perhaps the first to consider the question of existence of various generalized

inverses of a matrix (except the group inverse) over an arbitrary field under an involutory auto-

morphism. Specifically, he proved the following result:

Lemma 1.1 [9, Theorem 1]. Let A be a rectangular matrix over a field. Then A† exists iff

rank(A) = rank(ATA) = rank(AAT).

This result also appears to have been independently obtained by Kalman [6, Section 3, p. 116].

Characterizations for the existence of reflexive generalized inverses and normalized generalized

inverses were also obtained by Pearl (see for instance, Theorem 4 and Corollary 3 in [9]). Fulton

[4,5] studied factorizations for a given matrix A and obtained conditions for the existence of a

normalized generalized inverse (any reflexive generalized inverse X satisfying (AX)T = AX) and

the Moore–Penrose inverse of A. He also determined the number of various generalized inverses of

A by elementary methods. More recently, Wu and Dawson [3,15] applied generalized inverses of

matrices over finite fields to cryptology and proposed a key agreement scheme. They also studied

generalized inverses of linear transformations over finite fields and obtained characterizations

for the existence of various types of generalized inverses [16]. As pointed out by these authors,

there are two essential differences between generalized inverses of real or complex matrices and

generalized inverses of matrices over finite fields. One is that the Moore–Penrose inverse of a

real or complex matrix always exists (and it is unique), whereas, it need not exist for a matrix

over a finite field. For example, the matrix

(

1 1

0 0

)

over F2 = {0, 1} does not have a Moore–

Penrose inverse [16]. Another difference is that there are only finitely many generalized inverses,

reflexive generalized inverses and normalized generalized inverses for a matrix over a finite field.

As mentioned earlier, this is not the case for real or complex matrices. Dai and Zhang [2] obtained

further characterizations for the existence of Moore–Penrose inverse. They reduced the problem

of constructing Moore–Penrose invertible matrices to that of constructing subspaces of certain

type with respect to some classical groups. They also gave an explicit formula for the Moore–

Penrose inverse based on a full-rank factorization [2]. We recall some of the important results that

these authors obtained for generalized inverses of a finite matrix over a finite field. We will later

show that none of these is applicable in the case of infinite matrices (Section 5).

Let Fq denote a finite field of order q and F
k
q denote the k-fold cartesian product of Fq . Let

Mm×n denote the set of all matrices over Fq of order m × n.

Lemma 1.2 [16, Theorem 2]. Let A ∈ Mm×n. Then a reflexive generalized inverse A−
r satisfies

(AA−
r )T = AA−

r iff N(AT) = N(AAT).

Lemma 1.3 [16, Theorem 4]. Let A ∈ Mm×n. Then a reflexive generalized inverse A−
r satisfies

(A−
r A)T = A−

r A iff N(A) = N(ATA).
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Lemma 1.4 [16, Theorem 6]. Let A−
r be a reflexive generalized inverse of A ∈ Mm×n. Then

A−
r is a Moore–Penrose inverse of A iff the following conditions are satisfied:

(a) R(A−
r ) = (N(A))⊥.

(b) N(A−
r ) = (R(A))⊥.

(c) A−
r Ax = x ∀x ∈ (N(A))⊥.

(d) AA−
r y = y ∀y ∈ R(A).

Lemma 1.5 [16, Theorem 7]. If A ∈ Mm×n has a Moore–Penrose inverse, then it is unique.

The concept of group inverse was studied for matrices over integral domains and later over

commutative rings by Manjunatha Prasad and others [7,8]. For the sake of completeness, we recall

the following result.

Lemma 1.6 [7, Lemma 3]. If A is a square matrix of rank 1 over an integral domain D, then

A has a group inverse iff Tr A, the trace of A is invertible in D. In this case, the group inverse

A# = (Tr A)−2A.

For a characterization of the existence of the group inverse of a finite matrix over general

commutative rings we refer to Theorem 10 in [8].

This paper deals with generalized inverses of infinite matrices over the finite field F2. When

dealing with multiplication of two infinite matrices A and B suppose that at least one of them has

the property that there are only finitely many entries equal to 1 in any row and in any column.

