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FINITE HOMOLOGICAL DIMENSION

AND A DERIVED EQUIVALENCE

WILLIAM T. SANDERS AND SARANG SANE

Abstract. For a Cohen-Macaulay ring R, we exhibit the equivalence of the
bounded derived categories of certain resolving subcategories, which, amongst
other results, yields an equivalence of the bounded derived category of finite
length and finite projective dimension modules with the bounded derived cat-
egory of projective modules with finite length homologies. This yields isomor-
phisms of K-theory and Witt groups (amongst other invariants) and improves
on terms of associated spectral sequences and Gersten complexes.

1. Introduction

Let R be a commutative Noetherian ring. Let P(R) be the category of finitely

generated projective modules, P(R) be the category of finite projective dimen-
sion and Mfl be the category of finite length modules. Let Db

fl(P(R)) be the

full subcategory of Db(P(R)) consisting of bounded complexes with finite length
homologies.

The category Mfl ∩ P(R) has received much attention in recent years. Bass

conjectured that Mfl ∩ P(R) contained nonzero modules if and only if the ring
was Cohen-Macaulay. This conjecture was resolved in the affirmative by the famed
new intersection theorem of [20]. Furthermore, in order to discuss intersection
multiplicity over nonregular rings, Roberts and Srinivas show in [19, Proposition 2]

that the Grothendieck groups of Mfl ∩P(R) and Db
fl(P(R)) coincide when R is a

Cohen-Macaulay ring.
We prove the following theorem, which appears as Theorem 4.12.

Theorem 1.1. If R is a local ring, then R is Cohen-Macaulay if and only if there
is an equivalence of derived categories

Db(P(R) ∩Mfl) � Db
fl(P(R)).

When R is Cohen-Macaulay, the equivalence is a special case of our main result,
Theorem 4.7. The main difficulty in proving the equivalence lies in showing that
the natural functor Db(P(R)∩Mfl) → Db

fl(P(R)) is essentially surjective and full,

where Db
fl(P(R)) is the thick subcategory of Db(P(R)) consisting of complexes

with finite length homologies. We overcome this difficulty using a subtle induction
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on the number of homology modules, an argument which dates back to the preprint
[7] (refer to Theorems 3.1 and 3.3 for our versions).

When R is not Cohen-Macaulay, the equivalence fails because the new inter-
section theorem [20] asserts that such a ring R never admits a finite length, fi-

nite projective dimension module. Thus Db(P(R) ∩ Mfl) = 0. However, the
Hopkins-Neeman theorem [11],[15] states that the thick subcategories of Db(P(R))
are in bijective correspondence with specialization closed subsets of Spec(R); hence

Db
fl(P(R)) cannot be 0. See the proof of Theorem 4.12 for more details.
Using Theorem 1.1, when R is Cohen-Macaulay, we can conclude that the non-

connective K-theory spectra of Mfl and Db
fl(P(R)) are homotopy equivalent. Spe-

cial cases of this result for the connective K-theory spectrum can be obtained from
[28, Ex. 5.7], and similar results comparing the K0 groups are in [19, Proposition 2]
(as previously mentioned) and [8]. The homotopy equivalence of the K-theory spec-
tra is obtained by putting together two equivalences in Theorem 4.5 and Lemma 4.6,
both of which are induced through natural functors of the chain complex categories
(a zigzag of equivalences induced from chain complex functors).

The equivalence of K-groups allows us to refine the terms in weak Gersten
complexes for certain nonregular schemes. Let X be a Noetherian scheme, c a
nonnegative integer, Coh(X) the category of coherent OX -modules, Coh(X)c the
subcategory of modules with codimension at least c, and Dc(Coh(X)) the sub-
category of Db(Coh(X)) consisting of complexes with homologies in Coh(X)c.
Using the natural coniveau filtration by codimension, one obtains the classical
Brown-Gersten-Quillen spectral sequences of K-groups which abut the K-theory
of Coh(X). Applying Quillen’s localization and dévissage theorems, the terms oc-
curring in these sequences can be identified with K-groups of the residue fields of
the points. Classically, these spectral sequences were applied in the case when X
was Noetherian, regular and separated, in which case they converged to the K-
groups of X [18]. This is because for such X there is a well-known equivalence

Dc(V BX)
ξ→ Dc(Coh(X)) (since there is an ample family of line bundles) which

yieldsDb(Coh(X)c) � Dc(V BX), where V BX is the category of locally free sheaves
over X. The philosophy thus is that if one can understand the K-groups for fields
and transfer maps between them, one can compute the global K-groups.

However, without the regularity assumption, ξ is not an equivalence, and hence
the classical spectral sequences can be used to compute only the coherent K-groups
(better known as G-groups) but not the usual K-groups. This entire discussion
applies for several other generalized cohomology theories, for example triangular
Witt groups [6] and Grothendieck-Witt groups [31], [25]. When X is Gorenstein,
the corresponding result for coherent Witt groups is in [10].

In [4], niveau and coniveau spectral sequences are established for the usual K-
theory over a (topologically) Noetherian scheme with a bounded dimension func-
tion. Similarly weak Gersten complexes are defined. However, the terms occur-
ring in these spectral sequences involve abstract derived categories with support
Ki(D

b(OX,x on {x})). Now, when X is Cohen-Macaulay at every stalk, using The-
orem 1.2, these terms can be identified with the K-groups of an actual category of
modules, that is, we can rewrite these as Ki(P(OX,x) ∩Mfl(OX,x)), thus obtain-
ing refined spectral sequences and Gersten complexes in Theorem 5.4 . Thus, the
philosophy can now be changed to understanding the K-groups of P(R) ∩Mfl(R)
when R is a Cohen-Macaulay local ring and maps between them.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE HOMOLOGICAL DIMENSION AND A DERIVED EQUIVALENCE 3913

Furthermore, the equivalence in Theorem 1.1 preserves each category’s natural
dualities, which induces isomorphisms of triangular Witt and Grothendieck-Witt
groups; see Theorem 5.5 and Remark 5.7. Similarly, in Theorem 5.8 we compare a
recent definition [13] of triangular Witt groups for certain subcategories of triangu-
lated categories with duality (for example W i(Db

P(R)
(P(R)))). Indeed, this article

grew out of discussions between the authors on such comparisons after a series of
talks by Satya Mandal at KU.

Theorem 1.1 is actually the corollary of a much more general statement involving
homological dimension. Homological dimension of a module M with respect to a
category A, or the A-dimension of M , is the smallest resolution of M by modules
in A. A resolving subcategory is in some sense the “correct” type of category over
which to take homological dimension. The following is the main theorem of this
article, which features as Theorem 4.7.

Theorem 1.2. Let A be a resolving subcategory of mod(R), A the category of
modules of finite A-dimension, and L a Serre subcategory satisfying condition (∗)
(see Definition 2.11). Then there is an equivalence of derived categories

Db(A ∩ L ) � Db
L (A)

where Db
L (A) is the full subcategory of Db(A) of complexes whose homologies lie

in L .

As with the special case, we can conclude in Theorem 5.1 that the nonconnective
K-theory spectra are homotopy equivalent. Also, working in this generality allows
us to prove Corollary 4.11, which generalizes an important consequence of the
Hopkins-Neeman theorem [11], [15].

A brief word on the organization of the article. In Section 2, we give definitions
and preliminaries needed in the article. The proof of Theorem 1.2 uses Theorem 3.1
to reduce the lengths of complexes via a suitable Koszul complex and Theorem 3.3,
which makes the reduction functorial and amenable to use in the derived category.
Section 3 is devoted to proving Theorem 3.1 and Theorem 3.3. These theorems are
crucially used in Section 4, where we prove the main theorems, Theorems 4.5 and
4.7. In Section 5, we use the main theorems to obtain the natural consequences for
K-theory, derived Witt and Grothendieck-Witt groups. In Section 6, we list several
questions and examples of interest.

2. Preliminaries

We fix a commutative Noetherian ring R throughout the article. Let mod(R)
denote the category of finitely generated R-modules. Let P(R) denote the full
subcategory of projective modules.

Definition 2.1. A commutative Noetherian local ring is said to be Cohen-Macaulay
if its depth equals its dimension. A commutative Noetherian ring R is Cohen-
Macaulay if each localization Rp is Cohen-Macaulay local.

