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We formulate a pseudofermion functional renormalization group (PFFRG) scheme to address frustrated

quantum magnetism in three dimensions. In a scenario where many numerical approaches fail due to sign

problem or small system size, three-dimensional (3D) PFFRG allows for a quantitative investigation of the

quantum spin problem and its observables. We illustrate 3D PFFRG for the simple cubic J1-J2-J3 quantum

Heisenberg antiferromagnet, and benchmark it against other approaches, if available.
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Introduction. Frustrated quantum magnetism has estab-

lished broad experimental and theoretical interest in condensed

matter [1,2]. In particular, from the viewpoint of quantum

paramagnets as potential hosts of unconventional quantum

states of matter [3,4], this field has persisted until today,

and keeps generating manifold connections to other areas

of contemporary research such as topological phases and

quantum information.

From a methodological perspective, the microscopic in-

vestigation of three-dimensional (3D) frustrated quantum

magnetism constitutes one of the biggest challenges, which

to a large extent remains unresolved. Mean-field approaches

for quantum magnetism such as Schwinger bosons [5], along

with spin waves, and linked cluster expansions [6] are often

efficient to describe magnetic order in 3D but tend not to

accurately capture paramagnetic behavior. While density-

matrix renormalization group (DMRG) [7] is the method of

choice for one-dimensional spin systems, and extensions to

two dimensions (2D) have proven useful in many cases [8],

applications in 3D are unfeasible due to system size and

entanglement scaling. The application of variational Monte

Carlo (VMC) [9,10] methods, equipped with an efficient

mean-field description of magnetic and paramagnetic states

including spin liquids [11], has likewise been predominantly

constrained to 2D [12]: While an increase in the number

of wave function parameters to be optimized is in principle

no issue, VMC still suffers from system size limitation

when computing expectation values of observables. Whereas

sufficient system size can be reached by quantum Monte Carlo

approaches [13,14], they are constrained to bipartite lattices

with nonfrustrating spin interactions, and as such mostly do

not allow access to the domains of interest.

In this Rapid Communication, we propose a pseudofermion

functional renormalization group (PFFRG) scheme to describe

frustrated quantum magnetism in 3D. While methodologically

the 3D PFFRG is similar to previous formulations in 2D

[15,16], it remedies some shortcomings of 2D PFFRG,

allowing for a more accurate analysis of quantum magnetism.

To illustrate the 3D PFFRG, we investigate the spin- 1
2
J1-J2-J3

Heisenberg antiferromagnet on the simple cubic lattice

*yiqbal@physik.uni-wuerzburg.de

(SC-AFM), the ground-state phase diagram of which is

summarized in Fig. 1(a). The parallelizability of the renormal-

ization group (RG) flow equations guarantees accessibility

to system sizes greater than 4000 sites, which is an order

of magnitude beyond other numerical methods available.

Furthermore, in contrast to 2D, where the Mermin-Wagner

theorem only allows for magnetic order at T = 0, the finite

ordering scales which naturally occur in PFFRG due to hidden

mean-field character, can now be directly interpreted as order-

ing temperatures. In fact, wherever we are able to compare due

to the absence of a sign problem, we find quantum Monte Carlo

results in remarkable quantitative agreement with 3D PFFRG.

Furthermore, the momentum-resolved spin correlations from

3D PFFRG, due to the large system sizes available, allow one

to make contact with experimental observables, rendering it a

promising approach in frustrated quantum magnetism.

Pseudofermion FRG. Given a lattice on which spin-1/2

degrees of freedom are defined that interact through some

spin Hamiltonian, the starting point of the PFFRG is to

express the spin operators in terms of auxiliary fermions [18]

S
μ

i = 1
2

∑
αβ f

†
iασ

μ

αβfiβ . Here, fi↑ (fi↓) denotes a fermionic

annihilation operator of spin ↑ (↓) on site i, and σμ, μ ∈

{x,y,z} denote the Pauli matrices. According to standard

procedures in FRG [19,20], a frequency cutoff � is implanted

into the generating functional of vertex functions to yield an

infinite set of coupled flow equations for all many-particle

vertex functions. Along with accounting for the artificial

enlargement of the pseudofermion Hilbert space by projection

onto single occupancy per site, any bilinear spin Hamiltonian

maps to a quartic pseudofermion interaction which constitutes

the initial condition of the RG flow at � → ∞. In a numerical

implementation, the hierarchy of RG equations is truncated

and only the self-energy and the two-particle vertex functions

are kept. Most importantly, this truncation is performed such

that the PFFRG remains separately exact in the limits of

large S (the magnitude of the spins) and large N [where N

generalizes the spin symmetry group from SU (2) to SU (N )].

