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We study the spreading of a film from ethanol-water droplets of radii 0.9 mm< rd < 1.1 mm on
the surface of a deep water layer for various concentrations of ethanol in the drop. Since the drop
is lighter (⇠ = ⇢l_⇢d > 1.03), it stays at the surface of the water layer during the spread of the film
from the drop; the film is more viscous than the underlying water layer since � = �l_�d > 0.38.
Inertial forces are not dominant in the spreading since the Reynolds numbers based on the film
thickness hf , are in the range 0.02 < Ref < 1.4. The spreading is surface tension driven since the
film Capillary numbers are in the range 0.0005 < Caf < 0.0069 and the drop Bond numbers in
the range 0.19 < Bod < 0.56. We observe that when the drop is brought in contact with the water
surface, capillary waves propagate from the point of contact, followed by a radially expanding,
thin circular film of ethanol water- mixture. The film develops instabilities at some radius to form
outward moving fingers at its periphery while it is still expanding, till the expansion stops at a
larger radius. The film then retracts, during which time the remaining major part of the drop,
which stays at the center of the expanding film, thins and develops holes and eventually mixes
completely with water. The radii of the expanding front of the film scales as rf Ì t1_4 and shows
dependence on the concentration of ethanol in the drop as well as on rd , and is independent of
the layer height hl. Using a balance of surface tension and viscous forces within the film, along
with a model for the fraction of the drop that forms the thin film, we obtain an expression for the
dimensionless film radius r<

f
= rf_rd , in the form fr<

f
= t<

�d

1_4, where t<
�d

= t_t�d , with the
time scale t�d = �drd_�� and f is a function of Bod . Similarly, we show that the dimensionless

velocity of film spreading, Cad = uf�d_��, scales as 4f 4Cad = r<
f

*3.

1. Introduction

A lighter, miscible drop of lower surface tension on the surface of a deep horizontal fluid layer
of higher surface tension shows a fascinating interplay of surface tension driven film spreading,
instability of the spreading film, followed by its retraction and the eventual dissolution of the drop.
In addition to the unclear physical processes behind these phenomena, these are also important
in many applications like drug delivery (Grotberg 1994), coating processes (La Due, Muller &
Swangler 1996), ink-jet printing (Le 1998) and the removal of oil spills (Fay 1969). The present
study presents the various phenomena that occur in such a case and then proposes a scaling
theory for the spreading of a film from a buoyant, miscible drop of lower surface tension but
higher viscosity on a deep layer of higher surface tension liquid of lower viscosity; the observed
scaling and its proposed explanation being different from the previous studies with very viscous
drops (Bacri, Debregeas & Brochard-Wyart 1996) or with soluble/insoluble surfactant drops
(Halpern & Grotberg 1992; Jensen & Grotberg 1993).

When an insoluble drop comes in contact with the horizontal surface of a liquid layer, when the

† Email address for correspondence: apbraj@iitm.ac.in



2 Dandekar et al.

surface tension of the liquid layer is larger than that of the drop (�� = �l * �d > 0), often due to
the drop being a surfactant drop, an outward horizontal force acts on the drop which spreads it. The
spreading is found to occur in the form of a film (Joos & Pintens 1977), the film being assumed to
be a monolayer for the spreading of surfactant drops. Here, as well as in all later notations, we use
the subscript f to denote the spreading film, d to denote the drop and l to denote the liquid layer
beneath the film that spreads from the drop. In such a situation, the monolayer is assumed to have
no viscous dissipation in it and is expected to spread as a rigid sheet (Jensen & Grotberg 1993).
The increase of film radius (rf ) with time is then determined by the nature of viscous dissipation
in the underlying liquid layer, which differs for thin (✏ = hl_rd ~ 1) and deep (✏ ∏ 1) layers,
where hl is the liquid layer thickness and rd the initial drop radius. We focus on the previous deep
layer results below since the present study is for deep layers, the reader is referred to the review
of Grotberg & Gaver III (1996) and the papers by Jensen & Halpern (1998) and Dussaud et al.

(2005) for the thin layer results.

For the spreading of a low viscosity insoluble surfactant drop on a deep liquid layer, Landt
& Volmer (1926); Fay (1969); Joos & Pintens (1977) and Joos & Van Hunsel (1985) proposed
that the balance of the viscous resistance in a boundary layer below the spreading surfactant
monolayer with the driving interfacial tension force results in the dimensionless film radius, r<

f
=

rf (t)_rd = (2_
˘
3)t<

�l

3_4, where t<
�l

= t_t�l, with t�l = (⇢l�lr
4
d
_��2)1_3 being the viscous-

capillary time scale for deep layers, and �� has to be replaced by the spreading parameter if
the interfacial tension between the spreading and the underlying liquid is also important. The
same scaling was written by Jensen (1995) as rf (t) Ì (A2M2t3_��d)

1_8 for the mass M of the
surfactant drop and A = d�_d�, with � being the local surfactant concentration; the expression
reduces to the 3/4th power law when � Ì M_r2

f
and A Ì ��_�. The similarity solution for the

spreading of a strip of viscous oil over water also show the 3/4th power law, when the underlying
boundary layers dominate (Foda & Cox 1980). The experimental evidence for this 3/4th power
law is not conclusive. For the spreading of surfactants, the 3/4th law has been observed for low
viscosity FC-129 on CCl4, however, not for the low viscosity CTAB/PFAC mixture on benzene,
which showed an exponent of 0.575 (Joos & Van Hunsel 1985). Further, even when high viscosity
silicone oil (965 cP) spreading on water obeyed this law (Dussaud & Troian 1998), 20cP PDMS
on 100cP Glycerine-water solution showed rf Ì t0.4 while spreading of 1000cP PDMS on the
same substrate showed rf Ì t0.5 (Fraaije & Cazabat 1989).

When the spreading drop is very viscous, Bacri et al. (1996), not considering the film around
the drop, proposed that the dimensionless drop diameter, r<

d
= rd(t)_rd Ì t<

�d

1_4, where, t<
�d

=

t_t�d , with t�d = �drd_�e being the viscous-capillary time scale for the drop and �e is the
effective surface tension, defined as the harmonic mean of the interfacial tensions on drop-air
and drop-liquid layer interfaces. This scaling was proposed to occur when the dominant viscous
dissipation inside the spreading drop balanced the surface tension force at the triple line. The t1_4

scaling was observed by Bacri et al. (1996) in extremely viscous PDMS (29310 cP to 97700 cP)
spreading over glycerol-water mixture (5.97 cP to 934cP) till rd(t)_lc < 1, where the capillary
length lc =

˘
�e_⇢eg with ⇢e = ⇢d(1 * ⇢d_⇢l) as the effective density; the dependence of rd(t)

on other fluid properties and the initial drop diameter rd was however not verified.