When R is Cohen-Macaulay and local, we denote the full subcategory of maximal
Cohen-Macaulay modules (i.e. modules M which satisfy depth(M) = dim(R)) by
MCM(R). The main property of Cohen-Macaulay rings which we use is

Theorem 2.2 ([5, Corollary 2.1.4]). Every ideal I of height r in a Cohen-Macaulay
ring R contains a regular sequence of length r.
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Preliminaries: Resolving, thick, and Serre subcategories

Resolving subcategories allows one to generalize the notion of projective di-
mension and Gorenstein dimension. For a subset C ⊂ mod(R) and a module
M ∈ mod(R), we say that dimC M = n if n ∈ N is the smallest number such
that there is an exact sequence

0 → Cn → · · · → C0 → M → 0

with C0, . . . , Cn ∈ C. For an arbitrary category C, dimC does not have nice prop-
erties. However, when C is resolving, dimC behaves similarly to projective and
Gorenstein dimension. Resolving subcategories also allows us to simultaneously
study usual and coherent theory for invariants such as Grothendieck-Witt groups
and K-theory. They were first studied in [1] and have been of considerable interest
recently. We summarize below the definitions, examples and results needed in this
article.

Definition 2.3. Given a ring R, a full subcategory C ⊂ mod(R) is resolving if:

(1) R is in C.
(2) M ⊕N is in C if any only if M and N are in C.
(3) If 0 → M ′′ → M → M ′ → 0 is exact and M ′ ∈ C, then M ∈ C if and only

if M ′′ ∈ C.
Thus, C is closed under extensions and syzygies, and contains P(R).

Important Example 2.4. The following categories are resolving:

(1) P(R).
(2) mod(R).
(3) Gorenstein dimension 0 modules (also known as totally reflexive modules).
(4) {N | Ext>n(N,M) = 0 ∀M ∈ X } where X ⊂ mod(R) and n ≥ 0.
(5) {N | Tor>n(N,M) = 0 ∀M ∈ X } where X ⊂ mod(R) and n ≥ 0.
(6) MCM(R) when R is Cohen-Macaulay and local.

A special class of resolving subcategories is thick subcategories.

Definition 2.5. Let X ⊂ mod(R). A full subcategory C ⊂ X is a thick subcat-
egory of X (or C is thick in X ) if it is resolving and for any exact sequence with
M,M ′,M ′′ ∈ X ,

0 → M ′′ → M → M ′ → 0

M ′′,M ∈ C implies M ′ ∈ C too.

Some authors do not require that thick subcategories contain R. However, our
definition is standard amongst certain authors, for example [27]. The intuition
behind requiring that a thick subcategory contain R traces back to the stable cat-
egory of maximal Cohen-Macaulay modules over a Gorenstein ring. More on the
nomenclature and concepts can be found in [27].

Lemma 2.6. For a subset C ⊂ mod(R), we let C denote the category of modules
M such that dimC M is finite. If C is resolving, then

C = {M ∈ mod(R) | Ω�0M ∈ C}
and C is thick in mod(R) (where ΩiM is the i-th syzygy of M).

The proof is standard and is left to the reader but can be found in [21, Corollary
2.6 and Corollary 2.9].
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Important Example 2.7. The following categories are obtained as the thick
closures in mod(R) of the resolving categories in Example 2.4:

(1) The category of modules with finite projective dimension, which we will

denote by P(R).
(2) mod(R).
(3) The category of modules with finite Gorenstein dimension.
(4) For any X ⊂ mod(R), {Y | Ext�0(Y,X) = 0 ∀X ∈ X }.
(5) For any X ⊂ mod(R), {Y | Tor�0(Y,X) = 0 ∀X ∈ X }.
(6) When R is Cohen-Macaulay and local, MCM(R) = mod(R).

The following lemma is a nice property of some resolving subcategories.

Lemma 2.8. If R is a Cohen-Macaulay, local ring, C is a thick subcategory of
MCM(R) if and only if dimension with respect to C satisfies the Auslander Buchs-
baum formula, i.e. for all M ∈ C we have

dimC M + depth(M) = depth(R).

We define Serre subcategories so that it is convenient to talk about derived
categories with supports.

Definition 2.9. A Serre subcategory L of an Abelian category is a full subcategory
such that if 0 → M ′′ → M → M ′ → 0 is a short exact sequence in the ambient
category, then M ∈ L iff M ′,M ′′ ∈ L .

Remark 2.10. In fact every Serre subcategory of mod(R) is obtained as the sub-
category of modules supported on a specialization-closed subset V in Spec(R)
(i.e. if p ⊆ q and p ∈ V , then q ∈ V ) [9]. For example, Mfl is obtained with
V = MaxSpec(R). Because of this, if a module M is in a Serre subcategory L ,
then R

Ann(M) is also in L .

Let V be a closed subset of Spec(R) and c be any integer. The main example
we will consider in this article is the full subcategory of mod(R) with modules:

L = {M | codim(Supp(M)) ≥ c, Supp(M) ⊆ V }.
Definition 2.11. A Serre subcategory satisfies condition (*) if given an ideal I in

R such that
R

I
∈ L , there exists a regular sequence (a1, a2, . . . , ac) ∈ I such that

R

(a1, a2, . . . , ac)
∈ L .

Important Example 2.12. The following Serre subcategories L of mod(R) sat-
isfy condition (*):

(1) If R is equicodimensional (i.e. every maximal ideal has the same height)
and Cohen-Macaulay, L = Mfl.

(2) If R is Cohen-Macaulay, V is a set theoretic complete intersection; i.e. there
exists a complete intersection ideal J = (b1, b2, . . . , br) such that V = V (J),
c is any integer, L = {M | codim(Supp(M)) ≥ c, Supp(M) ⊆ V }.

(3) V = Spec(R) = V (∅) is an important special case of the previous example.
Then L is the category of modules supported in codimension at least c.

(4) V is a set theoretic complete intersection, L = {M |Supp(M) ⊆ V }.
Remark 2.13. We emphasize an immediate consequence of Definitions 2.5 and 2.9.
For a thick subcategory T of mod(R) and a Serre subcategory L of mod(R) the
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intersection T ∩ L has all the properties of a thick subcategory except possibly
that it contains R. In particular it has the 2-out-of-3 property; that is, in a short
exact sequence in mod(R), if two modules are in T ∩ L , then so is the third.

For the rest of the article, we fix a resolving subcategory A ⊆ mod(R),
a thick subcategory T of mod(R) and a Serre subcategory L of mod(R)
satisfying condition (*).

Definition 2.14. Let E ⊂ mod(R) be a subcategory closed under extensions (e.g.

A, T , T ∩ L ). Let ChbL (E) be the subcategory of Chb(E) consisting of complexes
whose homologies lie in L , and let Db

L (E) be the subcategory of Db(E) consisting
of objects whose homologies lie in L .

Since L is a Serre subcategory, it is easy to see that Db
L (E) is a triangulated

subcategory of Db(E). Furthermore, it is easy to show that Db
L (E) is equivalent to

the category obtained by inverting the quasi-isomorphisms of ChbL (E).

Remark 2.15. We briefly mention what these definitions will help us achieve.
There is a natural functor Chb(T ∩ L ) → ChbL (T ) which induces the natural

functor Db(T ∩ L ) → Db
L (T ). In Theorem 4.5, we will prove that this is an

equivalence.
When T = A where A is resolving, there is a natural functor ChbL (A) →

ChbL (T ) which induces an equivalence Db
L (A)

∼→ Db
L (T ).

To a reader who may be lost in the notation, we highlight the two important spe-
cial cases which might shed further light on what this achieves. Let R be equicodi-
mensional and Cohen-Macaulay.

(1) A = P(R), T = A = finite projective dimension modules,L = Mfl.

Then P(R) ∩ Mfl = T ∩ L , and hence the equivalences in Remark 2.15

yield the equivalence Db
fl(P(R)) � Db(P(R) ∩Mfl).

(2) A = mod(R), T = A = mod(R),L = Mfl. Then the comparison in
Remark 2.15 yields the well-known equivalence Db

fl(mod(R)) � Db(Mfl).

Preliminaries: Chain complexes in A
In this section, we state and prove some general lemmas for chain complexes

of resolving (and thick) subcategories and their derived categories. We begin by
introducing some notation for chain complexes.

Definition 2.16. Let P• ∈ Chb(mod(R)), i.e. chain complexes with elements in
mod(R).

