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Understanding the role of frictional drag in diffusive transport is an important problem in the
field of active turbulence. Using a continuum model that applies well to bacterial suspensions, we
investigate the role of Ekmann friction on the transport of passive (Lagrangian) tracers that go with
the local flow. We find that the crossover from ballistic to diffusive regime happens at a time scale τc
that attains a minimum at zero friction, meaning that both injection and dissipation of energy delay
the relaxation of tracers. We explain this by proposing that τc ∼ 2ℓ∗/urms, where ℓ∗ is a dominant
length scale extracted from energy spectrum peak, and urms is a velocity scale that sets the kinetic
energy at steady state, both scales monotonically decrease with friction. Finally, we predict robust
scaling laws for ℓ∗, urms and the diffusion coefficient D ∼ ℓ∗urms/2, that are valid over a wide range
of fluid friction. Our findings might be relevant to transport phenomena in a generic active fluid.

From a cup of coffee to the scales of the interstellar
medium, fluid turbulence is ubiquitous in nature [1, 2].
Often stated as the last unsolved problem of classical
physics, turbulence is actually an ensemble of non-linear
processes that usually happens in any fluid which is far
from equilibrium. These nonlinear processes are respon-
sible for cascading the fluid energy throughout the iner-
tial range of wave numbers i.e between the scale of injec-
tion where turbulence is excited to the scale of damping
where viscosity plays a dominant role [3, 4]. The large
number of degrees of freedom that are coupled by these
nonlinear processes display highly irregular dynamics and
impose a pressing need for a statistical treatment of tur-
bulence. A natural concern is whether the statistical pre-
dictions made in the inertial range are universally appli-
cable, for instance, will the predicted scaling laws hold for
general patterns of energy injection, transfer, and dissi-
pation? Relevant scenarios include mesoscale turbulence
in active “living” fluids such as bacterial suspensions,
micro-tubule networks or even artificial swimmers [5–7].
It is therefore very interesting to see whether established
results of classical turbulence can be extended to these
active fluids. One problem that naturally forms a basis
for a statistical treatment of turbulence is the transport
of passive tracers advected by the local Eulerian flow. In
this letter, we report a detailed study of transport in a
distribution of such passive tracers in a two-dimensional
(2D) active fluid that well describes dense bacterial sus-
pensions. We record the mean squared displacements
of these passive tracers and find that the crossover time
τc from ballistic regime to diffusive regime has a mini-
mum when the fluid friction is zero. The other two cases,
namely, positive friction (energy damping) and negative
friction (energy injection) both tend to progressively in-
crease the crossover time τc. We explain this minimum
in τc by directly invoking appropriate scale arguments in
the homogeneous steady state of the turbulent fluid. Fi-
nally, we set up a universal friction scaling law for the
diffusion co-efficient of these passive tracers that is in ex-
cellent agreement with our direct numerical simulations.

In the following, we start by describing the numerical
setup used in our work.
Numerical Simulations: The literature on continuum

theories of active matter with particular emphasis on col-
lective behavior, is quite extensive [8–14]. In our work,
we use a minimal phenomenological model that was re-
cently developed to study turbulence in a dense suspen-
sion of bacterium Bacillus subtilis [15–17]. According
to this model, at high enough concentration, this bacte-
rial suspension can be approximated as an incompressible
fluid, whose velocity field is governed by the following
equations,

∂u

∂t
+ λ0(u ·∇)u = −∇P − Γ0∇

2
u− Γ2∇

4
u− µ(u)u,

∇ · u = 0, (1)

where P is pressure and the coefficient of the advec-
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FIG. 1. (color online). Color map of the 2D vorticity field
along with the distribution of passive tracers at steady state.
Grid resolution is 5122 and Ekmann friction α = −1.

tive term λ0 decides the type of bacteria, meaning it is
either a pusher or a puller, corresponding to the case
λ0 > 0 or λ0 < 0, respectively. The model also pro-
vides internal drive/ dissipation through the terms Γ0,2
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and the scalar field µ(u) = α + β|u|2, introduced by
Toner and Tu to model the “flocking” behavior in self-
propelled rod-like objects [18–20]. Keeping Γ0,2 > 0
leads to destabilization of a band of wave vectors that
mimics energy injection into the bacterial suspension me-
diated by fluid instabilities. While the parameter α,
hereafter referred to as the Ekmann friction, can pro-
duce the effect of energy damping (α > 0) as well as
energy injection (α < 0), the parameter β however, is
restricted to have only positive values. In order to non-
dimensionalize Eq. (1), we normalize all distances to
l0 = 5π/k0, where k0 =

√

Γ0/(2Γ2) is the fastest grow-
ing mode in the linear regime characterized by the growth
rate: γ(k) = −α + Γ0k