Then all infinite sums appearing in AB and BA are only finite sums (namely 0 or 1) over the

field F2. Even with the definition as above, it must be emphasized that matrix multiplication is

non-associative. For instance, let A be the infinite matrix all of whose principal diagonal entries

and super diagonal entries are 1 and all other entries 0. If e denotes the infinite column vector all

of whose entries are 1 then (eTA)e = 1, whereas eT(Ae) = 0. Thus, for an infinite matrix A, we

also demand associativity in the first two Penrose equations and rewrite them as

(AX)A = A(XA) = A,

(XA)X = X(AX) = X.

We call X as a Moore–Penrose inverse of an infinite matrix A if X satisfies the two equations

as above and the last two Penrose equations. Similarly, we call X a group inverse of an infinite

matrix A if X satisfies the two equations as above and the commutativity condition. Clearly, if

the classical inverse exists then it is also a Moore–Penrose inverse as well as a group inverse.

We will also have ocassion to deal with multiplication of infinite matrices A and B when

neither has the property that any row and any column has finitely many non-zero entries. The

following definitions will be used, in this connection.

Definition 1.7. Let {sn} ⊂ F
∞
q . We say that s ∈ F

∞
q is a limit of {sn} if for every k ∈ N, there exists

n0 such that (sn − s)i = 0, 1 � i � k, for all n � n0, where (sn − s)i denotes the ith coordinate

of sn − s. In this case, we say that sn converges to s.

Remark 1.8. It is clear from the definition that if sn converges to s, then s must be unique. Since

the objects of study in this paper are infinite matrices over F2, we will consider sequences sn over

F2 and so we have sn − s = sn + s.
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Example 1.9. Let sn be defined by

(sn)i =

{

1 if i = 4, 8, . . . , 4n,

0 otherwise

and s be defined by

si =

{

1 if i = 4, 8, . . . ,

0 otherwise.

Then

(sn + s)i =

{

1 if i = 4(n + 1), 4(n + 2), . . . ,

0 otherwise.

For any given k ∈ N, choose n0 such that n0 � k/4, for instance. Then (sn + s)i = 0, 1 � i � k,

for all n � n0. Thus sn converges to s.

Definition 1.10. Let sn =
∑n

r=1 ar denote the nth partial sum of the series
∑∞

r=1 ar . Then
∑∞

r=1 ar is said to be convergent with sum s, if any one of the following holds:

(i) {sn} converges to s.

(ii) {s2n} converges to s and {s2n−1} does not converge.

(iii) {s2n−1} converges to s and {s2n} does not converge.

If any one of the above holds, we write
∑∞

r=1 ar = s.

Remark 1.11. Note that if a series
∑∞

r=1 ar is such that {s2n} converges to s and {s2n−1} converges

to t /= s, then by definition, the given series is not convergent.

Example 1.12. Consider the series
∑∞

r=1 e4r . The sequence of nth partial sums is given by sn =

e4 + e8 + · · · + e4n. Let s be defined by

si =

{

1 if i = 4, 8, . . . ,

0 otherwise.

Then sn + s is given by

(sn + s)i =

{

1 if i = 4(n + 1), 4(n + 2), . . . ,

0 otherwise.

For any given k ∈ N, choose n0 such that n0 � k/4. Then (sn + s)i = 0, 1 � i � k, for all

n � n0. Thus sn converges to s ((i) of Definition 1.10 holds) and so we have
∑∞

r=1 e4r = e4 +

e8 + e12 + · · · Note that sn is the same as that of Example 1.9.

Let A be an infinite matrix over F2. Let
∑∞

r=1 ejr denote a specific vector in F
∞
2 . Note that the

infinite series is used only as a short symbol and has no meaning of convergence, as it is. This

will prove to be a very convenient notation, as will be evidenced later. (For example let e ∈ F
∞
2

be the vector all of whose coordinates are 1. Also, let en = (0, 0, . . . , 1, 0, . . .) with 1 appearing
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in the nth coordinate. Then we will use the symbol e1 + e2 + e3 + · · · to denote e.) Then we

set

A

(

∞
∑

r=1

ejr

)

=

∞
∑

r=1

A(ejr )

provided the series on the right is convergent (according to Definition 1.10). If A, B and C are infi-

nite matrices related by the equation AB = C, we prove the same by verifying AB(ek) = C(ek),

for all k. This in turn, is verified by establishing A(ak) = C(ek), where ak = B(ek) will be checked

as indicated above.