If the spreading drop is also soluble in the underlying liquid layer, the geometry of spreading
depends on the rate of adsorption of the drop fluid into the liquid layer, however, the spreading
rate still remains largely unaffected, as was proposed by Jensen & Grotberg (1993, 1992) and
experimentally verified by Afsar-Siddiqui et al. (2003) for very thin liquid layers. In the case of
volatile, less viscous drops of various fluids, which spread on a more viscous,deep water layer, in
which they are insoluble, Dussaud & Troian (1998) found that the radius of the film increases for
all cases as t1_2. The difference from the expected 3_4th power law was hypothesised to be due
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to the cooling of the film by evaporation which would change the nature of the boundary layer
below the film from a Blasius type. However, other reasons also give a t1_2 power law, as was
found by Bacri et al. (1996) for the spreading of viscous drops when the spreading drop radius
becomes larger than lc , in which case the viscous dissipation inside the drop balances the work
done by gravitational forces.

As the above discussion has shown, the spreading of drops on deep fluid layers is complex
and inadequately understood, with different scaling laws being proposed in different parameter
regimes. These scalings also do not seem to be fully verified since most verification experiments
study only the time dependence of the spreading radius, without studying the effect of the property
ratios of the drop and the substrate fluid. Another consideration that has been unexplored is the
role of the initial radius of the drop on its spreading rate, through its ability to influence the
initial conditions as well as through its effect on the flux of drop fluid into the spreading film. A
commonly encountered regime, namely, the film spreading of a slightly more viscous liquid on a
less viscous deep layer, especially when the spreading liquid is not a surfactant so that significant
viscous dissipation could occur in the spreading film has not been explored. In such a case, when
the drop fluid is also soluble and volatile, the scaling law for spreading is even less known. Such a
regime is important as it is commonly encountered in the spreading and eventual mixing of short
chain alcohols on solvents like water, which have many technological applications.

In this paper we study the film spreading from drops of ethanol-water mixture, of ethanol
concentrations 20% f Ce f 100%, and radii 0.9 mm< rd < 1.1 mm on the surface of a thick
layer (hl = 5mm) of water. The spreading occurs very fast, and is over within about 0.5s since it
is surface tension driven, as shown by the range of the film Capillary numbers, Caf = �fuf_��,
0.0005 < Caf < 0.0069. However, since the film Reynolds numbers (Ref = ufhf_⌫f ) are in
the range of 0.02 < Ref < 1.4, viscous forces are more than inertial effects. Further, due to high
surface tension forces, the film Weber numbers are also small (W ef = ⇢fu

2
f
hf_�� < 0.005);

inertia in film spreading dynamics is negligible. The drop is also lighter than the underlying liquid
with the range of density ratios (⇠ = ⇢l_⇢d) being 1.27 > ⇠ > 1.03 so that it stays at the free
surface while the film spreads; the drop remains an approximate ellipsoid form since the range
of drop Bond numbers (Bod = ⇢dgr

2
d
_��) was 0.19 < Bod < 0.56. Surface tension dominates

over gravitational forces in the spreading process since the Bond number based on film thickness
will be even smaller. Eventhough the drop is more viscous than the underlying layer, with the
range of viscosity ratios (� = �l_�d) being 0.81 > � > 0.4, since the film Ohnersorge number
Ohf = �f_

˘
��⇢fhf Ì 10*2, surface tension dominate over viscous resistance in spreading

In such a situation, we show that, different from the earlier suggested regimes of film spreading,
a balance of viscous resistance in the film with the driving surface tension force gives rise to a
rf Ì t1_4 scaling law. More importantly, by modelling the initial coalescence of the drop with
the liquid layer, we estimate the initial fraction of the drop that forms the film. By including this
fraction in the scaling analysis, we clarify the dependence of the spreading rate on the initial drop
radius and the property ratios of the drop and the liquid layer. The paper is organised as follows.
we describe the experimental setup and procedure in § 2 followed by a qualitative description of
the spreading phenomena in § 3. The proposed scaling law is developed and verified in detail in
§ 4 before concluding the paper by discussing the implications of the proposed scaling in § 5.

2. Experiments

The experiments were conducted by adding ethanol-water drops of varying concentrations
of ethanol(Ce) and radii (rd) to the surface of a water layer of height hl = 5mm in a petri
dish of 100mm diameter, as shown in the schematic of figure 1. Larger height experiments with
hl = 75mm were also conducted in a 85mm diameter beaker. The drops were produced from
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FIGURE 1. Schematic of the experimental set up.

Ce �d �d �� ⇢d rd hf Bod Ohf Ref W ef Caf

(%) (mNm*1) (cP) (mNm*1) (kg_m3) (mm) (�m) (10*2) (10*3) (10*4)
20 37.97 1.76 16.03 970.36 0.97 8.4-14.7 0.56 11.6-15.3 0.1-0.42 0.3-2.4 26-57
40 31 2.34 23 948.47 0.97 13.4-18.4 0.38 11.7-13.6 0.22-0.49 0.9-3.4 41-69
60 26 2.24 28 908.72 0.97 5.9-11.7 0.3 13-18 0.03-0.22 0.04-0.85 12-38
80 23.8 1.66 30.2 859.58 0.97 3.3-10.4 0.26 10-17 0.02-0.19 0.01-0.39 7-20

100 22 1.1 32 790.74 0.97 3.3-8.8 0.22 4.9-9.9 0.06-1.4 0-5 6-35
100 22 1.1 32 790.74 0.9 3.5-8.3 0.19 7.6-11.8 0.04-0.23 0.03-0.32 6-14
100 22 1.1 32 790.74 1.1 4.8-9 0.29 7.3-10 0.05-0.21 0.03-0.24 5-11

TABLE 1. Properties of the drop, the driving surface tension difference, the drop Bond number and the range
of relevant dimensionless numbers of the film. The properties of the drop at different concentrations are at
25˝C, obtained from Ernst et al. (1936); Blanchette et al. (2009) and Khattab et al. (2012). The properties
of the underlying water layer are �l = 54mNm*1, �l = 0.89cP and ⇢l = 1000 kg/m3.

capillaries of different sizes connected to a syringe pump. The flow rate of the syringe pump was
fixed low (2.4ml/hr) so that the liquid coming out from the capillary was in the dripping regime
(Clanet & Lasheras 1999). The equivalent spherical radius of the drop (rd) was determined from
the number of drops required to fill a specific volume for each of the capillaries used; the values
of rd are shown in Table 1. Care was taken to maintain the flow rate and the orientation of the
capillary to be the same in all experiments with each capillary. The height of the capillary tip was
adjusted so that the drops detached from the capillary very close to the free surface to avoid inertial
effects due to the impingement of the drop on the water surface. The range of concentrations of the
ethanol-water drops, the corresponding densities (⇢d), surface tension with air (�d), and kinematic
viscosities (�d) of the drop solutions are shown in Table 1.