Three-particle terms that are subleading in 1/S and 1/N are

neglected. While the leading 1/S terms (i.e., spin mean-field

terms) reproduce the classical magnetic phases, the 1/N terms

add quantum fluctuations to the system and allow for the

formation of paramagnetic phases. The physical outcome of

the PFFRG is the static spin-spin correlator as a function of
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FIG. 1. (a) Quantum phase diagram of the spin- 1

2
simple cubic J1-J2-J3 Heisenberg antiferromagnet [see Eq. (1)] as obtained by PFFRG.

It features a paramagnetic domain surrounded by commensurate magnetic orders. (Classical magnetic phase boundaries are drawn by black

dashed lines for comparison.) (b)–(d) Illustrations of the real space pattern (upper row) and magnetic susceptibility profile (lower row) in units

of 1/J1 for magnetism at ordering vectors Q = (π,π,π ), (0,π,π ), and (0,0,π ) obtained for the parameters (J2/J1,J3/J1) = (0,0), (1,0), and

(1,1), respectively.

� which is derived from the two-particle vertex. The flow

equations in 3D remain invariant compared to their previous

form in 2D PFFRG [15,16]. If a system adopts magnetic order,

the corresponding two-particle vertex channel anomalously

grows under the RG flow and eventually causes the flow to

become unstable as the channel flows towards strong coupling.

Since the RG parameter � and the temperature T both

act like a low energy cutoff, one can interpret the flow

� → 0 as an effective annealing process where the scale �

is associated with 2
π
T [21]. 2D PFFRG has proven capable

of describing various phenomena of frustrated magnetism that

are in principle complicated to treat, such as incommensurate

spiral order with large ordering vectors [22,23], quantum order

by disorder [24], finite temperature behavior [25], anisotropic

spin interactions [26,27], and strong geometric frustration

[28,29]. On the other hand, due to numerical frequency

discretization and flow equation truncation, the 2D PFFRG

erroneously gives finite ordering scales �∗ even though

continuous symmetries do not allow for their spontaneous

breaking at finite temperature [30]. Turning to 3D where

the Mermin-Wagner theorem allows for magnetic order at

finite temperatures, the PFFRG ordering scales are directly

linked to the Néel temperature via TNéel = π
2
�∗. At the

same time, the appreciable features from 2D directly carry

over to 3D PFFRG, such as the absence of a sign problem,

resolvability of spin correlations as a function of (effective)

temperature, exact correlations at S → ∞ and N → ∞, or

the accessibility of large system sizes. In particular, the latter

guarantees good momentum resolution of spin susceptibilities

[see Figs. 1(b)–1(d) and Fig. 2], which is vital to making a

comparison with, e.g., neutron scattering data [28].

J1-J2-J3 simple cubic antiferromagnet. The SC-AFM

Hsc = J1

∑

〈i,j〉

Si · Sj + J2

∑

〈〈i,j〉〉

Si · Sj + J3

∑

〈〈〈i,j〉〉〉

Si · Sj (1)

comprises antiferromagnetic Heisenberg coupling between

first- (J1), second- (J2), and third-nearest neighbors (J3).

Exploiting lattice symmetries and massive parallelization,

we solve the PFFRG flow equations for a linear cubic size

up to L = 17, totalling 4913 sites. The ground-state phase

diagram [see Fig. 1(a)] features three magnetic regimes of

(π,π,π ), (π,π,0), and (π,0,0) orders [see Figs. 1(b)–1(d)] as

well as a paramagnetic (PM) domain setting in for finite J3.

As compared to the classical boundaries marked by dashed

black lines in Fig. 1(a), quantum fluctuations hardly affect the

(π,π,π ) regime while the paramagnet predominantly settles

in within the classical domains of the stripe/plane collinear

orders. Deep inside the magnetically ordered phases, the

susceptibility is strongly peaked at the respective classical

(a) (b) (c)

(d) (e) (f)

J2/ J1 = 0.50 J2/ J1 = 0.55 J2/ J1 = 0.60

J2/ J1 = 0.65 J2/ J1 = 0.85 J2/ J1 = 0.95

FIG. 2. (a)–(f) Evolution of magnetic susceptibility for J3/J1 =

0.3 from J2/J1 = 0.50 to 0.95. As we traverse the paramagnetic

region into the (0,0,π ) antiferromagnet (AF) in close proximity to

the (0,π,π ) AF for lower J3/J1, the short-range correlations deviate

significantly from the characteristic susceptibility profile deep in the

ordered regimes [see Figs. 1(b)–1(d)]. We have cut out one octant

of the Brillouin zone such that one can also visually track the spin

correlations around the Ŵ point.
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FIG. 3. (a) PFFRG coupling flow deep in the paramagnetic and different magnetic phases, shown for the parameter values (J2/J1,J3/J1) =