In what follows, an infinite matrix A is said to have a classical inverse if there exists a matrix

B such that AB = BA = I . Recently, Sivakumar [11,12] showed that an infinite matrix could

have classical inverses and also have generalized inverses, thereby establishing that the set of

classical inverses is properly contained in the set of generalized inverses, for infinite matrices.

These were in response to a recent open problem on the existence and uniqueness of the Moore–

Penrose inverse of infinite matrices. In the same spirit, in this paper, we show that for an infinite

matrix over a finite field, generalized inverses and classical inverses could simultaneously exist.

Results of this type have not been obtained earlier, to the best of our knowledge. It must be

emphasized that our results are placed in an analytical framework. Specifically, we use a novel

notion of convergence of infinite series of vectors, with entries 0 or 1 (Definition 1.10). This

concept seems to be of interest in its own right. Also, we deal with infinite matrices whose

entries are taken from F2, whereas the articles [11,12] deal with real entries. We also demon-

strate that generalized inverses of infinite matrices over a finite field (specifically F2), behave

very differently in contrast to the finite matrix case. In particular, in the final section of this

article it shown that known results in the finite matrix case fail in a variety of ways, in the

infinite matrix case. Thus the present article is in clear contrast with the earlier ones, viz.,

[11,12].

We organize the paper as follows. We first give an example of an invertible infinite matrix V

which has more than one classical inverse (which are automatically Moore–Penrose inverses) in

Theorem 2.1. We next show that V also has a Moore–Penrose inverse which is not a classical

inverse (Theorem 3.6). Thus it follows that the Moore–Penrose inverse of V is not unique. We

then proceed to show that V has a group inverse (Theorem 4.6) which is not a classical inverse and

which turns out to be a Moore–Penrose inverse, as well (Theorem 4.7). It might be emphasized

that this is not true for finite matrices with entries from a finite field. We close the paper with a

section on counterexamples.

2. Existence and non-uniqueness of classical inverse

We first consider the problem of determining a classical inverse of a particular infinite matrix.

We do not view infinite matrices as operators on some vector spaces. However, for the sake of

ease in proofs we will continue to use the “basis” {en : n ∈ N}, where en = (0, 0, . . . , 1, 0, . . .)

with 1 appearing in the nth coordinate. With this notation we consider the infinite matrix V

such that V (e1) = e2 and V (en) = en−1 + en+1, n � 2. We also define formally V (
∑∞

r=1 ar) =
∑∞

r=1 V (ar). Our first result shows that V has infinitely many classical inverses. In what follows

〈x, y〉 will denote the sum
∑∞

i=1 xiyi . Thus, in this notation to show that an infinite matrix M is

symmetric we verify that

〈Mek, el〉 = 〈ek, Mel〉 for all k, l.
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Theorem 2.1. Let U and W be infinite matrices defined over F2 by U(e1) = e2 + e4 + e6 +

e8 + · · · ; U(e2) = e1 and U(en+1) = en + U(en−1), n � 2 and W(e1) = e1 + e2 + e3 + e4 +

· · · ; W(e2) = e1 and W(en+1) = en + W(en−1), n � 2. Then UV = V U = I and WV =

V W = I.

Proof. We observe that U(en−1 + en+1) = en and W(en−1 + en+1) = en, n � 2. We prove by

induction onn thatV U(en+1) = en+1 = UV (en+1). For the basis step, we first note thatUV (e1) =

U(e2) = e1. We claim that

V U(e1) = V (e2 + e4 + e6 + e8 + · · ·) = e1.

We prove this as follows.

Consider the sequence {sn} defined by sn = V (e2 + e4 + · · · + e2n). Then sn = e1 + e2n+1.

If s = e1, then sn + s = e2n+1. It is now clear that sn converges to s, ((i) of Definition 1.10 holds)

as we set out to prove. Also UV (e2) = U(e1 + e3) = e2 and V U(e2) = V (e1) = e2.