The topview visualizations of the spreading dynamics, shown in figure 2, was done using
Aluminium particles, which when mixed with water, forms a thin layer of particles at the free
surface. As determined by a particle size analyser (Microtrac Inc), the aluminum particles had a
median diameter of 14.65�m, mean diameter of 5.09�m, with the particle diameters distributed
in an asymmetric distribution between 0.3�m and 100�m. At the concentration of the particles
used (163 ppm), the surface tension of water was measured as 54mNm*1, the details of which
are given in Appendix A. The top view of the spreading dynamics was captured by a high speed
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camera (LaVision ProHS) at about 800fps with LED backlighting as shown in figure 1. In some
cases, 5ppm of Rhodamine 5B was added to the drop in these top view visualisations so as to
distinguish the drop fluid from the underlying water layer. The surface tension reduction at 5ppm
dye concentration was measured to be 0.14%, which is negligible to affect the dynamics. The
spreading radius of the film rf (t) was measured as the radius of the circular region devoid of
tracer particles, as seen in figure 2(c), from such top view images at increasing times t, the time
calculated from the frame number of the image, knowing the FPS. The center of measurement was
fixed as the tip of the capillary seen in top view images and zero time as the time of contact of the
drop with the liquid surface. The film radius in each image was calculated as the mean from three
measurements, taken at three azimuthal locations on the film where a minimum local radius of the
film could be identified; the locations spanned the full circumference of the film. The velocities
of expansion of the film front uf were calculated by taking the time derivative of the power law
fit through the increasing part of rf vs t. A sample fit for Ce = 60% and rd = 0.97mm is shown in
the inset of figure 4. The errors associated with the measurement of rf , t and uf are discussed in
Appendix B. In addition, to understand the coalescence of the drop with the water layer and the
subsequent spreading of the film, high speed shadowgraphy visualisations of the side view were
conducted in a 5cm ù 5cm cross section glass tank with hl = 5cm, using a Photron SA5 camera at
2000 FPS. Hollow glass spheres of 10 �m diameter were added in the water layer and backlighting
was used to obtain shadowgraphy combined with particle visualisation; a typical image sequence
obtained is shown in figure 3. Images with large exposure time, of laser induced fluorescence of
6�m fluorescent particles in the drop and scattering from 10�m hollow glass spheres in water by
a vertical laser sheet was used to observe vortices, as shown in figure 3(i).

3. Description of the phenomena

3.1. Coalescence and spreading dynamics

Figure 2 shows the top views of the sequence of spreading of an ethanol drop of Ce = 100% and
rd = 0.97 mm. The local depression in surface tension caused at the point of contact of the drop
with water results in radially outward Marangoni forces which cause a thin film of ethanol-water
mixture to spread. The expanding white circular region that is free of particles, seen in figures
2(a) - 2(c), shows the spreading film. We also notice the initiation and propagation of capillary
waves ahead of the expanding film in figures 2(a) to 2(c). After some time(90 ms), the outer
front of the film develops instabilities resulting in outward moving fingers or plumes as seen in
figures 2(d)-2(f). Eventhough there is an inward flow in between these outward growing fingers,
the radius of the continuous film region, as well as the circular region covering the outer tips of
the growing fingers go on increasing in time, however, with decreasing velocities ( see movie 1
online). The length of the fingers increase along with the radius of the continuous film region,
until the velocity of expansion of the continuous film reduces to zero, after which the continuous
film region begins to retract inwards (figures 2(g) -2(i)) while the outer tips of the fingers remain
approximately stationery in time. The total time of film expansion is about 0.4s. Most of the drop
remains at the center of the expanding film during the whole time of film expansion, seen as the
dark circular region at the centre of the expanding film in figures 2(a) -2(f). This remnant part of
the drop also expands, however at a much slower rate than the film, thins and then develops holes
in it. The remnant drop eventually gets mixed with water by a combination of convection and
diffusion, after the continuous film has started retracting, as seen in figures 2(g) -2(i); the total
time from contact to dissolution being about 0.6s.

The side views of the film spreading process for a similar concentration drop with rd = 1.1mm,
shown in figure 3, clarifies the critical role of the initial coalescence between the drop and the
water layer in film formation. Regions marked as A in figures 3(a) to 3(f) show that a small
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(a) 27.5ms (b) 41.25ms (c) 55ms

(d) 91.25ms (e) 116.25ms (f) 141.25ms

(g) 375ms (h) 425ms (i) 475ms

FIGURE 2. Top views of the sequence of spreading and eventual mixing of a 100% ethanol drop of radius
rd = 0.97mm on the surface of a water layer of height hl = 5mm. 2(a)-2(c): capillary wave propagation
followed by the expanding circular film, seen as the white circular region. The dark circular region at the
centre of the expanding film is the drop, dyed with Rhodamine 5B. 2(d)-2(f): expanding film becomes
unstable at its outer periphery and then develops outward propagating fingers. 2(g)-2(i): drop at the centre
of the film develops holes and eventually mixes, while the film retracts. The size of each image is 35mm ù
22.5mm. See movie 1 online.

fraction of the drop, from its bottom, gets pulled apart by the neck expansion during coalescence
and becomes the source of the drop fluid in the film ( see movie 2 online). As these figures
show, the major part of the drops goes down and then bounces back due to its buoyancy, while
the initial bottom part of the drop gets pulled apart to form the spreading film. It could also be
noticed that there is no substantial motion in the regions below the spreading film, except for
a vertical redistribution of the particles at the interface seen as the dark region below the film
in figures 3(g) and 3(h). Such a distribution of particles at the interface occurs because of the
vertical momentum imparted to the interface due to the vertical oscillations of the drop due to the
ligament retraction dynamics during pinch off from the capillary. We now look at the quantitative
variation of the radius of the expanding continuous circular film (rf ) as a function of time (t),
measured as discussed in § 2, from images similar to that in figure 2.