(1) minc(P•) is defined as sup{n | Pi = 0 ∀ i < n}.
(2) maxc(P•) is defined as inf{n | Pi = 0 ∀ i > n}.
(3) min(P•) = sup{n | Hi(P•) = 0 ∀i < n}.
(4) max(P•) = inf{n | Hi(P•) = 0 ∀i > n}.
(5) Width(P•) = max(P•)−min(P•) if P• is not acyclic and Width(P•) = 0 if

it is acyclic.
(6) Zn = ker(∂n), Bn = ∂n+1(Pn+1).
(7) Supph(P•) = {n | Hn(P•) �= 0}.
(8) T denotes the shift functor.
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The following lemma allows us to assume that the complexes we will work with
have certain properties, thus simplifying later proofs.

Lemma 2.17.

(1) Let P• ∈ Chb(T ∩ L ) and min(P•) ≥ m. Then there exists a quasi-

isomorphism P ′
•

φ−→ P• with P ′
• ∈ Chb(T ∩ L ), minc(P

′
•) = m.

(2) Let P• ∈ ChbL (T ). Let t be any natural number and m be an integer such

that min(P•) ≥ m. Then there exists a quasi-isomorphism U•
φ−→ P• with

U• ∈ ChbL (T ) such that Ui is free for all i < t and minc(U•) = m.

(3) Let P• ∈ ChbL (T ). Let m be an integer such that min(P•) ≥ m. Then there

exists a quasi-isomorphism U•
φ−→ P• such that Ui is free for all i.

(4) Let E be either T or T ∩ L . For P• ∈ Chb(E), if Supph(P•) = {m}, then
P• is isomorphic to the complex TmHm(P•) in Db(E).

Proof. First, we prove (1). Consider the complex

P ′
• : · · · → Pm+2 → Pm+1 → ZP

m → 0 · · · .

Since min(P•) ≥ m, the complex

0 → ZP
m → Pm → · · · → PminC(P•) → 0

is acyclic. Since each Pi ∈ T ∩ L and by Remark 2.13 T ∩ L has the 2-out-of-3
property, we conclude that ZP

m is also in T ∩ L . Hence P ′
• is in Chb(T ∩ L ).

Furthermore, the inclusion map P ′
• −→ P• is a quasi-isomorphism. By construction,

minc(P
′
•) = m, which completes the proof.

Now we prove (2). The statement is clearly true when P• is acyclic. Assume now
that P• is not acyclic. The same arguments as in the previous paragraph show that

there exists a quasi-isomorphism P ′
•

φ′

−→ P• with P ′
• ∈ ChbL (T ), minc(P

′
•) = m. If

t < m, we are done. Else set n = t −m. For each i, choose free modules Qi,j for
0 ≤ j ≤ n such that

0 → ΩnP ′
i → Qi,n → · · · → Qi,0 → P ′

i → 0

is exact. Setting Qi,n+1 = ΩnPi and Qi,l = 0 for all j �= 0, . . . , n + 1 gives us a
complex Qi• which is a resolution of P ′

i . The differentials of P
′
• lift to give a double

complex Q••. Let U• be the total complex of Q••. There is a quasi-isomorphism

U•
α−→ P ′

•. Since T is thick, each ΩnP ′
i is in T , and so U• ∈ ChbL (T ). The

composition U•
α−→ P ′

•
φ′

−→ P• is the desired quasi-isomorphism.
Statement (3) is standard and follows from the proof of (2) by taking t = ∞.
Lastly, we show (4). By the proof of statements (1) and (2), there exists a

quasi-isomorphism P ′
• → P• such that minc(P

′
•) = m. Since both T and L have

the 2-out-of-3 property (by Remark 2.13), Hm(P ′
•) is in E . Since ZP ′

m = P ′
m, we

have a map P ′
m → Hm(P ′

•)
∼= Hm(P•). This extends to a quasi-isomorphism

P ′
• → TmHm(P•). This completes the proof. �

We now state a result on morphisms in Db
L (T ).

Lemma 2.18. Let P•, Q• ∈ Db
L (T ) such that min(P•) > max(Q•). Then we have

HomDb
L (T )(P•, Q•) = 0.
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Proof. The result is clear when P• is acyclic, and hence we assume that P• is not
acyclic. Let f ∈ HomDb

L (T )(P•, Q•) be represented by a roof diagram

P•
q←− P ′

•
g−→ Q•

where q is a quasi-isomorphism. Set t = maxc(Q•) and m = min(P•). If t < m,
we are done. Else by Lemma 2.17(2), we can assume that minc(P

′
•) = m and P ′

i is
free for all t ≥ i ≥ m. Set hi = 0 : P ′

i → Qi+1 for all i not in [m, t]. Let ∂Q be the
differential of Q•. For all t ≥ i ≥ m, P ′

i is free and since m > max(Q•),

Qi+1

∂Q
i+1−−−→ ker(∂Q

i )

is surjective. So we can define maps hi : P ′
i → Qi+1 such that h = {hi} is a

null-homotopy for g. Hence g is null-homotopic and f = 0. �

We end this section with a general result on triangulated categories.

Lemma 2.19. Let U ,V be triangulated categories and ξ : U → V a triangulated
functor. If ξ is full, essentially surjective, and faithful on objects, then ξ is an
equivalence of categories.

Proof. It suffices to show that ξ is faithful. Suppose f : X → Y is a morphism in
U such that ξ(f) = 0. Letting T be the shift functor, complete f to a triangle

C
g−→ X

f−→ Y
h−→ TC.

In V , this maps to the triangle

ξ(C)
ξ(g)−−→ ξ(X)

0−→ ξ(Y )
ξ(h)−−−→ Tξ(C).

So, by [17, Corollary 1.2.7], there exists an η : ξ(X) −→ ξ(C) such that ξ(g) ◦ η is
the identity on ξ(X). Since ξ is full, there exists a morphism η̃ : X → C such that
ξ(η̃) = η. Extending the morphism g ◦ η̃ to an exact triangle in U gives us the
triangle

X
g◦η̃−−→ X → W → TX.

Since ξ(g ◦ η̃) is the identity on ξ(X), the image of the above triangle in V is

ξ(X)
=−→ ξ(X) → ξ(W ) → Tξ(X).

This means that ξ(W ) ∼= 0 in V . But since ξ is faithful on objects, W ∼= 0 in U .
Hence g ◦ η̃ is an isomorphism in U . So η̃ ◦ (g ◦ η̃)−1 : X → C gives a splitting;
i.e. g ◦ η̃ ◦ (g ◦ η̃)−1 is the identity on X. Therefore, by [17, Corollary 1.2.8], the
triangles

C
g−→ X

f−→ Y
h−→ TC,

T−1Y ⊕X → X
0−→ Y → Y ⊕ TX

are isomorphic in U . Hence f = 0, which completes the proof. �
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Preliminaries: Semidualizing modules

Semidualizing modules seem to have arisen in work of Foxby, and we refer to
the exposition [22] by Sather-Wagstaff for more details. We will require them only
when we consider dualities in the context of Witt groups in Section 5, and the
reader can skip this subsection presently and refer back later.

Definition 2.20. A module C is semidualizing if Ext>0(C,C) = 0 and the natural

map R
∼−→ Hom(C,C) is an isomorphism.

We fix a semidualizing module C ∈ mod(R) and write M† = Hom(M,C) for the
rest of this subsection.

Definition 2.21. A finitely generated module M is totally C-reflexive if it satisfies
the following:

(1) Ext>0(M,C) = 0.
(2) Ext>0(M†, C) = 0.
(3) The natural evaluation map ηM : M → M†† is an isomorphism.

Let GC denote the category of totally C-reflexive modules. Then GC is a resolving
subcategory.

Important Example 2.22. Some examples of semidualizing modules C and the
corresponding categories GC are:

(1) When C = R, GR is simply the category of Gorenstein dimension 0 modules
(also known as totally reflexive modules).

(2) When R is local and C = D, that is, the dualizing (or canonical) module,
then GD = MCM(R).

Lemma 2.23. If M ∈ GC , then dimGC
M = min{n | Ext>n(M,C) = 0}.