Suppose that UV (el) = el = V U(el) for all l � n. Consider V U(en+1) = V (en) +

V U(en−1) = en−1 + en+1 + en−1 = en+1. AlsoUV (en+1) = U(en + en+2) = en+1. ThusUV =

V U = I . To prove WV = V W = I , it is sufficient to prove that WV (ei) = ei = V W(ei),

i = 1, 2. The rest would follow as above. Now, WV (e1) = W(e2) = e1. We next show that

V W(e1) = e1.

Consider the sequence {sn} defined by sn = V (e1 + e2 + e3 + · · · + en). Then sn = e1 +

en+1. If s = e1, then sn + s = en+1. It then follows that sn converges to s ((i) of Definition 1.10

holds). Thus, V W(e1) = e1. Also, V W(e2) = V (e1) = e2 and WV (e2) = W(e1) = e2. �

3. Existence of Moore–Penrose inverse

The existence of a Moore–Penrose inverse of V is established in a series of lemmas to follow.

Lemma 3.1. Let Z be the infinite matrix over F2 defined by

Z(e1) = e4 + e8 + e12 + · · · , Z(e2) = e1

and

Z(en+1) = en + Z(en−1), n � 2.

Then ZV = I, V (ZV ) = V, (ZV )Z = Z, and (ZV )T = ZV. We also have

(i) V Z(e2n) = e2n.

(ii) V Z(e2n−1 + e2n+1) = e2n−1 + e2n+1.

Proof. We have ZV (e1) = Z(e2) = e1; ZV (e2) = Z(e1 + e3) = e2 and for n � 3, ZV (en) =

Z(en−1 + en+1) = en. Thus ZV = I , so that we have the equations V (ZV ) = V, (ZV )Z = Z,

and (ZV )T = ZV .

Consider the sequence {sn} defined by sn = V (e4 + e8 + · · · + e4n). Then sn = e3 + e5 +

e7 + · · · + e4n−1 + e4n+1. If s = e1, then clearly, sn does not converge to s. Thus, V Z(e1) /=

e1, so that V Z /= I . If t = e3 + e5 + e7 + · · ·, then sn + t = e4n+3 + e4n+5 + · · · Clearly, sn
converges to t , so that we can write V Z(e1) = e3 + e5 + · · ·

It is now routine to verify the identities (i) and (ii), by induction. �



474 C.R. Saranya, K.C. Sivakumar / Linear Algebra and its Applications 418 (2006) 468–479

Remark 3.2. Note that as a consequence of Lemma 3.1, we have for all n � 2, V Z(en−1 +

en+1) = en−1 + en+1.

Lemma 3.3. Let Z be as defined in Lemma 3.1. Then

(i) (V Z)V = V and

(ii) Z(V Z) = Z.

Proof. We have

(V Z)V (e1) = V Z(e2) = e2

and

(V Z)V (e2) = V Z(e1 + e3) = V (e2).

For n � 3,

(V Z)V (en) = V Z(en−1 + en+1) = en−1 + en+1 = V (en).

Thus, Z satisfies (V Z)V = V , proving (i).

We next establish (ii).

Consider the sequence {sn} defined by sn = Z(e3 + e5 + · · · + e2n−1). Then

sn =

{

e4 + e8 + e12 + · · · + e2n−2 if n is odd,

(e2n−2 + e2n−6 + · · · + e6 + e2) + Z(e1) if n is even.

If s = e4 + e8 + · · ·, then for odd values of n, we have sn + s = e2n+2 + e2n+6 + · · · It now

follows that, sn converges to s. For even values of n, {sn} cannot be convergent due to the presence

of the terms inside the paranthesis, above. Thus by (iii) of Definition 1.10, we conclude that

Z(e3 + e5 + · · ·) = e4 + e8 + · · · = Z(e1).

Recall that we have shown V Z(e1) = e3 + e5 + · · · Thus we have

Z(V Z)(e1) = Z(e3 + e5 + e7 + · · ·) = Z(e1).

Also, Z(V Z)(e2) = Z(e2), as V Z(e2) = e2. Suppose that Z(V Z)(el) = Z(el), for l � n.