3.2. Spreading radius and velocity

Figure 4 shows the measured values of rf (t) as a function of time t for different Ce ( hollow
symbols), with different rd ( solid symbols) and with different hl(hollow symbol with dot), the
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(a) *6ms (b) 2ms

(c) 4ms (d) 6.5ms

(e) 10.5ms (f) 12.5ms

(g) 18ms (h) 39ms

(i)

FIGURE 3. (a) to (h): Side views of the sequence of coalescence and film spreading when an ethanol drop of
radius rd = 1.1mm and 100% concentration mixes with a water layer of hl = 5cm height. The point A shows
the fraction of the drop being drawn apart by coalescence that forms the spreading film. The size of each
image is 16.88mm ù 8.4mm. (i) Side view visualisation of film spreading from a drop of rd = 1.1mm and
Ce = 100% with 10�m hollow glass spheres in the substrate and 6�m fluorescent particles in the drop. The
dashed circles show the tip vortices at the periphery of the spreading film. The image shown is the negative
of the obtained image for clarity and is of size 22.5mm ù 9.08 mm. See movie 2 online.
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FIGURE 4. Variation of the film radius with time for different drop radii, ethanol concentrations and layer
height. The hollow symbols represent rd = 0.97mm with varying ethanol concentrations in the drop, #,
Ce=100%; ∏, Ce=80%; ·, Ce=60%; Î, Ce=40%; +, Ce=20%. The solid symbols represent experiments
with 100% concentration with varying rd , ’, rd=0.9mm; À, rd=1.1mm. The experiments with hollow and
solid symbols had the water layer height hl = 5mm. An experiment with a larger layer height hl = 75mm,
Ce=100% and rd = 0.97 mm is shown by Ê. The dashed line shows the 1_4 slope of the data. The inset
shows the rf vs t data for Ce = 60% and rd = 0.97 mm along with the curve fit rf = 11.89t0.232, from which
the velocity is calculated.

zero time being at the instant of contact of the drop with water. The horizontal error bars in the
figure shows the error in time measurement due to the uncertainty of the time of contact, discussed
in Appendix B. As discussed in Appendix B, rf is the mean of three azimuthal measurements;
the range of these three measured radii is shown in figure 4 for Ce = 100% and rd = 0.97mm as
the vertical bars. This range increases in the later measurements since the film develops azimuthal
instabilities after expanding for some time to forms fingers in its outer periphery, as we saw in
figure 2(d). After this instability occurs, rf (t) is measured as the radius of the continuous film, not
including the region with fingers. The plot includes measurements after the instability at the edge
of the film occurs; no change in the rate of expansion of rf is seen after the instability occurs.

The radius, rf increases as the continuous film region expands with time (figure 2(a) to 2(g))
and then starts to decrease with time once the film front starts to retract (figure 2(g) to 2(i)). The
inset in the figure shows the curve fit that is used to calculate the film expansion velocity (uf )
for one experiment, as discussed in § 2. The film expansion velocities(uf ) decrease with time, as
shown in figure 5. The initial (t ˘ 0.03s) expansion velocities of the film are high (> 10 cm s*1),
which reduces to zero beyond which the velocities reverse their direction due to film retraction.
Retraction occurs over a shorter time than expansion, for example, for rd = 0.97 mm and Ce=
100%, shown with # in figure 4, film expansion occurs over 0.4 s while retraction occurs over
0.2 s.

Figure 4 shows that at any time, a larger Ce in the drop results in a larger radius of the film.
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FIGURE 5. Variation of the film expansion velocity with time for different drop radii, ethanol
concentrations and layer height. The symbols are the same as in figure 4.

The slope of rf vs t for different ethanol concentrations are approximately the same, indicating
the same power law dependence of rf on t for different ethanol concentrations; this power law
is approximately t1_4 as shown by the dashed line in figure 4. For the same rd , higher the
concentration of ethanol in the drop, larger is the maximum rf and larger is the time of spreading.
It could also be noticed that at any specific time, rf has a non monotonic dependence on the initial
radius of the drop rd . The hollow circles and the hollow circles with a center dot in figure 4 are
identical experiments except that the water layer height (hl) was 15 times larger in the latter.
These two data sets fall on each other implying that the radius rf at any time, the exponent of the
power law of rf vs t, as well as the velocity of spreading are all independent of the height of the
underlying liquid layer; this independence of hl paves way to our scaling analysis in § 4 . We now
proceed to find scaling relations for these dependences of rf on time, rd and the fluid properties.
The scaling analysis presented in this paper is limited to the expanding radius of the spreading
film, and does not include the retraction of the film.

4. Scaling Analysis

As we saw in § 3.2, the spreading radius rf and velocities uf are independent of hl, the
underlying liquid layer height. Such would be the case if viscous dissipation in a boundary layer
below the film was the dominant resistance for the spreading film, as discussed in § 1; this would
however give rf Ì t3_4, quite different from the observed time dependence in figure 4. The ratio
of viscous stress due to a Blasius boundary layer below the spreading film ⌧bl = �luf_�bl to the
viscous stress in the film ⌧f = �fuf_hf is,

⌧f

⌧bl
=

�f

�l

�bl

hf
, (4.1)

where �bl is the Blasius boundary layer thickness. When t = 0.2s and rf = 10mm at the end of
the expansion of the film for Ce = 100% and rd = 0.97mm, we have �bl Ì

˘
⌫lt ˘ 400�m and
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FIGURE 6. Schematic of film spreading from a lighter miscible drop on a deep liquid layer showing the
symbols used.

hf = 4r3
d
G_3r2

f
˘ 5.33�m (see (4.2) and (4.21 later), resulting in ⌧f_⌧bl ˘ 75. The film viscous

stress is about two orders of magnitude higher than the stress due to a possible Blasius boundary
layer in the present case. Similarly, the viscous extensional stress in the film, ⌧e Ì �fuf_rf . The
ratio ⌧f_⌧e Ì rf_hf Ì 1876, using the above values of rf and hf ; the viscous shear stress in the
film is hence three orders of magnitude higher than the viscous extensional stress in the film.