3. The Koszul construction

We begin this section with a theorem based on a very interesting construction
on Koszul complexes which essentially first appeared in an unpublished preprint
[7]. The construction is used in [19, Lemma 1] and is generalized in [8]. Recall
that T ⊆ mod(R) is a thick subcategory, and L ⊆ mod(R) is a Serre
subcategory satisfying condition (*).

Theorem 3.1. Let P• ∈ ChbL (mod(R)) and with min(P•) ≥ m. Fix an ideal

J ⊆ R such that
R

J
∈ L . There exists a regular sequence f1, . . . , fc ∈ J such that,

after setting
K• = Kos(f1, f2, . . . , fc)⊗R F,

for some free module F , there exists a chain map α : K• → P• such that the
following hold:

• K• ∈ ChbL (P(R)),
• minc(K•) = m,
• Supph(K•) = {m},
• Hm(α) : Hm(K•) � Hm(P•) is surjective.

The proof of our main result involves several technical subtleties; thus we require
α and K• to have these specific properties. Since neither [7, 8, 19] give the exact
statement needed, we give the following proof.
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Proof. By Remark 2.10, we know that there exists a specialization closed subset
V ⊆ Spec(R) such that

L = {M ∈ mod(R) | Supp(M) ⊆ V }.

Without loss of generality, we may assume that m = 0.
By Lemma 2.17(3), there exists a quasi-isomorphism π : F• → P• with each Fi

free and Fi = 0 for all i < 0. By repeated application of the dual of [32, Corollary
10.4.7], we get the following natural isomorphisms of Hom spaces:

EndK(R)(F•) ∼= EndD(R)(F•) ∼= HomD(R)(F•, P•) ∼= HomK(R)(F•, P•).

Since P• is a bounded complex, HomK(R)(F•, P•) is a subquotient of a finitely
generated module and hence is finitely generated. Hence, EndK(R)(F•) is a finitely
generated R-module. Similarly using the above isomorphisms and the boundedness
of P•, we obtain that (EndK(R)(F•))p ⊆ EndK(Rp)((F•)p) for p ∈ Spec(R).

Assume that (EndK(R)(F•))p �= 0 for some p ∈ Spec(R). Then we get that
EndK(Rp)((F•)p) �= 0, which implies that the identity morphism of (F•)p is not
null-homotopic. Since F• is a bounded below complex of free modules, (F•)p is not
acyclic, and so Hi(F•)p �= 0 for some i ∈ N. Therefore we have

Supp
(
EndK(R)(F•)

)
⊆

∞⋃
i=0

Supp (Hi(F•)) =
∞⋃
i=0

Supp (Hi(P•)) ⊆ V,

where the last containment follows by the assumption that P• ∈ ChbL (mod(R)).
Set I = Ann

(
EndK(R)(F•)

)
. We have

Supp

(
R

I ∩ J

)
= Supp

(
R

I

)
∪ Supp

(
R

J

)

= Supp
(
EndK(R)(F•)

)
∪ Supp

(
R

J

)
⊆ V.

It follows that
R

I ∩ J
∈ L .

Invoking condition (*), there exists a regular sequence f1, . . . , fc ∈ I ∩ J such

that
R

(f1, f2, . . . , fc)
∈ L . We show that this is our desired regular sequence. Set

K• = Kos(f1, f2, . . . , fc)⊗R F0.

For each j ∈ {1, . . . , c}, since fj ∈ I, fjIdF• is null-homotopic with null-homotopy
αj . Letting −∗ denote the R-dual of a complex, it follows that fjIdF∗

• is also
null-homotopic with null-homotopy αj

∗.
The result [8, Proposition 23] states that when F• is bounded above, there exists

a chain map φ : F ∗
• → K∗

• such that φ0 is an isomorphism (in the language of [8],
(α1

∗, . . . , αc
∗) is an S-contraction with weight (f1, f2, . . . , fc)). However, a close

examination of the proof reveals that the bounded assumption is not used (the
authors use the bounded assumption earlier in the paper to construct what they
call an S-contraction). Thus, even though F• is not bounded above, such a φ exists.
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Set α̃ = φ∗ : K• → F•. Since α̃0 is an isomorphism, and since K−1 = F−1 = 0,
the commutative diagram

K0
α̃0

∼ ��

����

F0

����
H0(K•)

H0(α̃)
�� H0(F•)

shows that H0(α̃) : H0(K•) → H0(F•) is surjective. Set α = π◦ α̃ : K• → P•. Since
π is a quasi-isomorphism, it is clear that α and K• have the desired properties. �

The following result will help in the proof of Proposition 4.4, which involves an
induction argument on the width of complexes.

Lemma 3.2. Assume the set up of Theorem 3.1 and consider the chain map α :
K• → P• constructed there. Extend this chain map to the exact triangle

T−1C• → K•
α−→ P• → C•.

Then we have the following:

(1) If Width(P•) > 0, then Width(C•) < Width(P•).
(2) If Width(P•) > 0, then Width(T−1C• ⊕K•) < Width(P•).

Proof. Setm = min(P•). SinceHi(K•) = 0 for all i �= m, we haveHi(P•) ∼= Hi(C•)
for all i �= m,m+ 1. Furthermore, Hm(α) is surjective so Hm(C•) = 0. The above
statements now follow from these observations. �

In other works such as [7], [8], and [19], the authors use results similar to The-
orem 3.1 to give isomorphisms of Grothendieck groups. Since we intend to prove
an equivalence of categories, we need a version of Theorem 3.1 for morphisms of
complexes.

Theorem 3.3. Let X•
g−→ Y• be a morphism in Db

L (T ) such that X•, Y• are com-

plexes in Chb(T ∩ L ), min(X• ⊕ Y•) = m, and minc(X•),minc(Y•) ≥ m. Then

there exist complexes MX
• and MY

• in Chb(T ∩ L ) and chain maps MX
•

βX

−−→ X•,

MY
•

βY

−−→ Y• and MX
•

g′

−→ MY
• such that:

• MX
• ,MY

• ∈ Chb(T ∩ L ) with MX
i = MY

i = 0 for all i �= m.
• There is a commutative square in Db

L (T ):

MX
•

βX

��

κ

��

X•

g

��
MY

•
βY

�� Y•

• Hm(βX) and Hm(βY ) are surjective.

Proof. Let MY
• be the complex TmYm. Then MY

• ∈ Chb(T ∩L ), and clearly there
is a chain complex morphism βY : MY

• → Y•. Since Hm(MY
• ) = Ym and Hm(Y•)

is a quotient of Ym, we obtain that Hm(βY ) is surjective.
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Let g be given by a roof diagram X•
q←− Q•

f−→ Y• where q is a quasi-isomorphism.
By Lemma 2.17(2), we may assume minc(Q•) = m. Let Q′

• be the pull-back of αY

and f in Chb(mod(R)):

Q′
•

ν �����

μ

���
�
�

Q•

f

��
MY

•
βY

�� Y•

By definition of the pull-back, there is a left exact sequence of complexes:

0• → Q′
• → Q• ⊕MY

•
(f,−βY )−−−−−→ Y•.

Let B• be the image of (f,−βY ). Since L is closed under subobjects and each

Bi ⊂ Yi ∈ L , we have B• ∈ Chb(L ). Furthermore, since L is also closed under

quotients, B• ∈ ChbL (mod(R)). Since the homologies of Q• ⊕ MY
• also lie in L ,

the short exact sequence

0• → Q′
• → Q• ⊕MY

• → B• → 0•

shows that Q′
• ∈ ChbL (mod(R)). Set λ = q ◦ ν.

Set J = Ann(Xm). By Remark 2.10,
R

J
∈ L . By Theorem 3.1, there exists

a regular sequence x1, x2, . . . , xc ∈ J and a chain map αX : KX
• → Q′

• with the
following properties:

• KX
• = Kos(x1, x2, . . . , xc)⊗R Rn ∈ ChbL (P).

• minc(K
X
• ) = m.

• Supph(KX
• ) = {m}.

• Hm(αX) : Hm(KX
• ) → Hm(Q′

•) is surjective.

