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Exponential speedup in measuring out-of-time-ordered correlators with a single bit of

quantum information
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Out-of-time-ordered correlators (OTOC) are a quantifier of quantum information scrambling and
quantum chaos. We propose an efficient quantum algorithm to measure OTOCs that provides an
exponential speed-up over the best known classical algorithm provided the OTOC operator to be
estimated admits an efficient gate decomposition. We also discuss a scheme to obtain information
about the eigenvalue spectrum and the spectral density of OTOCs.

PACS numbers:

I. INTRODUCTION

Connections between non-integrability, many-body
physics, complexity, ergodicity, and entropy generation
are the cornerstones of statistical mechanics. The aim
of quantum chaos is to extend these questions in the
quantum domain. Foundational works in this regard in-
clude semiclassical methods connecting classical periodic
orbits to the density of states level statistics [1], prop-
erties of Wigner functions [2], and quantum scars in er-
godic phase spaces [3] and connections to random ma-
trix theory. Search for these footprints of chaos, and
characterization of “true” quantum chaos, independent
of any classical limit, has important consequences both
from a foundational point of view as well for quantum
information processing. For example, such studies ad-
dress complexity in quantum systems and play a poten-
tially crucial role in information processing protocols like
quantum simulations that are superior to their classical
counterparts.

Characterization of chaos in the quantum domain has
been much contested since, unlike its classical counter-
part, unitary quantum evolution preserves the overlap
between two initial state vectors and hence rules out hy-
persensitivity to initial conditions. However, a deeper
study reveals chaos in quantum systems. These issues
have been extensively studied in the last few decades and
several quantum signatures of classical chaos have been
discovered. This interestingly coincides with exquisite
control of individual quantum systems in the laboratory
and the ability to coherently drive these systems with
non-integrable/chaotic Hamiltonians. Recent trends in-
clude studies involving connections of quantum chaos to
out-of-time-ordered correlators (OTOC) and the rate of
scrambling of quantum information in many-body sys-
tems with consequences ranging from the foundations
of quantum statistical mechanics, quantum phase transi-
tions, and thermalization on the one hand to information
scrambling inside a black hole on the other hand [4–16].

OTOCs have been much talked about in the quantum
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information circle recently and a number of ways to mea-
sure OTOCs have been proposed including a protocol em-
ploying an interferometric scheme in cold atoms [17]. An
alternative method involving two-point projective mea-
surements was proposed [18], giving a scheme for the
measurement of OTOCs using the two-point measure-
ment scheme, developed in the field of non-equilibrium
quantum thermodynamics elucidating the connections
between information scrambling and thermodynamics.
Various other protocols are reported in [19–21]. Measur-
ing OTOCs in experiments is not easy, as the implemen-
tation of perfect time reversal in an experimental setting
is impossible because of dissipation. However experimen-
tal implementation has been achieved in some systems.
Measurement of OTOCs for an Ising spin chain in an
NMR simulator has been reported [22, 23]. A many-
body time-reversal protocol using trapped ions has been
proposed and demonstrated [24] which though universal
is not scalable. These experiments measure infinite tem-
perature OTOCs, an observation that will be important
for us.

In order to explore any quantum signatures of chaos,
one has to numerically process data structures whose
computational complexity scale exponentially with the
number of qubits required to simulate the system. In
this paper, we give a quantum algorithm that gives an
exponential speed-up in measuring OTOCs provided that
the number of gates, K, required in the decomposition of
the times evolution operator of the system scales polyno-
mially with n, where n is the number of qubits used in
the implementation and, N , the dimension of the Hilbert
space with N = 2n. This implies that the algorithm mea-
sures the OTOCs in a time that scales as poly(n), which
is exponentially faster than any classical algorithm. Our
algorithm is based on the Deterministic Quantum Com-
putation with one pure qubit (DQC1) algorithm, which
is the first mixed state scheme of quantum computation.
Therefore, this can be naturally implemented by a high-
temperature NMR based quantum information proces-
sor. It involves a deterministic quantum control of one
qubit model, using scattering circuit[25, 26]. This algo-
rithm is also called the ‘power of one qubit’ as the main
primary resource required for this algorithm is one pure
qubit. Moreover, the essential part of simulations, state
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initialization, and readout, that are often quite involved
in certain models of quantum computation [27]. We give
a quantum circuit to evaluate OTOCswhich bypasses the
need to prepare a complex initial state and can be ac-
complished by a very simple measurement. Applications
include estimation of fidelity decay and density of states
in quantum chaos [28, 29], computing Jones polynomials
from knot theory [30, 31] and phase estimation in quan-
tum metrology [32]. Although the DQC1 model of quan-
tum information processing (QIP) is believed to be less
powerful than a universal quantum computer, its natu-
ral implementation in high-temperature NMR makes it
an ideal candidate for probing OTOCs and mixed state
quantum computation protocols.