We hence consider the situation where the spreading dynamics is likely to be determined by the
balance of viscous shear stresses within the film with the driving surface tension force; a similar
assumption has been made by (Hernández-Sánchez, Eddi & Snoeijer 2015) for spreading due to
a continuous supply of IPA. We also saw in § 3.1 that during the period of spreading of the film,
only a fraction of the volume of the drop is pulled apart by the neck expansion which then spreads
as the film. Based on these observations and on the assumption that the initial fraction of the drop
mass remains well mixed while spreading as the film, we now develop a scaling analysis below.
The analysis uses the balance of forces within the spreading film and an estimate of the initial
fraction obtained from coalescence dynamics. The resultant scaling law captures the dependence
of rf and uf on time, the initial radius of the drop and on the initial concentration of ethanol in
the drop, which as we saw in § 3.2 are the prime variables on which the spreading depends on.

4.1. Mass and momentum balance

We assume the spreading to be as shown in the figure 6. As we saw in § 3.2, the film spreading
is rapid, with the spreading being over in 0.4 s for the 100% ethanol drop. Further, as could
be seen from figure 2, only a small fraction of the drop spreads as the film during the time of
film spreading. Due to the small characteristic time of spreading (t�f Ì rf_uf ), we assume that
the film is well mixed during its spreading so that the density of the film remains a constant
over the short time of spreading. This assumption implies that the loss of ethanol from the film
during spreading due to evaporation and mixing with the underlying water layer is small. As
shown in Appendix C, the evaporation velocities are of the order of 10*5ms*1 while uf Ì 5 ù

10*2ms*1; evaporative flux in t�f will be negligible compared to the longitudinal flux in the film.
Since convective mixing is absent (see figure 3), the downward mixing velocities, of the order of
diffusive velocities D/hf Ì 10*4ms*1 is also negligible in time t�f . When G fraction of the
volume of the drop spreads as a film of constant density ⇢f , with a time dependent film height
hf (t), mass balance of the drop and film implies,

G
4

3
⇡r3

d
⇢d = ⇡r2

f
hf⇢f , (4.2)

Change in the radius of the drop fluid reservoir, seen as the dark centre region in figures 2(a) to
2(f) is small while the film spreads. Further, the value of t�f is small. Due to these reasons, we
assume the change in volume of the drop during t�f to be negligible; the change in density of
the drop is also then negligible in t�f ; ( d⇢d_dt ˘ 0 when t < t�f ). Since mass and momentum
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FIGURE 7. Variation of the dimensionless numbers of the film with time for an experiment with Ce = 100%
and rd = 0.97mm. #, Ref ; ∏, W ef ; ·, Ohf ; +, Caf .

change of the drop reservoir over t�f are then negligible, as shown in Appendix D, the mass
balance of the drop and the film reduces to,

2⇡rfufhf⇢f + ⇡r2
f
⇢f

dhf

dt
= 0. (4.3)

Similarly, as shown in Appendix D, using (4.3) in the momentum balance for the drop and the
film and neglecting terms involving change in mass and momentum of the drop reservoir implies,

2⇡rf (�l * �f ) * �f

uf

hf
⇡r2

f
= ⇡r2

f
hf⇢f

duf

dt
. (4.4)

4.2. Scaling of spreading radius and velocity

We now estimate the range of dimensionless numbers of the film during its spreading so as to
simplify (4.4). We assume that the spreading occurs fast enough to neglect the mixing of the film
with the underlying water layer, so that the film properties are the same as the drop properties,
implying, ⇢f = ⇢d , �f = �d , and �f = �d . Figure 7 shows the variation of the dimensionless
numbers of the film as a function of time in a typical experiment of 100% ethanol drop of rd =

0.97mm. The Weber numbers based on film thickness (W ef = ⇢fu
2
f
hf_��) are much less

than one (0 < W ef < 0.005) implying that the surface tension effects are much more than the
inertia effects in film spreading. Similarly, since the Reynolds numbers based on film thickness
(Ref = ⇢fufhf_�f ) are in the range 0.06 < Ref < 1.4, viscous effects are more than inertia
effects, except at the beginning of the film spreading when Ref is of order one. The Capillary
numbers (Caf = �fuf_��) are very small (0.0006 < Caf < 0.0035); surface tension forces
dominate over viscous resistance. The values of Ohnersorge numbers (Ohf = �f_

˘
⇢fhf��)

are in the range of 0.049 < Ohf < 0.099; surface tension is predominant than viscous effects.
Based on the order of these dimensionless numbers, the momentum equation (4.4) could be

simplified, as follows. Since duf_dt Ì uf_t�f with t�f Ì rf_uf , the ratio of the term on the
RHS of (4.4) with the first term on the LHS is W ef ; as seen in figure 7, W ef ~ 1. Similarly, the
ratio of the term on the RHS of (4.4) and the second term on the LHS of (4.4) is Ref

�
hf_rf

�
.

Since Ref < 1 as shown in figure 7 and
�
hf_rf

�
~ 1 since film thickness is much smaller than
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FIGURE 8. Schematic of the initial stages of coalescence of a drop with a liquid layer.

its radius; Ref
�
hf_rf

�
~ 1. At the same time, the ratio of the terms on the LHS of (4.4) is

hf_Caf rf which is of order 1, since Caf ~ 1 (figure 7) and hf_rf ~ 1. Hence, to leading
order, the term on the RHS of (4.4) can be neglected. Further, assuming the film properties are
the same as the drop properties, the momentum balance reduces to

2⇡rf�� = �d

uf

hf
⇡r2

f
. (4.5)

Eliminating hf from (4.2) and (4.5),

r3
f
Ürf =

8

3
Gr3

d

��

�d
(4.6)

On integrating (4.6), we get

r<
f
= c1(Gt<

�d
)1_4 (4.7)

as the scaling of the dimensionless film radius r<
f
= rf_rd on the dimensionless time t<

�d
= t_t�d ,

with the characteristic time of spreading,

t�d =
�drd

��
, (4.8)

and the constant of integration c1 = (32_3)1_4. Since, Ürf=uf , the radial velocity of film spreading,
(4.6) can also be rewritten in dimensionless form as,

Cad = c2Gr<
f

*3
, (4.9)

where the Capillary number Cad = uf�d_�� is the dimensionless spreading velocity and
c2 = 8_3. In the scaling laws (4.7) and (4.9), G the initial fraction of the drop that mixes to
form the film is still unknown. We now obtain an expression for G based on the coalescence
dynamics of the drop and the liquid layer.

4.3. Estimation of the initial spreading fraction G

Figure 8 shows the schematic of the initial stage of coalescence of the drop with the liquid
layer, which is a schematic of the zoomed view close to the interface in figure 3(b). The fraction
of the volume of the drop G that is pulled apart by the neck expansion in the coalescence time tco
is

G =
2⇡rn�urtco

4

3
⇡rd

3
, (4.10)
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where, as shown in figure 8, � is the thickness of the neck region, rn is the neck radius and ur is
the neck retraction velocity.