Thus, we obtain the following commutative diagram in Db
L (mod(R)):

KX
•

αX
�� Q′

•

μ

��

λ �� X•

g

��
MY

•
βY

�� Y•

Let MX
• be the chain complex TmHm(KX

• ) ∈ Chb(P̄ ∩ L ) ⊆ Chb(T ∩ L ) ⊆
ChbL (T ). Since

KX
m

(x1, . . . , xc)KX
m

∼= Hm(KX
• )

and x1, . . . , xc ∈ J = Ann(Xm), the map λm ◦ αX
m : KX

m → Xm factors through

Hm(KX
• ), giving us the homomorphism βX

m : Hm(KX
• ) → Xm. Also, since ZKX

m =
KX

m , the image of λm ◦ αX
m, and hence the image of βX

m , lies in ZX
m . Therefore, we

have actually defined a chain map βX : MX
• → X•. Similarly, it is also clear that

μ ◦ αX factors through MX
• , giving us the chain map κ : MX

• → MY
• . Hence we
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have the required commutative diagram in Db
L (T ):

MX
•

βX

��

κ

��

X•

g

��
MY

•
βY

�� Y•

It remains to show thatHm(βX) is surjective. Since q is a quasi-isomorphism and
Hm(αX) is surjective, in order to show that Hm(βX) = Hm(q) ◦Hm(ν) ◦Hm(αX)
is surjective, it suffices to show that Hm(ν) is surjective.

Since βY
m is an isomorphism and βY

m+1 = 0, Q′
m

νm−−→ Qm is an isomorphism and

Q′
m+1

νm+1−−−→ Qm+1 is injective. Since Q′
i = Qi = 0 for i < m, we have the following

morphism of exact sequences:

Q′
m+1

��

νm+1

��

Q′
m

��

νm �
��

Hm(Q′
•) ��

Hm(ν)

��

0

Qm+1
�� Qm

�� Hm(Q•) �� 0

Thus, Hm(ν) is surjective. This completes the proof. �

The following result will also be useful in the proof of Proposition 4.4, which
involves an induction argument on the width of complexes.

Lemma 3.4. Assume the hypothesis of Theorem 3.3 and consider the commutative
diagram constructed there:

MX
•

βX

��

��

X•

g

��
MY

•
βY

�� Y•

Suppose Width(X• ⊕ Y•) = k > 0. Complete βX and βY to exact triangles:

T−1CX
• → MX

•
βX

−−→ X•
γX

−−→ CX
• , T−1CY

• → MY
•

βY

−−→ Y•
γY

−−→ CY
• .

Then we have the following:

(1) Width(CX
• ⊕ CY

• ) < k.
(2) Width(CX

• ⊕ Y•) ≤ k.
(3) If min(X•) < min(Y•), then min(CX

• ⊕ Y•) ≤ k − 1.

Proof. The proof is straightforward, and the same arguments as in the proof of
Lemma 3.2 imply the above statements. �

4. The equivalence of derived categories

In this section, we prove the promised equivalence of the derived categories
Db(T ∩ L ) and Db

L (T ) and then consider the case where T = A, yielding our
main theorem. We begin by defining the natural functors.
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Definition 4.1. Let ι : Db(T ∩ L ) → Db
L (T ) be the natural functor induced by

the inclusion Chb(T ∩L ) ↪→ ChbL (T ). Abusing notation, we will sometimes write
X• ∈ Db

L (T ) when we mean ι(X•). Similarly, for a morphism f ∈ Db
L (T ), we will

write f ∈ Db(T ∩ L ) when we mean f = ι(g) for some g ∈ Db(T ∩ L ).

Lemma 4.2. Viewing the modules M,N ∈ T ∩ L as complexes, we have

HomT ∩L (M,N)
∼−→ HomDb(T ∩L )(M,N)
∼−→ HomDb

L (T )(ι(M), ι(N))
∼−→ HomR(M,N).

Proof. The maps are induced by the functors

T ∩ L → Db(T ∩ L )
ι−→ Db

L (T )
H0−−→ mod(R),

where the last functor is the zeroth homology functor. The composition of the maps
is identity on HomR(M,N). Thus we conclude that the first map is injective. Let

β ∈ HomDb(T ∩L )(M,N). Let β be given by the roof diagram M
q←− T•

f−→ N where

q is a quasi-isomorphism. By Lemma 2.17(1), there is a chain map T ′
•

i−→ T• such
that minc(T

′
•) = 0 and i is a quasi-isomorphism. Then H0(T•) = H0(T

′
•) and let

T ′
•

μ−→ H0(T•) be the obvious map. Then the following diagram commutes:

T•

q

∼

�����
���

���
���

���
���

f

�����
���

����
����

����
�

M T ′
•q◦i

∼�� f◦i ��

i �

��

H0(q)◦μ �
��

N

M

������������������

������������������ H0(f)◦H0(q)
−1

��������������������

This tells us that β is equivalent to the map induced by H0(f) ◦H0(q)
−1. So the

first map is an isomorphism which forces the second map to be an injection. The
same argument shows that the map

HomT ∩L (M,N) → HomDb
L (T )(ι(M), ι(N))

is surjective, proving the claim. �
Lemma 4.3. Let X•, Y• ∈ Db(T ∩ L ) and suppose that Supph(Y•) = {m} and
min(X•) ≥ m. Then HomDb(T ∩L )(X•, Y•) → HomDb

L (T )(X•, Y•) is injective.

Proof. We may assume that m = 0. By using Lemma 2.17(4), we get that Y•
is isomorphic in Db(T ∩ L ) to the complex U• = H0(Y•). Thus we choose to
work with U•. Let g ∈ HomDb(T ∩L )(X•, U•). Then g is given by a roof diagram

X•
q←− W•

f−→ U• where q is a quasi-isomorphism. It is enough to show that ι(f) = 0
implies f = 0. By Lemma 2.17(1), we may assume that minc(W•) = min(X•) ≥ 0.
Note that ι(f) = 0 implies H0(f) = 0. Since minc(W•) ≥ 0, there is a natural

surjection W0
h� H0(W•). Further, since Ui = 0 for all i �= 0, f0 = H0(f) ◦ h = 0.

This finishes the proof. �
We now have all the ingredients to prove the equivalence of the derived categories

Db(T ∩ L ) and Db
L (T ).

Proposition 4.4. The functor ι is essentially surjective and full.
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Proof. We prove the following set of statements by induction on k:

(1) For every P• ∈ Db
L (T ), with Width(P•) = k, there exists P̃• ∈ Db(T ∩L )

such that ι(P̃•) ∼= P•.
(2) For every X•, Y• ∈ Db(T ∩ L ) with Width(X• ⊕ Y•) = k, the map

HomDb(T ∩L )(X•, Y•) → HomDb
L (T )(X•, Y•) induced by ι is surjective.

Let k = 0. We have Supph(P•) ⊆ {m} for some m. By Lemma 2.17(4), P• is
isomorphic in Db

L (T ) to a shift of the module Hm(P•). Since T has the 2-out-
of-3 property (by Remark 2.13), Hm(P•) is in T . Therefore, since Hm(P•) ∈ L ,
we have Hm(P•) ∈ T ∩ L , proving statement (1) for k = 0. We now prove (2).
Since k = 0, Supph(X•), Supph(Y•) ⊆ {m}. Hence, by Lemma 2.17(4), X• and Y•
are isomorphic in Db(T ∩ L ) to TmHm(X•) and TmHm(X•) where T is the shift
functor. Statement (2) now follows from Lemma 4.2.

Now suppose k > 0 and statements (1) and (2) are true for all k′ < k. Let

min(P•) = m. By Theorem 3.1, there exists a complex K• in ChbL (T ) and a

chain map K•
β−→ P• such that Supph(K•) = {m}, minc(K•) = m and Hm(β) is

surjective. Note by Lemma 2.17(4) K• and TmHm(K•) are isomorphic in Db
L (T ).

Extend β to an exact triangle

T−1C•
α−→ K•

β−→ P•
γ−→ C•.

By Lemma 3.2, we have Width(T−1C• ⊕ TmHm(K•)) = Width(T−1C• ⊕K•) < k

and Width(C•) < k. Therefore, by induction, there exists C̃• ∈ Db(T ∩ L ) such

that ι(C̃•) ∼= C•, and the following map is a surjection:

HomDb(T ∩L )(T
−1C̃•, T

mHm(K•)) � HomDb
L (T )(ι(T

−1C̃•), ι(T
mHm(K•)))

∼= HomDb
L (T )(T

−1C•,K•).