(0.5,0.25) [Paramagnet], (0,0)[(π,π,π )], (1,0)[(0,π,π )], and (1,1)[(0,0,π )]. In the case of ordering, the flow exhibits a sharp singularity at

�∗ ≡ 2

π
TNéel. (b)–(d) Distinct change in flow behavior from the paramagnet into the magnetic phases highlighted by pairs of filled data point

labels in Fig. 1(a). (e) TNéel for different cuts of constant J3/J1 as a function of J2/J1. The black asterisk highlights the value for the J1 model

as obtained by quantum Monte Carlo [17].

ordering wave vectors [see Figs. 1(b)–1(d)]. Figure 2 depicts

momentum-resolved spin susceptibilities (this quantity is

computed at � = 0 when possible or just before the possible

breakdown when some momentum shows an instability) for

a cut along J2 for fixed J3/J1 = 0.3. Figure 2(a) starts off

where (π,π,π ) order is still present. As we enter the PM

phase, the susceptibility suddenly spreads out in momentum

space and takes on profiles that qualitatively differ from

those in the magnetically ordered domains. For large J2, the

susceptibility profile eventually merges into (0,0,π ) order,

however, subleading features at (0,π,π ) originating from the

nearby Q = (0,π,π ) phase are still noticeable.

Figure 3(a) shows characteristic vertex flow evolutions

towards magnetic order and paramagnetism. As compared to

2D PFFRG, we notice a much sharper instability behavior

which strongly reduces the error imposed on distinguishing

weak order from paramagnetism and on specifying TNéel. To

illustrate the former, we have taken pairs of points on opposite

sides of a phase transition line between magnetic order and

the PM phase [indicated by filled symbols in Fig. 1(a)], and

show how strongly the flow evolution changes between them

[see Figs. 3(b)–3(d)]. While there is a particularly drastic

change from (π,π,π ) and (0,0,π ) to the PM phase, the

change for (0,π,π ) [see Fig. 3(c)] is less pronounced, but still

accurately resolvable. TNéel along different cuts of fixed J3 as

a function of J2 is shown in Fig. 3(e). For cuts where there is

a phase transition between two different magnetic orders (i.e.,

J3/J1 = 0 and 0.45), we observe a clean kink in TNéel at the

transition point. While we find a monotonous decrease of TNéel

from the (π,π,π ) phase into the PM phase (J3/J1 = 0.15 and

0.30), we observe a cusp feature upon reentering magnetically

ordered phases for larger J2.

Due to the sole availability of two-spin correlators, any

further investigation of the PM phase is limited within PFFRG.

As already successful for 2D PFFRG [28], however, we can

analyze the dimer response function to learn about propensities

for translation symmetry breaking in the PM phase. The most

basic valence bond crystal (VBC) candidates for the simple

cubic lattice are depicted in Figs. 4(a)–4(c). Biasing the RG

flow by slightly strengthening (J1 → J1 + δ) or weakening

(J1 → J1 − δ) the nearest-neighbor couplings according to

those patterns, we keep track of the dimer susceptibility which

we define by

χdimer =
J1

δ

C�
+ − C�

−

C�
+ + C�

−

. (2)

Here, C�
+ (C�

− ) is the static spin-spin correlator on strong

(weak) bonds. Note that Eq. (2) is normalized such that

χdimer > 1 (χdimer < 1) corresponds to an enhancement (re-

(a) (b) (c)

(d) (e)

Columnar VBC Plaquette VBC Cubic VBC

Columnar/Plaquette VBC Cubic VBC

FIG. 4. (a)–(c) Valence bond crystal candidates in the paramag-

netic regime of Fig. 1. Red bonds correspond to strengthened (J1 →

J1 + δ) and gray bonds to weakened (J1 → J1 − δ) nearest-neighbor

interactions. (d) Columnar and plaquette VBC show nearly identical

and weak dimer response strength throughout the paramagnetic

regime (variations of the response within the PM phase are smaller

than the thickness of the line). (e) The cubic VBC exhibits a similarly

weak response strength which, however, varies as a function of J2/J1

and J3/J1, shown here for (J2/J1,J3/J1) = (0.45,0.15) (dotted line)

and (0.70,0.25) (dashed line).
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jection) of the perturbation during the RG flow. As shown

in Fig. 4(d), the columnar and plaquette VBC pattern is

hardly amplified through the RG flow, and almost does

not change throughout the PM phase. A similar behavior

is observed for the cubic VBC, which, however, shows a

moderate enhancement for decreasing J3 within the PM phase.