2 − Γ2k
4 [16]. Further defining a

characteristic velocity unit, u0 =
√

Γ3

0
/Γ2, one obtains

the normalization for time as t0 = l0/u0. In these units,
we set the values of Γ0 = (5π

√
2)−1, Γ2 = (5π

√
2)−3 and

λ0 = 3.5 to remain consistent with earlier works [15, 16].
All physical quantities henceforth appearing in this letter
are expressed in these reduced units. Equation (1) is nu-
merically solved through a pseudo-spectral approach [21]
using a grid with 5122 points and a periodic square box
of size [0, 2π]× [0, 2π]. Starting from random vortices, we
time evolve the Eq. 1 using the Crank-Nicholson scheme
with a time step ∆t = 2 × 10−4. Numerical stability
is guaranteed by satisfying the Courant-Friedrichs-Lewy
criterion, (ux/∆x + uy/∆y)∆t ≤ 1, where ux,y and ∆x,y

are respectively, the components of the velocity field and
grid spacings in two dimensions. Transport properties
are further studied by adding N = 10, 000 tracer parti-
cles that just go with the local flow, and with dynamics,

dx

dt
= u(x, t), (2)

where x is the position of the tracer particle and u(x, t)
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FIG. 2. (color online). Mean square displacement ∆x
2 vs.

time t for a typical Ekmann friction α. Inset: Cross over time
τc develops a minimum at zero friction (see text for details).
Error bars indicate one standard deviation.
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FIG. 3. (color online). Energy spectrum Ek for different
values of Ekmann friction α. The peak shows the location of
dominant length scale k∗ = 1/ℓ∗. Inset: The exponent δ at
low wave numbers is seen to be linear in α.

gives velocity field of the fluid at x, which is found using a
cubic spline interpolation. Figure 1 shows the snapshot of
tracer particles distributed in the steady state turbulent
vorticity field. In what follows, we present a systematic
report of our observations on tracer transport and how it
scales with Ekmann friction. We first compute the mean
square displacement of the tracer particles defined as,

∆x
2 =

〈

1

N

N
∑

i=1

|xi(t)− xi(0)|2
〉

, (3)

where 〈·〉 denotes an ensemble average over 75 indepen-
dent initial conditions. As is evident from Fig. 2, there
is a ballistic regime at t ≪ τc, where due to correlations
in velocity field, we observe ∆x

2 ∼ t2. At late times, i.e
t ≫ τc, we observe a diffusive regime where ∆x

2 ∼ t,
due to loss of memory. The cross over from ballistic to
diffusive regime happens at an intermediate time scale,
τc that essentially denotes the relaxation time of the pas-
sive tracers. Interestingly, we observe that τc develops
a minimum at α = 0, directly implying that the fastest
relaxation occurs at zero friction (see Fig. 2 inset). To
understand this non-monotonic behavior, we propose to
identify τc ∼ 2ℓ∗/urms where the length scale ℓ∗ = 1/k∗

with k∗ being the location of the peak of the energy spec-
trum (refer Fig. 3) and the velocity scale urms =

√

〈|u|2〉
in the steady state. In Fig. 4 we show that both these
time scales are in close agreement and display a minimum
at α = 0, clearly justifying our choice. A physical rea-
soning for this observed minimum can be constructed by
noticing that 1/|α| is a time scale over which advective
terms necessary to develop turbulence, are damped. If we
further realize that l0/u0 is a time scale over which the
unstable modes grow due to stress induced instabilities,
the necessary condition for developed turbulence can be
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FIG. 4. (color online). Comparison of time scales τc and
2ℓ∗/urms extracted respectively from ∆x

2 and Ek data.
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FIG. 5. (color online). Characteristic scales ℓ∗ and urms along
with their predicted scalings shown as dashed lines.

constructed through an effective Reynolds number

RE ∼ u0

l0|α|
∼ Γ2

0

Γ2|α|
≫ 1. (4)

We see that for α → 0, the above inequality is automat-
ically established for arbitrary values of the parameters
Γ0,2. Since the transport of tracers is aided by back-
ground turbulence, the crossover from ballistic to diffu-
sive regime must be fastest at zero friction. In what fol-
lows, we provide scaling laws for both ℓ∗ and urms that is
further used to set up a friction scaling law for diffusion
coefficient D in our active fluid.
Recently, an expression for the energy spectrum of our

model fluid was derived in Ref. [16] as

Ek = E0k
δ exp(−E1k

2), (5)

where the constants E0,1 depend on model parameters
excluding α. The location of the peak k∗ ∼ 1/ℓ∗ can be
easily obtained by extremizing Eq. 5, yielding

k∗ ∼
√
δ, (6)

which together with the observation that δ is linear in α
(see Fig. 3) leads us to the following scaling

ℓ∗ ∼ (C1α+ C2)
−1/2, (7)

where the constants C1,2 depend on other parameters of
the governing model. Next we derive the scaling for urms

by focusing on kinetic energy of the fluid in the steady
state. To that end, we rewrite Eq. 1 as