Because of this surjection, there exists α̃ : T−1C̃• → TmHm(K•) in Db(T ∩L ) with

cone P̃• ∈ Db(T ∩L ) and maps β̃ and γ̃ so that the following diagram commutes:

(1)

T−1C•
α−−−−→ K•

β−−−−→ P•
γ−−−−→ C•⏐⏐��

⏐⏐��
⏐⏐��

ι(T−1C̃•)
ι(α̃)−−−−→ ι(Hm(K•))

ι(β̃)−−−−→ ι(P̃•)
ι(γ̃)−−−−→ ι(C̃•)

It follows that there is an isomorphism ι(P̃•) ∼= P•, proving statement (1).
We now prove the second statement. Let X•, Y• ∈ Db(T ∩L ) and suppose that

f ∈ HomDb
L (T )(X•, Y•). Set m = min(X• ⊕ Y•). By using Lemma 2.17(1), we can

assume that minc(X•),minc(Y•) ≥ m. From Theorem 3.3, we have chain complex

maps MX
•

βX

−−→ X•, M
Y
•

βY

−−→ Y• and MX
•

κ−→ MY
• such that:

• MX
• ,MY

• ∈ Chb(T ∩ L ) are concentrated in degree m.
• Hm(βX) and Hm(βY ) are surjective.
• There is a commutative diagram in Db

L (T ):

MX
•

βX

��

κ

��

X•

f

��
MY

•
βY

�� Y•
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Taking cones CX
• , CY

• of βX , βY respectively in Db(T ∩L ), we get a morphism
of triangles in Db

L (T ) (as mentioned earlier, we drop the ι):

(2)

T−1CX
•

αX

−−−−→ MX
•

βX

−−−−→ X•
γX

−−−−→ CX
•⏐⏐�T−1λ

⏐⏐�κ

⏐⏐�f

⏐⏐�λ

T−1CY
•

αY

−−−−→ MY
•

βY

−−−−→ Y•
γY

−−−−→ CY
•

We emphasize again that all the objects are in Db(T ∩L ) and the horizontal maps
and κ are morphisms from Db(T ∩L ). By Lemma 3.4, Width(CX

• ⊕CY
• ) < k, and

so, by the induction hypothesis, there exists λ̃ : CX
• → CY

• such that ι(λ̃) = λ. We
now have a diagram whose rows are exact triangles in Db(T ∩ L ):

(3)

T−1CX
•

αX

−−−−→ MX
•

βX

−−−−→ X•
γX

−−−−→ CX
•⏐⏐�T−1

˜λ

⏐⏐�κ

⏐⏐�λ̃

T−1CY
•

αY

−−−−→ MY
•

βY

−−−−→ Y•
γY

−−−−→ CY
•

A priori, the left square in diagram (3) may not commute. Note however that

ι(αY ◦ T−1λ̃− κ ◦ αX) = ι(αY ◦ T−1λ̃)− ι(κ ◦ αX) = αY ◦ T−1λ− κ ◦ αX = 0.

By Lemma 4.3, the map HomDb(T ∩L )(T
−1CX

• ,MY
• ) → HomDb

L (T )(T
−1CX

• ,MY
• )

induced by ι is injective, and so αY ◦ T−1λ̃ − κ ◦ αX = 0. Hence the left square

in diagram (3) commutes. Thus there exists X•
g−→ Y• which gives a morphism of

triangles in Db(T ∩ L ):

T−1CX
•

αX
��

T−1
˜λ

��

MX
•

βX

��

κ

��

X•
γX

��

g

���
�
� CX

•

λ̃
��

T−1CY
•

αY
�� MY

•
βY

�� Y•
γY

�� CY
•

This means if we replace f with ι(g) in diagram (2), the diagram remains com-
mutative. Unfortunately, it does not follow from the third axiom of triangulated
categories that f is unique, and so it is not true a priori that f = ι(g).

Set δ = f − ι(g). We now have a morphism of triangles in Db
L (T ):

T−1CX
•

αX
��

0

��

MX
•

βX

��

0

��

X•
γX

��

δ

��

CX
•

0

��
T−1CY

•
αY

�� MY
•

βY

�� Y•
γY

�� CY
•
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Hence, there exists X•
u−→ KY

• such that δ = βY ◦ u. Similarly, there exists a

CX
•

v−→ Y• such that δ = v ◦ γX . Hence, we have:

T−1CX
•

αX
��

0

��

MX
•

βX

��

0

��

X•
γX

��

δ

��
u

		�
�
�
�

CX
•

0

��
v



�
�
�
�

T−1CY
•

αY

�� MY
•

βY

�� Y•
γY

�� CY
•

We break the proof into three cases.

Case (i) If min(X•) > m, then min(X•) > m = max(MY
• ), and so Lemma 2.18

tells us that HomDb
L (T )(X•,M

Y
• ) = 0. It follows that u = 0. Hence, we

have δ = βY ◦ u = 0. So f = ι(g) ∈ Db(T ∩ L ). To summarize, we have
shown that whenever min(X•) > min(Y•) = m and Width(X•⊕Y•) ≤ k,
we have HomDb(T ∩L )(X•, Y•) � HomDb

L (T )(X•, Y•).

Case (ii) If min(X•) = min(Y•) = m, then by Lemma 3.4 Width(CX
• ⊕ Y•) ≤

k and min(CX
• ) ≥ m + 1 > m = min(Y•). Thus, CX

• , Y• satisfy the
hypothesis of the already proved Case (i). Hence we can conclude that
HomDb(T ∩L )(C

X
• , Y•) � HomDb

L (T )(C
X
• , Y•). Therefore v ∈ Db(T ∩L ),

and hence δ = v ◦ γX ∈ Db(T ∩ L ). Therefore, f = ι(g) + δ is in
Db(T ∩ L ).

Case (iii) If min(X•) = m < min(Y•), then Width(CX
• ⊕ Y•) ≤ k − 1 by Lemma

3.4. Therefore v ∈ Db(T ∩ L ) by the induction hypothesis, and, as in
Case (ii), f ∈ Db(T ∩ L ).

This finishes the proof. �

Theorem 4.5. The functor ι : Db(T ∩ L ) → Db
L (T ) is an equivalence.

Proof. By Proposition 4.4, ι is full and essentially surjective. Furthermore, ι pre-
serves homologies; thus ι(X•) is acyclic if and only if X• is acyclic. Therefore, ι is
faithful on objects. The equivalence then follows from Lemma 2.19. �

We now come to the case when T = A where A is a resolving subcategory of
mod(R).

Lemma 4.6. There is an equivalence of categories induced by chain complex func-
tors ι′ : Db

L (A)
∼→ Db

L (A).

Proof. We only sketch the proof since this is an oft-used idea. The main point is
that given any complex P• ∈ Db

L (A), we take a resolution of length n of each term
by projective modules and affix the nth syzygy at the end. For large enough n,
this gives us a double complex whose total complex T• is in Db

L (A) and there is a
quasi-isomorphism T• −→ P•. This already proves ι′ is essentially surjective. The
proof that ι′ fully faithful is easy to obtain and standard. �

As a straightforward consequence of Lemma 4.6 and Theorem 4.5 when T = A,
we can now obtain the main result.

Theorem 4.7. There is an equivalence of categories Db(A ∩ L ) � Db
L (A).

The following interesting corollary can now be obtained from the above result.
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Corollary 4.8. Suppose R is coequidimensional and Cohen-Macaulay. Then we
have the equivalence

Db(P(R) ∩Mfl) � Db
fl(P(R)).

Proof. When R is Cohen-Macaulay and coequidimensional, the category L = Mfl

is a Serre subcategory satisfying condition (*). Hence, the equivalence follows from
Theorem 4.7 by taking L = Mfl and A = P(R). �

Furthermore, our result holds for any resolving subcategory in Example 2.4 and
Serre subcategory in Example 2.12. We explicitly state some important cases. In
the special case when R is Cohen-Macaulay and equicodimensional, A = mod(R)
and L = Mfl, we obtain the well-known equivalence used in most dévissage state-
ments (refer to [12, 1.15 (Lemma, Ex. (b))]).

Corollary 4.9.
Db(Mfl) � Db

fl(mod(R)).

Note that this equivalence is known even without the assumption that R is
Cohen-Macaulay.

Corollary 4.10. Let R be Cohen-Macaulay. Let V be any set theoretic complete

intersection in Spec(R) and c be any integer. Let P(R)
c

V denote the category of
modules with finite projective dimension supported on V and in codimension at least
c. Let Dc

V (P(R)) denote the derived category with chain complexes of projective
modules with homologies supported on V and in codimension at least c. Then

Db(P(R)
c

V ) � Dc
V (P(R)).