The coalescence time tco in 4.10 depends on the Bond number of the drop Bod = ⇢dgr
2
d
_��.

For low Bod the coalescence is purely capillary driven with the tco equal to the capillary time

scale tc =

t
⇢dr

3
d
_��, while for large Bod , tco is equal to the gravity time scale tg =

˘
rd_g

(Chen et al. (2006)). As shown in table 1, the range of values of Bod for the present experiments
are 0.12 < Bod < 0.26; the present experiments fall in an intermediate Bod range. Chen et al.

(2006) have shown that for such a capillary-gravity regime of drop coalescence,

tco = 0.77

v
⇢dr

3
d

��(1 + Bod)
, (4.11)

which tends to tc as Bod ô 0 and to tg as Bod becomes large.
The thickness of the neck � in (4.10) can be estimated in the following way. From geometry of

figure 8,

w = rd(1 * cos ✓), (4.12)

which, on substitution of cos ✓ ˘ 1 * ✓2_2 for small ✓, becomes equal to

w =
rd✓

2

2
. (4.13)

Since ✓ ˘ rn_rd for small ✓ from figure 8, (4.13) becomes,

w =
r2
n

2rd
. (4.14)

Mass balance of the retracting rim resulting in a bulge of diameter � at the tip of the rim would
imply,

 
rn

0

2⇡rnwdrn = ⇡

⇠
�

2

⇡2

2⇡rn. (4.15)

Evaluating the integral in (4.15), after substituting for w from (4.14), and simplifying, we get

� =

v
r3
n

2⇡rd
. (4.16)

From scaling arguments, Eggers et al. (1999) obtained the same relation, without the prefactor,
for drop coalescence.

The neck retraction velocity ur in (4.10) is a resultant of the balance of inertia ⇢du
2
r
_2 and

surface tension force ��_rn to give

ur = c3

v
2��

⇢drn
, (4.17)

where c3 is constant prefactor, whose value is chosen later to obtain the limiting value of G as
Bod ô 0. Substituting (4.11), (4.16) and (4.17) in (4.10) and noting that rn_rd ˘ ✓ for small ✓
in figure 8, we get

G ˘ c4

v
✓4

1 + Bod
, (4.18)

where c4 = 0.65c3. To eliminate ✓ from (4.18), we need one more relation of G in terms of ✓,
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which can be obtained as follows. From geometry of figure 8,

G ˘
1

2
⇡�r2

n
_
4

3
⇡r3

d
. (4.19)

Replacing � in (4.19) from (4.16) and noting that rn_rd ˘ ✓ for small ✓, we get

G ˘
3

20
✓7_2. (4.20)

Replacing ✓ in (4.18) interms of G from (4.20) results in

G ˘
1

2(1 + Bod)
7_6

, (4.21)

where we have chosen the prefactor c3 = 0.39 so as to get G = 0.5 when Bod ô 0, as found by
Chen, Mandre & Feng (2006).

4.4. Bod dependence and validation

The scaling of the dimensionless film radius (4.7) and the dimensionless film velocity (4.9) can
now be expressed in terms of the drop Bond number (Bod) by writing G in these equations in
terms of Bod using (4.21). By doing such a substitution, we obtain,

f r<
f
= t<

�d

1_4
, (4.22)

and

4f 4 Cad = r<
f

*3
, (4.23)

where the function

f (Bod) =
31_4

2

�
1 + Bod

�7_24
. (4.24)

Since r<
f

in (4.23) is given by (4.22), (4.23) can also be rewritten in terms of t<
�d

, so as to
obtain a decreasing dependence of dimensionless film velocity on time in the form 4fCad =

t<
�d

*3_4. Equations (4.22) and (4.23) are the proposed scalings which are expected to capture the
dependence of spreading radii and velocities on time, property ratios between the drop and the
liquid layer, and the initial drop radius; we now verify these relations with our experimental data
shown in figure 4.

Figure 9 shows the variation of the dimensionless spreading radius r<
f

, scaled by the function
f , with the dimensionless time t<

�d
, plotted using the data shown in figure 4 for different Ce, rd

and hl. The part of the data that show an increasing film radius collapse fairly well on to

f r<
f
= 0.83 t<

�d

1_4
, (4.25)

shown by the dashed line in the figure, the prefactor being close to the expected value of one
from (4.22). The variation of the dimensionless film expansion velocity Cad , scaled by 4f 4, with
the dimensionless spreading radius r<

f
is shown in figure 10. Similar to that in figure 9, the data

collapse fairly well on to

4f 4 Cad = 0.5 r<
f

*3
. (4.26)

The data show a *3 power law exponent except for a slight deviation at small r<
f

. This deviation
is expected to be due to the non-negligible inertial effects in film spreading for small rf when the
film spreads very fast (see figure 5) so that W ef becomes close to one, as seen in figure 7. The
present analysis neglected the inertial effects in film spreading and is only valid when W ef < 1.
Further, the present analysis assumed that rd ~ rf ; this assumption also breaks down at small rf
when the film radius is of the size as the drop radius. The reason for the prefactors in (4.25) and
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FIGURE 9. Variation of the dimensionless film radius with the dimensionless time. The symbols are as in
figure 4.

FIGURE 10. Variation of the dimensionless film velocity with dimensionless film radius. The symbols are
as in figure 4.

(4.26) to be slightly less than one could be the slight inaccuracy of the prefactors assumed in the
scaling relationships used in the derivation of (4.22) and (4.23).
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5. Conclusions and Discussion

The primary result of this paper is the scaling law developed for the spreading radius rf of a
film, spreading from a buoyant, miscible drop, when the viscous dissipation in the spreading film
is the dominant resistance to surface tension driven spreading. The proposed scaling law is,

rf Ì

0
t��

�d
r3
d

11_4
1

f
, (5.1)

a function of two length scales t��_�d and the initial drop radius rd modified by a dimensionless
function f (Bod), given by (4.24). The above scaling has the correct t1_4 time dependence shown
by experiments in figure 4. The scaling law (5.1) also captures the dependence of rf on drop
properties as well as that on rd since it collapses all the data with different ethanol concentrations
in the drop(Ce) and rd onto a single dimensionless curve f r<

f
= 0.83 t<

�d

1_4 (4.25), where the
dimensionless time t<

�d
= t_t�d with the characteristic time of spreading t�d = �drd_��, and

the dimensionless film radius r<
f
= rf_rd .