Consider

Z(V Z)(en)=Z(V (en−1 + Z(en−2))) = ZV (en−1) + Z(V Z)(en−2)

=en−1 + Z(en−2) = Z(en),

where we have used the fact that ZV = I and Z(V Z)(en−2) = Z(en−2), by induction hypothesis.

We have thus proved Z(V Z) = Z. �

Lemma 3.4. Let Z be as defined in Lemma 3.1. Then

V Z(e2n+1) = e1 + V Z(e1) + e2n+1, n � 0.

Proof. Clearly, the above is satisfied for n = 0. Suppose that it is true for all l � n. Consider

V Z(e2n+3)=V (e2n+2 + Z(e2n+1)) = e2n+1 + e2n+3 + V Z(e2n+1)

=e2n+1 + e2n+3 + e1 + V Z(e1) + e2n+1 = e1 + V Z(e1) + e2n+3

proving the induction step. �
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Lemma 3.5. Let Z be as defined in Lemma 3.1. Then (V Z)T = V Z.

Proof. When k and l are both even, then V Z(ek) = ek and V Z(el) = el , by Lemma 3.1. In this

case, we clearly have 〈V Z(ek), el〉 = 〈ek, V Z(el)〉. If k = 2r and l = 2s + 1, then it follows that

〈V Z(ek), el〉 = 0 = 〈ek, V S(el)〉.

The case when l is odd and k is even is similar.

Finally, if k = 2r + 1 and l = 2s + 1, then it can be shown that

〈V Z(ek), el〉 = 1 + δrs = 〈ek, V Z(el)〉,

where δrs is the Kronecker delta. �

Theorem 3.6. Let Z be as defined in Lemma 3.1. Then Z is not a classical inverse of V nor a

group inverse of V, but Z is a Moore–Penrose inverse of V.

Proof. From Lemma 3.1, ZV = I and V Z /= I . Thus Z is not a classical inverse nor a group

inverse of V . It is also shown in Lemma 3.1 that V (ZV ) = V, (ZV )Z = Z and (ZV )T = ZV .

Lemma 3.3 establishes that (V Z)V = V and Z(V Z) = Z. Lemma 3.5 establishes that (ZV )T =

ZV . Thus Z is a Moore–Penrose inverse of V . �

4. Existence of group inverse

Again, the existence of a group inverse of V is established in a series of lemmas.

Lemma 4.1. Let Y be the infinite matrix defined by

Y (e1) = e4 + e8 + e12 + · · · ,

Y (e2) = e3 + e5 + e7 + · · · ,

Y (e2n)=

{

e2n+1 + e2n+3 + e2n+5 + · · · if n is odd,

e1 + e3 + · · · + e2n−1 if n is even

for n � 2 and

Y (e2n+1) = e2n + Y (e2n−1) for n � 1.

Then for n � 1

V Y(e2n) = e2n = YV (e2n).

Proof. Let n � 1 be odd. Then V Y(e2n) = V (e2n+1 + e2n+3 + · · ·). We show that V (e2n+1 +

e2n+3 + · · ·) = e2n. Consider the sequence {sl} defined by sl = V (e2n+3 + e2n+5 + · · · + e2n+l).

Then sl = e2n+2 + e2n+l+1. If s = e2n+2, then sl + s = e2n+l+1. It now follows that, V (e2n+3 +

e2n+5 + · · ·) = e2n+2. If n is even, then

V Y(e2n)=V (e1 + e3 + · · · + e2n−1)

=e2 + e2 + e4 + e4 + · · · + e2n−2 + e2n−2 + e2n = e2n.
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Also

YV (e2) = Y (e1 + e3) = e2.

For n � 1, consider

YV (e2n)=Y (e2n−1 + e2n+1) = Y (e2n−1) + Y (e2n+1)

=Y (e2n−1) + e2n + Y (e2n−1) = e2n. �

Lemma 4.2. Let Y be as defined in Lemma 4.1. Then for n � 1

V Y(e2n+1) = e1 + Y (e2) + e2n+1 = YV (e2n+1).