Note that without specifying any c (i.e. c = 0), the above result holds even
without R being Cohen-Macaulay.

The main theorem, Theorem 4.7, is also related to an interesting corollary of
the oft-quoted Hopkins-Neeman theorem [11], [15] for perfect complexes. Let L be
any Serre subcategory of mod(R). A consequence of the Hopkins-Neeman theorem

is that thickDb(mod(R))(P(R) ∩ L ) � Db
L (P(R)), where thick is the thick closure

(note that here we use thick in the triangulated sense). We generalize this as follows.

Corollary 4.11. Let L be a Serre subcategory satisfying condition (∗). Let T be
any thick subcategory of mod(R). Then the thick closure (in the triangulated sense)
of T ∩L in Db(mod(R)) is Db

L (T ) (after completion with respect to isomorphisms).

Proof. Note that there is a commutative square

K+
T (P(R)) ��

�
��

K+(P(R))

�
��

D+(T ) �� D+(mod(R)).

The top horizontal arrow is a full embedding, hence so is the bottom. Hence,
restricting to the bounded category, Db(T ) is a thick subcategory of Db(mod(R)),
and hence so is Db

L (T ) (after completing them with respect to isomorphisms).
However, up to completion with respect to isomorphisms,

image(Db(T ∩ L )) ⊆ thickDb(mod(R))(T ∩ L ) ⊆ Db
L (T ).

But by Theorem 4.5, we then get the required result. �
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Finally we prove the theorem we promised at the beginning of the article.

Theorem 4.12. Suppose R is local. Then R is Cohen-Macaulay if and only if the
following equivalence holds:

Db(P(R) ∩Mfl) � Db
fl(P(R)).

Proof. When R is Cohen-Macaulay, the equivalence follows from Theorem 4.7 by
taking L = Mfl and A = P(R).

Now suppose R is not Cohen-Macaulay. The new intersection theorem, [20],
asserts that such a ring R never admits a finite length, finite projective dimension
module. Thus Db(P(R) ∩Mfl) = 0. However, the Hopkins-Neeman theorem [11],
[15] states that the thick subcategories of Db(P(R)) are in bijective correspondence
with specialization closed subsets of Spec(R) and that this bijection is given by
taking the supports of objects in Db(P(R)). Letting m be the maximal ideal of R,
since the specialization closed set {m} differs from the specialization closed subset ∅,
the Hopkins-Neeman theorem implies that the subcategory of Db(P(R)) supported

on {m}, which is Db
fl(P(R)), differs from that supported on ∅, which is 0. Hence

Db
fl(P(R)) cannot be 0, and so the equivalence fails. �

5. Results on homological functors

Now that we have proved the equivalence of the two categories, we can compare
various theories of invariants for derived equivalences. We restrict our attention to
K-theory and triangular Witt and Grothendieck-Witt groups.

K-theory comparisons and results. Since K-theoretic invariants need not al-
ways be preserved by equivalences of derived categories ([23]), we will need to view
the categories above with some more structure. While the original and several other
articles ([30],[28],[16],[2],[3],[31], [24],[25]) serve as good references for this part, we
will refer to the articles ([26], [29]) for the terminology and results.

The categories ChbL (A),Chb(T ∩L ) and ChbL (T ) are strongly pretriangulated
dg-categories, and the natural functors are functors of such categories. In partic-
ular, with the usual choices of weak equivalences as quasi-isomorphisms, these are
all complicial exact categories with weak equivalences, and the natural functors
preserve weak equivalences. Assume, as usual, that L also satisfies condition (*).

Let K be the nonconnective K-theory spectrum. Applying Theorem 4.5 and
[26, Theorem 3.2.29], we get that ι induces homotopy equivalences of K-theory
spectra. Similarly, applying Lemma 4.6 and [26, Theorem 3.2.29], we get that ι′

induces homotopy equivalences of K-theory spectra.
Putting these together and further using [26, 3.2.30], we obtain

Theorem 5.1. The spectra K(A ∩ L ) and K(Db
L (A)) are homotopy equivalent.

Hence
Ki(A ∩ L ) � Ki(D

b
L (A)) ∀i ∈ Z.

Once again, this result holds for any resolving subcategory in Example 2.4 and
Serre subcategory in Example 2.12. We list the most important corollary.

Corollary 5.2. Let R be Cohen-Macaulay and equicodimensional. Then there is a
homotopy equivalence between K(P(R) ∩Mfl) and K(Db

fl(P(R))). Hence

Ki(P(R) ∩Mfl) � Ki(D
b
fl(P(R))).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3930 WILLIAM T. SANDERS AND SARANG SANE

As mentioned in Section 1, special cases of Corollary 5.2 were known earlier.
When R is Cohen-Macaulay and equicodimensional of dimension d, the special

case of A = mod(R) and c = d in Theorem 5.1 gives us the well-known equivalence
for coherent K-theory.

Remark 5.3. Let X be a (topologically) noetherian scheme with a bounded gener-
alized dimension function as in [4]. Then coniveau and niveau spectral sequences
are defined in [4, Theorem 1, Theorem 2] converging to the K-groups of X. The qth

row on the E1 page consists of unaugmented Gersten-like complexes with terms⊕
x∈X(p)

K−p−q(OX,x on x) and
⊕

x∈X(−p)

K−p−q(OX,x on x)

respectively. Further, there is an augmented weak Gersten complex for the usual
codimension and dimension functions, as defined in [4]. WhenX is regular, Quillen’s
dévissage theorem can be applied to rewrite these terms as the K-theories of the
residue fields of the points. However, when X is not regular, the theorem does
not apply, and hence the terms remain as abstract K-groups of derived categories
supported at the points.

Now under the further assumption that all the local rings OX,x are Cohen-
Macaulay (i.e. X is Cohen-Macaulay), we can apply Theorem 5.2 and rewrite these
spectral sequences in terms of the K-groups of the category of finite length, finite
projective dimension modules over the local rings at the points. Thus the computa-
tion of global K-groups can now be reduced to computing K-groups of the category
P(R) ∩Mfl(R) for a Cohen-Macaulay local ring R.

To summarize, we obtain:

Theorem 5.4. For a Cohen-Macaulay scheme X of dimension d, we have spectral
sequences

Ep,q
1 =

⊕
x∈X(p)

K−p−q(P(OX,x) ∩Mfl(OX,x))
p+q=n
=⇒ K−n(X)

and

Ep,q
1 =

⊕
x∈X(p)

K−p−q(P(OX,x) ∩Mfl(OX,x))
p+q=n
=⇒ K−n(X)

and for each q ∈ Z augmented weak Gersten complexes

Kq(X) →
⊕

x∈X(0)

Kq(P (OX,x) ∩Mfl(OX,x))

→
⊕

x∈X(1)

Kq−1(P(OX,x) ∩Mfl(OX,x))

→ . . . →
⊕

x∈X(d)

Kq−d(P(OX,x) ∩Mfl(OX,x)).

Witt and Grothendieck-Witt group comparisons and results. Let R be
an equicodimensional Cohen-Macaulay ring of dimension d. We now consider the
situation where the category A is a duality-closed thick subcategory of GC , the
category arising from a semidualizing module C as defined in Section 2 with duality
given by Hom(−, C). Let L = Mfl. We assume further that 2 is invertible in the
ring R.
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There is a duality on the category A ∩ L given by ExtdR(−, C) which induces a
duality on Db(A∩L ). Similarly, there is a duality on Db

L (A) given by HomR(−, C)
(or †) respectively.

The arguments in either of [6, Lemma 6.4], [10] or [13] go through with minimal
modifications, showing that these are indeed dualities and that they are preserved
by the “resolution functor”, the composite functor ι ◦ ι′−1 from Db(A ∩ L ) to
Db

L (A).
A direct application of [6, Lemma 4.1(c)] now yields

Theorem 5.5. There is an isomorphism of triangular Witt groups

W (A ∩ L )
∼→ W 0(Db(A ∩ L ))

∼→ W d(Db
L (A)).

The case A = P(R) results in the following new corollary.

Corollary 5.6. When R is equicodimensional, there is an isomorphism of trian-
gular Witt groups

W (P(R) ∩Mfl)
∼→ W d(Db

fl(P(R))).