The dependence of rf on drop properties and rd is complex since f is a function of the
drop Bond number Bod ; however the effects of property variations on rf could be qualitatively
understood by examining (5.1) and (4.24). As was shown in figure 4, rf increases at any time t

with increasing concentration of ethanol in the drop. Such an increase is captured by the positive
power law dependence of rf on �� in (5.1); increase in �� increases the spreading force resulting
in larger rf at any time. Increasing the concentration of ethanol in the drop shows a non-monotonic
variation in the viscosity of the drop with �d increasing till 40% concentration and then decreasing
with further increase of concentration (see table 1). A decrease in the viscosity of the drop �d , and
hence that of the spreading film, should speed up the spreading since �d appears with a negative
power in (5.1); such an outcome is expected due to the reduced viscous dissipation in the film
with reduced �d . The novelty of (5.1) is that by explicitly considering the coalescence dynamics,
the dependence of rf on rd was included in the scaling law. This dependence of rf on rd is non-
monotonic, as seen in figure 4. The scaling (5.1) captures this non-monotonic variation since the
functional dependence of rf on rd shown by (5.1) is non-monotonic, thereby bringing all the
different rd data on to the line (4.25) in figure 9.

The velocity of the film spreading scaled as

uf Ì
��

�d

0
rd

rf

13
1

4f 4
, (5.2)

showing that the characteristic velocity of spreading is ��_�d , with the spreading velocity
decreasing with increasing spreading radius as r*3

f
. This scaling also collapsed all the velocity data

obtained with different drop concentrations and rd on to a single line 4f 4 Cad = 0.5 r<
f

*3 (4.26),
as shown in figure 10, implying that the dependence of uf on drop properties and rd was ade-
quately captured by the scaling law (5.2). Due to (5.2) and (5.1) it is also obvious that the spreading
velocity showed a decrease with time as t*3_4, before the film starts to retract at specific value of
rf .

These conclusions were verified with measurements of spreading radii obtained by the top
view visualisations of ethanol-water drops spreading over a water layer, whose height was much
larger than the drop radii. The visualisations showed that the spreading and eventual dissolution
of the drop has many distinct stages. In the first stage, a capillary wave propagates from the point
of contact of the drop with the water layer followed by an expanding circular film of ethanol-
water mixture (figures 2(a) -2(c)). At some specific radius of spreading, the expanding, continuous
film becomes unstable at its periphery, resulting in outward propagating fingers, while the film
continues its expansion (figure 2(d)). The major part of the drop remains at the center of the film
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which expands with decreasing velocity. The film starts to retract after some time, the drop thins
and develops holes in it and eventually mixes with water and disappears (figures 2(g) -2(i)). From
the side view visualisations, it became clear that the film originates from an initial fraction of
the drop that is pulled apart in the neck expansion during coalescence of the drop with the water
layer.

Based on these observations, the scaling law (5.1) was developed by combining the mass and
momentum balance of the spreading film with the mass balance between the drop and the film, in
which the initial fraction of the drop G appears. By calculating the flux of drop mass during the
time of coalescence when the neck region retracts with capillary velocity, along with geometrical
constraints, G ˘ 1_2(1 + Bod)

7_6 was obtained as a function of the drop Bond number (4.21).
The dependence of rf on rd , that as we saw, had a non-monotonic dependence, was thus explicitly
brought into the scaling law of rf ; the resulting scaling law (5.1) then captured the non-monotonic
dependence of rf on rd . These results were obtained for the case of film Weber number less than
one so that inertial effects were neglected in the spreading of the film. The analysis was also
restricted to the values of viscosity ratios � = �l_�d < 1 so that viscous dissipation inside the
film dominates over that occurs in the underlying liquid layer. Further, the values of density ratios
⇠ = ⇢l_⇢d > 1 was also needed so that the drop remains at the free surface while the film spreads.

Eventhough the developed scaling law satisfactorily describes the dependence of film ex-
pansion on time, drop radius and drop properties, there are still many unresolved issues in the
phenomena shown by the spreading and eventual mixing of a drop on a liquid surface. The
physics behind the retraction process of the film is still not clear. Same is the case about the
point of transition from spreading to retraction, which in the present scaling occurs at different
values of t<

�d
( see figure 9). An effort to collapse the expansion, transition from expansion to

retraction and the retraction, to a single curve, eventhough difficult, needs to be attempted. The
physics behind the instability and the development of fingers at the periphery of a surface tension
driven expanding film over a deep liquid layer is not clear; the corresponding thin layer case has
been explored by many researchers (Warner et al. (2004) and the references therein), without
yet achieving a complete understanding. The scaling in the large Weber number situation of the
present case, which would presumably occur when the film viscosity is smaller than the liquid
layer viscosity, with both the viscosities being low, is also still unexplored.

We gratefully acknowledge the help provided by Nanotechnology Lab, IIT Madras for particle
characterisation, the Flow characterisation lab, IIT Madras for the surface tension measurements
and Prof Mahesh Panchagnula for the use of high speed photography. The equipments used in
this study were funded by the grant SR/FST/ETII-017/2003 from DST, Govt. of India.

Appendix A. Effect of particle concentration on surface tension

Aluminium particles are surface active and hence they change the surface tension of water. The
surface tension of water laden with Aluminium particles was measured for different particle con-
centrations. The measurements were performed using a Sigma 700/701 force tensiometer(Biolin
Scientific) using Wilhelmy plate and Du Nouy ring probes. We used particle surface densities
from 0 to 78�g cm*2 (i.e 0 to 100 ppm) spanning the surface density of 77�g cm*2 (i.e 163 ppm)
of particles used in the experiments. The relations between surface densities and ppm are different
in visualisations and surface tension measurements since the volume to area ratio of the containers
were different. Figure 11 shows that the mean surface tension, calculated from 10 repeated
measurements, varies non linearly with a decrease till 15�g cm*2 followed by an increase till 30�g
cm*2. The values again drop between 30�g cm*2 to 45�g cm*2 and then stay approximately in
the range 50 to 55mNm*1 for 45�g cm*2 to 80�g cm*2. Similar decreasing and increasing values
of surface tension with increasing particle concentrations of titanium oxide particles have been
observed earlier by Dong & Johnson (2003). The initial decrease is expected to be due to decrease
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FIGURE 11. Variation of surface tension of water with surface density of Aluminium particles. #, by
Wilhelmy plate; ∏ by Du Nouy ring.

in free energy while the later increase to be due to capillary forces between particles (Dong &
Johnson 2003). Due to this non monotonous variation, we then measured the surface tension of
water with Al particles at the concentration used in visualisations many times and have now used
the measured mean value of 54mNm*1 in all our calculations.