II. OUT-OF-TIME-ORDERED CORRELATORS
(OTOCS)

OTOC were first proposed by Larkin and Ovchinnikov
in the context of semiclassical approximations in the the-
ory of superconductivity [33]. They later reemerged in
the study of many-body systems [4–7] quantum gravity
[8] and quantum chaos [9–16]. In quantum information
literature, OTOC is used as a probe to study the dy-
namics of information. One can probe the macroscopic
irreversibility of the dynamics, the spread of quantum in-
formation from a localized point to the rest of the system
via entanglement and correlations, and also the aspects
of thermalization [34–36]. Consider a chain of interacting
spins. Then a correlator of two operators acting at two
different sites can be defined as

CW,V (τ) =
1

2
〈[W (x, τ), V (y, 0)]†[W (x, τ), V (y, 0)]〉, (1)

where the local operators W and V are unitary and/or
Hermitian that act on sites x and y respectively and
W (x, τ) = U †(τ)W (x, 0)U(τ) is the Heisenberg evolu-
tion of operator W under time evolving operator U(τ).
The average is taken with respect to the thermal state at
some temperature which we take to be infinite. In par-
ticular, if the operators W and V are unitary, the above
equation becomes,

CW,V (τ) = 1−Re〈W (x, τ)†V (y, 0)†W (x, τ)V (y, 0)〉. (2)

In classical physics, the chaos is defined as the sen-
sitive dependence on initial conditions. If we replace
W and V in the Eq (1) with position(Q) and momen-
tum (P ) operators, and taking a semi-classical limit, we

notice that ~
2{Q(τ), P (0)}2 =

(

~
δQ(τ)
δQ(0)

)2

≈ exp(2λτ).

The quantum-classical correspondence principle implies
that the quantity CW,V (τ) grows exponentially till the
Ehrenfest time(τEh). However, unlike the classical sys-
tems, the lyapunov exponent(λ) calculated from OTOC
is bounded by 2π

β
[9]. Beyond the τEh, the quantum

corrections start dominating and the quantum-classical
correspondence breaks down.

An interesting feature of OTOC is that it measures
the spreading of initially localized operators across sys-
tem degrees of freedom as the operator evolves in Heisen-
berg fashion [12, 37–41]. Consider a pair of local op-
erators W and V that act on different subspaces of
total Hilbert space(H) under a chaotic time evolution
U(τ) = exp(iHτ). We assume that the Hamiltonian is
generic with local interactions. Under this evolution, the
operator W will evolve in time and it can be expanded
in Taylor series around τ = 0 as

W (τ) =
∑

n

τn

n!

dnW

dτn

= W (0) + iτ [H,W ] + (iτ)2[H, [H,W ]] + ...(3)

This implies that the operators W (τ) and V in general
do not commute for time τ 6= 0. For example, consider
one dimensional Ising spin chain with nearest-neighbor
interactions. Let W (i, τ = 0) = σi

z acts on site i at
time τ = 0. On substituting W in second line of the
series in the Eq (3), the first order commutator will give
us the sum of products of local operators acting on the
sites i − 1, i and i + 1 i.e [H,σi

z ] = f(i − 1, i, i + 1). As
time flows, the higher ordered nested commutators also
will contribute to the expansion ofW (τ) thus making the
quantity [W (τ), V ] 6= 0 [11].
Lieb and Robbinson [42] showed that for short range

interacting Hamiltonians, the quantity CW,V is bounded

i.e CW,V (τ) ≤ ce−a(i−vτ). Where a and c are constants
and v is called Lieb-Robbinson velocity. This bound on
OTOC imply a light-cone like structure in quantum lat-
tice models. it is worthwhile to note that the growth of
the OTOC is a quantum measure, can be used in systems
with no obvious classical limits.