Proof. We prove the first equation by induction on n. First note that

e1 + Y (e2) + e2n+1 = e1 + e3 + e5 + · · · + e2n−1 + e2n+3 + · · ·

Consider the sequence {sn} defined by sn = V (e4 + e8 + · · · + e4n). Then sn = e3 + e5 + e7 +

· · · + e4n+1. If s = Y (e2) = e3 + e7 + e9 + · · ·, then we have sn + s = e4n+3 + e4n+5 + · · · It

now follows that, sn converges to s. Thus,

V Y(e3)=V (e2 + Y (e1)) = e1 + e3 + V Y(e1)

=e1 + e3 + V (e4 + e8 + . . .) = e1 + e3 + Y (e2).

This establishes the basis step (n = 1). It is now routine to verify the induction step and is omitted.

This proves the first equality. The second equality is similarly proved. �

Remark 4.3. From Lemmas 4.1 and 4.2, we have YV = V Y .

Lemma 4.4. Let Y be as defined in Lemma 4.1. Then for all k

V (YV )(ek) = (V Y )V (ek) = V (ek).

Proof. The proof follows by employing induction. �

Lemma 4.5. Let Y be as defined in Lemma 4.1. Then for all k

Y (V Y )(ek) = (YV )Y (ek) = Y (ek).

Proof. We prove the equations for even values and odd values of k, in that order. The proof is by

induction on k. For the basis step k = 2 we have (V Y )(e2) = e2, so that Y (V Y )(e2) = Y (e2).

Also, as was shown in Lemma 4.1, V (e2n+3 + e2n+5 + · · ·) = e2n+2. Thus, V (e3 + e5 + · · ·) =

e2. So

(YV )Y (e2) = (YV )(e3 + e5 + · · ·) = Y (V (e3 + e5 + · · ·)) = Y (e2).

Now, assume that

Y (V Y )(e2l) = (YV )Y (e2l) = Y (e2l) for all l � n.

Consider Y (V Y )(e2(n+1)) = Y (V Y )(e2n+2) = Y (e2n+2), by Lemma 4.1. Also, (YV )Y (e2n+2) =

YV (u), where

u = Y (e2n+2) =

{

e1 + e3 + · · · + e2n+1 if n is odd,

e2n+3 + e2n+5 + e2n+7 + · · · if n is even.
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So

(YV )Y (e2n+2) =

{

Y (V (e1 + e3 + · · · + e2n+1)) if n is odd,

Y (V (e2n+3 + e2n+5 + e2n+7 + · · ·)) if n is even.

Again,V (e2n+3 + e2n+5 + e2n+7 + · · ·) = e2n+2 andV (e1 + e3 + · · · + e2n+1) = e2n+2, so that

Y (V (e1 + e3 + · · · + e2n+1)) = Y (e2n+2). Thus (YV )Y (e2n+2) = Y (e2n+2). This completes the

proof for even k.

Next, we take the case of odd k. We first show by induction on n that

(YV )Y (e2n+1) = Y (e2n+1).

Consider sn = (YV )(e4 + e8 + · · · + e4n) = e4 + e8 + · · · + e4n. If s = e4 + e8 + · · ·, then sn +

s = e4(n+1) + e4(n+2) + · · · Thus sn converges to s and so we have

(YV )Y (e1) = (YV )(e4 + e8 + e12 + · · ·) = Y (e1),

which provides the basis step (n = 0) for induction. Suppose that for all k with 1 � k � n,

(YV )Y (e2k+1) = Y (e2k+1). Consider

(YV )Y (e2(n+1)+1)=(YV )Y (e2n+3) = (YV )(e2n+2 + Y (e2n+1))

=YV (e2n+2) + (YV )Y (e2n+1) = e2n+2 + Y (e2n+1)

=Y (e2n+3) = Y (e2(n+1)+1).

Next, let sn = Y (e3 + e5 + · · · + e2n−1). Then

sn =

{

e4 + e8 + · · · + e2n−4 + Y (e2n−1) if n is odd,

e4 + e8 + · · · + e2n−2 if n is even.