While a rigorous conclusion cannot be drawn at this stage, the

similar magnitude of all three dimer susceptibilities leads us

to conclude that no such VBC order is to be expected for the

PM phase. Furthermore, compared to the antiferromagnetic

J1-J2 model on the 2D square lattice, where the nature of the

paramagnetic phase is still debated, dimer responses generally

turn out to be smaller for the 3D cubic lattice [15].

Benchmark against other methods. Wherever applicable,

the qualitative and quantitative features of the phase diagram

we find by PFFRG [see Fig. 1(a)] tend to agree with previous

works. For J3 = 0, we find the transition between (π,π,π )

and (0,π,π ) to occur at J c
2 = 0.30(1), which validates earlier

spin wave analysis of the J1-J2 model [31–33]. A variational

cluster approach (VCA) study on a Hubbard model whose

strong coupling limit maps onto Eq. (1) has found similar

features in the magnetic phase diagram [33]. Recent efforts to

extend the coupled cluster method to 3D have met with some

success [34]. However, its application to the spin- 1
2

Heisenberg

J1-J2 antiferromagnet on the simple-cubic lattice predicts the

appearance of a tiny paramagnetic phase in the vicinity of

J2/J1 ≈ 0.275 [35] similar to the finding within linear spin-

wave approximation, but in contradiction to ours.

Regarding the benchmarking of TNéel, we can only resort to

quantum Monte Carlo (QMC) calculations in limits where

there is no sign problem, such as the J1-J3 SC-AFM. In

particular, for the J1-only model, inaccurate early results have

been corrected due to improved stochastic series expansion

employed in QMC to yield TNéel/J1 = 0.946 ± 0.001 [14,17].

The data point is depicted as a black asterisk in Fig. 3(e), to be

compared with the PFFRG result of TNéel/J1 = 1.05 ± 0.05,

which reveals a remarkable agreement between QMC and 3D

PFFRG. It is worth noting that the mean-field Néel temperature

TNéel/J1 = 1.5 is still significantly larger. This shows that

despite the mean-field character of the PFFRG, quantum

fluctuations reducing TNéel are correctly built in. To further

appreciate the quantitative accuracy of our approach we have

carried out QMC simulations employing the ALPS/LOOPER

program [36]. By means of finite-size-scaling analysis of the

Binder ratio for lattice sizes 8 � L � 16 we have determined

TNéel for J3/J1 � 0.8. A comparison with the PFFRG esti-

mates (see Table I) reveals very good agreement. Together

with various ways to obtain the Curie-Weiss temperature TCW

as a function of Hamiltonian parameters, the 3D PFFRG

thus provides a suitable way to compute the frustration

parameter f = TCW/TNéel in theoretical model calculations.

TABLE I. For the J1-J3 model, the Néel temperature TNéel/J1 as

obtained from PFFRG and QMC is given. The result marked by an

asterisk is from Ref. [17].

J3/J1 0 0.20 0.40 0.60 0.80

PFFRG 1.05(5) 1.43(7) 1.67(8) 1.94(9) 2.36(10)

QMC 0.946(1)∗ 1.371(1) 1.7675(10) 2.143(1) 2.5039(5)

Aside from quantitatively reliable estimates of TNéel in

frustrated magnets, the most applicable asset of 3D PFFRG

appears to be the spin-spin correlation profile for large system

sizes of several thousand sites. There is, however, no other

quantum method in this range which one could compare

with. Exact diagonalization methods and DMRG, for which

quantitative comparisons with good agreement have at least

been possible for 2D PFFRG [22,28], cannot be fruitfully

applied in 3D. Ultimately, the quantitative analysis of neutron

scattering data with the help of 3D PFFRG susceptibility

profiles will determine the degree of its utility.

Conclusion and outlook. A methodological development

in the field of frustrated quantum magnetism such as 3D

PFFRG lends itself to various applications and investigations.

Of particular interest are lattices where quantum fluctuations

are expected to play a pivotal role such as the pyrochlore

lattice for which quantum corrections might drive the system

into new quantum states of matter [37,38]. Furthermore, other

systems might prove promising where there are limits in

which comparisons can be made against exact paramagnetic

solutions, such as for the Kitaev model on three-coordinated

lattices [39,40]. Finally, explicit material candidates on the

hyperhoneycomb [41] and hyperkagome [42,43] lattice are

ideal test beds to establish 3D PFFRG as a useful novel tool in

frustrated magnetism.
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