The special case of R being equicodimensional and C = D a dualizing module
(or complex) gives us the result in the well-known coherent case [10] .

Remark 5.7. Similarly, a direct application of [31, Theorem 2.1] yields the same
results for Grothendieck-Witt groups as for Witt groups above.

In [13], the authors define a new Witt group for exact subcategories of triangu-
lated categories closed under duality. They further prove another form of dévissage
for triangular Witt groups, namely:

W (P(R) ∩Mfl)
∼
α

�� W (Db

P(R)∩Mfl

(P(R) ∩Mfl))
∼

α′
��

�β

��

W (Db(P(R) ∩Mfl))

W d(Db
fl(P(R)))

With our notation as above, we can now generalize and improve upon this picture
to obtain the following theorem.

Theorem 5.8. There are natural isomorphisms of Witt groups:

W (A ∩ L )
∼
α

�� W (Db
A∩L

(A ∩ L ))
∼
α′

��

�β

��

W (Db
L (A ∩ L ))

�γ

��
W d(Db

A∩L
(A))

∼
δ

�� W d(Db
L (A))

Proof. We only give a sketch of the proof. The isomorphism γ already occurs
in Theorem 5.5, and β is also a similar direct consequence of Theorem 4.7 by
restricting the equivalence of categories to the categories with support A ∩ L (or
by following the arguments in [13]). The arguments in [13] generalize directly to
give the isomorphisms α and α′. The commutativity of the diagram shows that δ
is also an isomorphism. �
Remark 5.9. Remark 5.3 and succeeding Theorem 5.4 work (as in [4, Remark 3]) for
any cohomology theory which induces long exact sequences on short exact sequences
of triangulated categories. In particular, for Witt theory, we would get spectral
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sequences and augmented weak Gersten-Witt complexes for triangular Witt groups
tensored with Z[ 12 ] as in Theorem 5.4.

6. Examples and questions

An advantage of working with arbitrary Serre subcategories is the ability to deal
with supports. We are able to deal with supports only when the Serre subcategory
satisfies the condition (*). In contrast, in the coherent picture (i.e. G theory or
coherent Witt groups), theorems similar to the ones in section 5 exist with arbitrary
supports, i.e. supports in any specialization closed subset, in particular over any
closed subset V of Spec(R). This is one reason why smoothness has played a crucial
role in results for K-theory or other similar theories, since both coherent and usual
theories coincide. Thus the following question is natural.

Question 1. Is Db(T ∩L ) → Db
L (T ) an equivalence for any thick subcategory T

of mod(R) and any Serre subcategory L of mod(R)?

As we noted in Section 1, when R is local and not Cohen-Macaulay, this is always
false with L = Mfl and T = P(R). However, it is still plausible that the result
holds for a more general class of Serre subcategories.

Next, we consider a question about quotients. Supports allow one to write local-
ization exact sequences. Comparing supports with quotients is a powerful tool; for

example it is known that Ki

(
mod

(
R

(a)

))
� Ki({modules supported on V (a)})

where a is a nonzero divisor. This is because one can either apply dévissage di-
rectly or, for other similar theories, the spectral sequence and dévissage reduces one
to the case of residue fields of points, and both sides have the same residue fields.
This leads to the following question.

Question 2. Let L be the Serre subcategory of modules supported on V (I) where
I is a set theoretic complete intersection ideal. Let T be a thick subcategory in
mod(R). Is Ki

(
Db

(
T ∩mod

(
R
I

)))
→ Ki

(
Db

L (T )
)
an isomorphism?

We present a rather simple example which answers this question negatively.

Example 6.1. Let R =
k[X]

(X2)
and let I = (X), so that V (I) = Spec(R). Note

that V (I) = V (∅), and so V (I) is a set theoretic complete intersection. Let T =

P(R). Then T ∩ mod(R/I) = {0}, while Db
L (T ) = Db(P(R)) �= {0}. Then

K0(T ∩mod(R/I)) = 0 and K0(D
b
L (T )) = Z.

Clearly going modulo any ideal I does not work. We specialize to the case when
I = (a) where a is a nonzero divisor.

Question 3. Let a be a nonzero divisor. Let L be the Serre subcategory of modules

supported on V (a). Is Ki

(
A ∩mod

(
R
(a)

))
−→ Ki(A ∩ L ) an isomorphism?

One natural way to answer this question would involve the following two steps:

(1) Re-prove Quillen’s dévissage theorem for full subcategories of mod(R) sat-
isfying the 2-out-of-3 property (it is known for abelian subcategories).

(2) Find a natural filtration for a module M ∈ A ∩ L so that the quotients

belong to A ∩mod
(

R
(a)

)
.
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For every module M on the right there exists an n such that anM = 0, and thus a

natural filtration M ⊇ aM . . . ⊃ an−1M ⊃ 0 and
aiM

ai+1M
is in mod( R

(a)). At first

sight, this might seem like an answer to the second part. However, it turns out that

even though M ∈ A, its quotient
M

aM
need not be. Hailong Dao provided us with

the following example in the best possible case of a polynomial variable.

Example 6.2. Let R =
k[[X,Y ]]

(XY )
[Z]. Let M =

R

(X − Z, Y − Z)
. Then M has

finite projective dimension over R, Z2M = 0, but
M

(Z)M
= k does not have finite

projective dimension over
k[[X,Y ]]

(XY )
.

Since the module M has length 2, there is no other option of a filtration. Thus,
the most natural naive arguments provide no answer. If Question 3 has a positive
answer, it would yield nice long exact sequences and be useful in computations.

Finally, let R be equicodimensional and Cohen-Macaulay of dimension d, A ⊆ GC

a thick subcategory closed under the duality, and L the Serre subcategory of finite
length modules supported on a set theoretic complete intersection V . Since we
have an equivalence of triangular Witt groups and triangular Grothendieck-Witt
groups (Theorem 5.5, Remark 5.7) and both are obtained from a Grothendieck-Witt
spectrum, it begs the natural question:

Question 4. Are the Grothendieck-Witt spectra of Db(A ∩ L ) and Db
L (A) ho-

motopy equivalent?

If a suitable intermediate category can be found which has duality, then we can
answer this in the affirmative. However, there is in general no duality on A. Also,
we do not know if the category of double complexes constructed in the proof of
[6, Lemma 6.4] arises as the homotopy category of some suitable pretriangulated
category.

Acknowledgments

The authors are thankful to Satya Mandal, who originally suggested looking at
finite projective dimension in the context of Witt groups from where this article
grew. The first-named author thanks him for teaching him a course on quadratic
forms, and the second-named author for discussions related to obtaining an inde-
pendent proof of the Koszul trick. The authors are also thankful to Hailong Dao for
many helpful comments on several drafts and interesting conversations particularly
regarding the nature of examples in the final section 6. Both authors are spe-
cially thankful to the anonymous referee for carefully going through the article and
making several helpful suggestions. The second-named author thanks V. Srininvas,
Marco Schlichting, S. M. Bhatwadekar and Anand Sawant for helpful conversa-
tions, suggestions and comments, and the Robert Adams Trust and the University
of Kansas, where a majority of this work took place.

References

[1] Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathe-
matical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR0269685
(42 #4580)

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0269685
http://www.ams.org/mathscinet-getitem?mr=0269685


3934 WILLIAM T. SANDERS AND SARANG SANE

[2] Paul Balmer, Triangular Witt groups. I. The 12-term localization exact sequence, K-Theory
19 (2000), no. 4, 311–363, DOI 10.1023/A:1007844609552. MR1763933 (2002h:19002)

[3] Paul Balmer, Triangular Witt groups. II. From usual to derived, Math. Z. 236 (2001), no. 2,
351–382, DOI 10.1007/PL00004834. MR1815833 (2002h:19003)

[4] Paul Balmer, Niveau spectral sequences on singular schemes and failure of generalized Ger-
sten conjecture, Proc. Amer. Math. Soc. 137 (2009), no. 1, 99–106, DOI 10.1090/S0002-9939-
08-09496-3. MR2439430 (2009h:19004)

[5] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Ad-
vanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956
(95h:13020)

[6] Paul Balmer and Charles Walter, A Gersten-Witt spectral sequence for regular schemes

(English, with English and French summaries), Ann. Sci. École Norm. Sup. (4) 35 (2002),
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