∂u

∂t
+ λ0

[

1

2
∇(u · u)− u× ω

]

= −∇P + Γ0∇× ω − Γ2∇×∇×∇× ω − αu− β|u|2u, (8)

and by taking a scalar product of u with Eq. 8 we arrive at the energy equation

∂

∂t

|u|2
2

+
λ0

2
∇·(|u|2u) = −∇·(Pu)−Γ0[∇·(u×ω)−|ω|2]−Γ2[∇·((∇×∇×ω)×u)−(∇2

ω)·ω]−α|u|2−β|u|4. (9)

The approximation of statistical homogeneity and spatial
isotropy allows us to perform a spatial (ensemble) average
of the above equation and put all divergences to zero,
leading us to

d

dt

〈|u|2〉
2

= Γ0〈ω2〉+ Γ2〈(∇2
ω) · ω〉 − α〈|u|2〉 − β〈|u|4〉

(10)
Further under conditions of steady state we drop the time

derivative, and by using the scalings

〈ω2〉 ∼ u2

rms

ℓ∗2

〈(∇2
ω) · ω〉 ∼ u2

rms

ℓ∗4
(11)

in equation 10, we are led to

0 =
Γ0u

2

rms

ℓ∗2
+

Γ2u
2

rms

ℓ∗4
− αu2

rms
− βu4

rms
(12)
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FIG. 6. Diffusion coefficient D vs. Ekmann friction α. The
clear agreement between the estimates, namely, the asymp-
totic value of ∆x

2/4t and urmsℓ
∗/2 asserts the validity of our

scaling law shown here as a dashed line.

which together with the scaling for ℓ∗ (refer Eq. 7), yields

urms

2
∼ C3α+ C4 (13)

where the constants C3,4 again depend on other parame-
ters of the governing model. In Fig. 5, we present a direct
comparison of these scalings (Eq. 7, 13) with the numer-
ically extracted values of ℓ∗ = 1/k∗ and urms =

√

〈|u|2〉
and observe an excellent agreement between them. To
assert the quality of our prediction, we will now present
a scaling law for the tracer diffusion coefficient that re-
mains valid throughout the range of Ekmann friction ex-
plored in our work. We start with the time derivative of
the mean squared displacement

d

dt
∆x

2 = 2∆x · u(t) = 2u(t) ·
∫ t

0

u(t′) dt′ (14)

which under the change of variable τ = t− t′ yields

d

dt
∆x

2 = 2

∫ t

0

u(t) · u(t− τ) dτ. (15)

and in the diffusive regime (t ≫ τc), further reduces to

d

dt
∆x

2 ≈ 2urmsℓ
∗ ≈ 4D (16)

where the last approximation follows from Einstein’s re-
lation. Combining the above equation and scalings for
ℓ∗ and urms derived respectively in Eqs. 7 and 13, we
present below a scaling formula for diffusion coefficient

D ≈ urmsℓ
∗/2 ∼ C3α+ C4√

C1α+ C2

(17)

In Fig. 6, we show the estimates for diffusion coefficient
obtained from two different methods and also plot the

scaling law for comparison. We clearly see an excellent
agreement between the D estimated from the asymptotic
value of ∆x

2/4t and the scale combination urmsℓ
∗/2. It

is therefore not surprising that the scaling law presented
in Eq. 17 agrees well with the foregoing estimates di-
rectly obtained from simulation and remains valid upto
extreme values of friction (i.e. α = ±4) permissible by
the conditions of numerical stability of our simulation.
We have investigated in detail the problem of turbu-

lent transport of passive (Lagrangian) tracers in a model
active fluid that well describes dense bacterial suspen-
sions. We show that in the fully developed turbulence,
the tracer transport exhibits a crossover from ballistic to
diffusive regime at a time scale τc that attains a min-
imum at zero friction. We explain this observation by
measuring a characteristic length scale ℓ∗ extracted from
the energy spectrum peak and a characteristic velocity
scale urms extracted from the total kinetic energy in the
steady state. Further, by assuming statistical homogene-
ity and isotropy in the steady state we are able to provide
scaling laws for both ℓ∗ and urms that hold well over a
wide range of Ekmann friction, namely, from the regime
of strong energy damping to the regime of strong energy
injection. Finally, we use these characteristic scales to
develop a friction scaling law for the diffusion coefficient
D. The reported laws are universal and are not affected
by changes in the parameters of the governing model (not
shown here) and should apply well to any generic fluid
not limited to bacterial suspensions alone. The findings
of our work should also draw the attention of fluid dy-
namics researchers who are interested in pursuing the
statistical laws that remain universal over general pat-
terns of energy injection and dissipation.
We thank Abhijit Sen and Gautam Menon for discus-

sions and comments on the manuscript. All simulations
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