Appendix B. Error in rf , t and uf

An estimate of the error in the measurement of rf , based on the number of pixels needed to
cover the interface between the particle and the particle free regions, was 4 pixels. This number
of pixels occupy a region of 0.3mm at the resolution of our imaging. Hence the maximum error
possible, corresponding to our lowest rf is 7%.

In addition to these measurement errors of rf there is also the variation of rf azimuthally due
to the deviation of the film periphery from a circle. The range of this deviation increases as the
film expands with time since instabilities start to develop at the periphery as the film expands. The
range of this variation of rf is now shown in figure 4 by showing the maximum and minimum
values of rf from the three measurements at the three azimuthal locations on the film. This range
is less than the vertical shift in rf due to the change in Ce and rd .

The error in time measurements is due to (i) the error in frame rate as well as (ii) the error in the
initial time of contact of the drop with the water surface. The error in the time of each image due
to the error in FPS is negligible compared to the error in the initial time estimation. The actual
instance of initial contact of the drop with the substrate could be just after the previous frame or
just before the subsequent frame, from the frame which we identify as the frame at which contact
occurs. Therefore the error in the initial time of contact is of the order of ±1/fps = ±0.025s. This
error in the initial time implies that the rf vs t curves could shift by 2/fps horizontally; we show
this error in the initial time as the horizontal error bars in figure 4.

Since uf is calculated from

uf = ABtB*1, (B 1)
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as the derivative of the power law fit

rf = AtB , (B 2)

�uf , the error in uf is due to the error in the curve fit and that in t. The error in the curve fit is
estimated by calculating the maximum and minimum values of A and B which will fit rf ± �rf ,
where �rf is the known error of 0.3 mm in rf . From (B 1),

ÛÛÛ�uf
ÛÛÛ =

ÛÛÛÛÛ

duf

dA
�A

ÛÛÛÛÛ
+
ÛÛÛÛÛ

duf

dB
�B

ÛÛÛÛÛ
+
ÛÛÛÛÛ

duf

dt
�t
ÛÛÛÛÛ
, (B 3)

where �A, �B and �t are the errors in A,B and t. By evaluating the derivatives from (B 3) and
rewriting in terms of uf , we get

ÛÛÛÛÛ

�uf

uf

ÛÛÛÛÛ
=
ÛÛÛÛ
�A

A

ÛÛÛÛ
+
ÛÛÛÛ
�B

B

ÛÛÛÛ
+
ÛÛÛÛ
(B * 1)

�t

t

ÛÛÛÛ
+ �B ln t . (B 4)

For the case of Ce = 100% and rd = 0.97mm, A = 15.09,B = 0.27, �A = 0.09, �B = 0.005,
�t = 0.025s. Using these values in (B 4) at t = 0.01s and uf = 100 mm s*1 we obtain 12% error
in uf . This value and the error values at two other later times are shown in figure 5.

Appendix C. Evaporation velocity

The horizontal velocity of evaporation from a horizontal film, as given by Lock(1996) is

Ue =
↵v

L
(Ra2Ja3)1_5, (C 1)

where the Jacob number, Ja = cpv�T _�v, is the ratio of sensible heat to latent heat, the
Rayleigh number, Ra = g(�⇢_⇢v)L

3_⌫v↵v, is the ratio of buoyancy to dissipative effects, with
the subscript v denoting property values of the vapour. L is the length of the film, � the latent heat
of vapourisation, �T and �⇢ the temperature and density difference between the liquid surface
and the ambient, cp the specific heat at constant pressure, ↵ the thermal diffusivity, ⌫ the kinematic
viscosity and ⇢ the density. By continuity, the vertical evaporation velocity is then

Ve = Ue

⇠
Ja

Ra

⇡1_4

=
↵v

L

�
Ra3Ja17

�1_20
(C 2)

Using the following properties of ethanol vapor cpv = 1400Jkg*1K*1; ⌫v = 0.835ù 10*5Nsm*2;
⇢v = 0.085kgm*3; �v = 1025 ù 103Jkg*1; � = 750 ù 10*6˝C*1; �T ˘ 1˝C and
↵v = 0.00011 m2s*1 and the mean length of the film L = 5mm, we obtain

Ve Ì 4 ù 10*5ms*1, (C 3)

which is three orders smaller than uf .

Appendix D. Mass and momentum balance

Consider a control volume, enclosing the drop and the expanding film shown in figure 6, which
deforms and expands with the film. Mass balance implies,

d

dt

⇠
⇡(r2

f
* r2

d
)hf⇢f

⇡
+

d

dt

⇠
4

3
⇡r3

d
⇢d

⇡
= 0. (D 1)
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Expanding the derivative, we obtain,

⇡r2
f
hf

d⇢f

dt
* ⇡r2

d
hf

d⇢f

dt
+ 2⇡rfhf⇢fuf + ⇡r2

f
⇢f

dhf

dt
* 2⇡rdhf⇢f

drd

dt
* ⇡r2

d
⇢f

dhf

dt

+
4

3
⇡r3

d

d⇢d

dt
+ 4⇡r2

d
⇢d

drd

dt
= 0. (D 2)

When

d⇢f_dt Ù 0, d⇢d_dt Ù 0, drd_dt Ù 0 and rd ~ rf , (D 3)

(D 2) reduces to

2⇡rfhf⇢fuf + ⇡r2
f
⇢f

dhf

dt
= 0. (D 4)

Similarly, momentum balance over the same control volume, implies

d

dt

⇠
⇡r2

f
hf⇢fuf

⇡
+

d

dt

⇠
4

3
⇡r3

d
⇢dud

⇡
= 2⇡rf (�l * �f ) * �f

uf

hf
⇡r2

f
(D 5)

where ud is the velocity inside the drop. Expanding the derivatives in (D 5) and applying (D 3),
along with dud_dt Ù 0, we get

2⇡rfhfu
2
f
+ ⇡r2

f
hf⇢f

duf

dt
+ ⇡r2

f
uf⇢f

dhf

dt
= 2⇡rf (�l * �f ) * �f

uf

hf
⇡r2

f
. (D 6)

From (D 4), the sum of first and third terms in (D 6) is zero, resulting in

2⇡rf (�l * �f ) * �f

uf

hf
⇡r2

f
= ⇡r2

f
hf⇢f

duf

dt
. (D 7)
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