If s = Y (e1) = e4 + e8 + · · ·, then it follows that sn converges to s, whenever n is even. Since

Y (e2n−1) can be shown to be equal to e2 + e6 + · · · + e2n−2 + e2n+2 + e2n+6 + · · ·, it follows

that {sn} does not converge when n is odd. It now follows from (ii) of Definition 1.10, that

{sn} converges to s. Thus, Y 2(e2) = Y (Y (e2)) = Y (e3 + e5 + · · ·) = Y (e1), so that Y (e1) +

Y 2(e2) = 0. Hence, for n � 1

Y (V Y )(e2n+1) = Y (e1 + Y (e2) + e2n+1) = Y (e1) + Y 2(e2) + Y (e2n+1) = Y (e2n+1)

completing the proof for odd values of k. �

Theorem 4.6. Let Y be as in Lemma 4.1. Then Y is a group inverse of V but not a classical

inverse of V.

Proof. By Remark 4.3, YV = V Y . By Lemma 4.4

V (YV ) = (V Y )V = V

and by Lemma 4.5

Y (V Y ) = (YV )Y = Y.

Thus Y is a group inverse of V . Since V Y(e1) = YV (e1) = Y (e2) /= e1, we conclude that Y is

not a classical inverse of V . �
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Recall that Z (as defined in Lemma 3.1) is a Moore–Penrose inverse but not a group inverse

of V . Interestingly, the infinite matrix Y defined in Lemma 4.1 turns out to be a Moore–Penrose

inverse of V , as we show next.

Theorem 4.7. Let Y be as defined in Lemma 4.1. Then Y is a Moore–Penrose inverse of V.

Proof. Clearly, it is sufficient to show that YV is symmetric. However, this is similar to Lemma

3.5. �

Remark 4.8. It is an interesting open question to determine if V has a group invese which is not

a Moore–Penrose inverse.

5. Counterexamples

In this section we show by examples that none of the results for generalized inverses of finite

matrices over finite fields mentioned in the introduction is applicable for infinite matrices.

Example 5.1. Let Z be as defined in Lemma 3.1 and Y be as defined in Lemma 4.1. Then Y and

Z both are Moore–Penrose inverses of V . Thus Lemma 1.5 does not hold.

Example 5.2. Letx0 denote the vector e2 + e6 + e10 + · · · and sn = V (e2 + e6 + · · · + e4n−2) =

e1 + e3 + · · · + e4n−1. Clearly, sn does not converge to zero so that V (x0) /= 0. Thus, x0 /∈ N(V ).

If tn = V (sn), then tn = e4n, so that tn converges to 0. In other words, V 2(x0) = 0, so that

x0 ∈ N(V 2). Since V is symmetric, we conclude that Lemma 1.2 does not hold.

Example 5.3. By the definition of Z, we have e1 = Z(e2) ∈ R(Z). Clearly, N(V ) = {x : x =

0 or x = e1 + e3 + e5 + · · ·}. However, by settingv0 = e1 + e3 + · · ·, we have 〈v0, e1〉 = 〈e1, e1 +

e3 + · · ·〉 = 1, so that e1 /∈ (N(V ))⊥. Thus (a) of Lemma 1.4 does not hold.

Example 5.4. We have shown that Y (e3 + e5 + · · ·) = Y (e1), (proof of Lemma 3.5) so that

Y (e1 + e3 + · · ·) = 0. Thus w0 = e1 + e3 + · · · ∈ N(Y ). Now, if y0 denotes the vector e2 +

e4 + · · · then it can be verified that V (y0) = e1 so that e1 ∈ R(V ). However, 〈w0, e1〉 = 1, so

that w0 /∈ (R(V ))⊥. Thus (b) of Lemma 1.4 does not hold.

Example 5.5. Recall that N(V ) = {x : x = 0 or x = e1 + e3 + e5 + · · ·}. Let u0 = e1 + e3.

Then u0 ∈ (N(V ))⊥. However,

YV (u0) = Y (e2 + e2 + e4) = Y (e4) = e3 + Y (e2) = e5 + e7 + · · · /= u0.

Thus (c) of Lemma 1.4 does not hold.

Example 5.6. By Example 5.4 we have e1 ∈ R(V ). However, as we have established earlier

(proof of Lemma 3.1), V Z(e1) /= e1. Thus (d) of Lemma 1.4 does not hold.

Remark 5.7. We mention in the passing that the examples given above can be used to show that

none of the characterizations for the existence of reflexive generalized inverses and normalized

generalized inverses obtained by Pearl [9, Theorem 4 and Corollary 3] hold. We omit the details.
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