III. DETERMINSTIC QUANTUM
COMPUTATION WITH ONE PURE QUBIT

(DQC1)

Single qubit quantum computation, although limited
in applicability is interesting from a fundamental point
of view. Despite involving minimal entanglement, DQC1
gives an advantage over classical computing. It has been
shown that none of the classical models simulate DQC1
efficiently [43]. In this model, we start with a known state
of an ancilla or probe qubit and couple it to the system. If
the system state is known, we can perform spectroscopy
of the controlled operation acting on the system. Else
if the operation is known, one can do tomography with
the same circuit [26]. In both cases, a measurement per-
formed on the ancilla qubit after the interaction reveals
information about the system or the operation. The cir-
cuit is given in the figure below The circuit diagram for
DQC1 is shown below.
The top qubit (the pure qubit that is also the control

qubit) is acted upon by a Hadamard gate. This trans-

forms state |0〉 to (|0〉+|1〉)√
2

. Then a controlled unitary U
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|0〉 H H

|ψ0〉 or I/2
n

U

FIG. 1: Quantum circuit for the DQC1 protocol (when the
input is I/2n). The circuit gives an efficient algorithm for
trace estimation of a unitary with only one qubit of quantum
information.

is applied followed by another Hadamard gate. It is to be
noted that the controlled unitary U , and the state |ψ0〉
can belong to an arbitrarily large Hilbert space. Measur-
ing the control qubit, we observe |0〉 and |1〉 with proba-
bilities

P (0) =
1

2
(1 + Re 〈ψ|0 U |ψ〉0)

P (1) =
1

2
(1− Re 〈ψ|0 U |ψ〉0). (4)

Instead of a pure state |0〉, if the lower set of qubits
are in a completely mixed state, with density matrix,
ρ = I/2n, we get

P (0) =
1

2
(1 +

1

2n
Re(trU))

P (0) =
1

2
(1 − 1

2n
Re(trU)) (5)

By a trivial modification of this scheme, one can make
these probabilities depend on Im(trU) and therefore, this
gives a quantum algorithm to estimate the trace of a
unitary matrix. L measurement of the top qubit will
give us an estimate of the trace with fluctuations of size
1/

√
L. Therefore, to achieve an accuracy ǫ one requires

L ∼ 1/ǫ2 implementations of the circuit. If Pe is the
probability that the estimate departs from the actual
value by an amount ǫ, then one needs to run the ex-
periment L ∼ ln(1/Pe)/ǫ

2 times. This accuracy in the
estimate does not scale with the size of the unitary ma-
trix and hence provides an exponential speed-up over the
best known classical algorithm, provided the unitary ad-
mits an efficient gate decomposition. It is known that if
the gate decomposition scales as poly(n), the controlled
version of these gates also scales polynomially in n. More-
over, the result is obtained by a mesaurement of only
the top qubit and hence independent of the size of the
readout register. As a last remark, it is worthwhile to
note that, while we have assumed the probe qubit to be
in a pure state, this is not necessary. With the probe

qubit in a state, α |0〉 〈0|+ (1−α)
2 I, the model with a tini-

est fraction of a qubit is computationally equivalent to
the DQC1 circuit described above. More specifically, the
number of runs of the trace estimation algorithm goes as
L ∼ ln(1/Pe)/α

2ǫ2. Therefore, as long as α is non-zero,
the circuit provides an efficient estimate of the trace.

IV. USING DQC1 TO CALCULATE OTOC

We now adapt the DQC1 algorithm to measure
OTOCs. This is shown in the circuit in Fig 2.
Here we initialize the probe to |0〉 and for simplic-

ity let us say the system state is prepared in a pure
state |ψ0〉. The controlled gates act on the system only
when the control qubit is |1〉. H is the Hadamard gate,
and Uτ is the unitary determined by a Hamiltonian
which evolves the system up to time τ . The state of

the probe + system at time t1 is (|0〉+|1〉)√
2

⊗ |ψ0〉 . Af-
ter the interaction, at time t2, the combined state is
1
2 |0〉 ⊗ (1 + U) |ψ0〉 + 1

2 |1〉 ⊗ (1 − U) |ψ0〉 where U =

W †
τ V

†WτV. After the action of the second Hadamard on
the probe qubit, measurement of σz ⊗ I, with σz on the
probe qubit yields Re 〈ψ0|W †

τ V
†WτV |ψ0〉 and measure-

ment of σy on the probe yields Im 〈ψ0|W †
τ V

†WτV |ψ0〉.
If we perform the circuit sufficiently many times, then we
get

〈σz〉 = Re 〈ψ0|W †
τ V

†WτV |ψ0〉
〈σy〉 = Im 〈ψ0|W †

τ V
†WτV |ψ0〉 (6)

Thus we have obtained the OTOC values. As mentioned
previously, assuming we have an efficient gate decompo-
sition and fix the size of fluctuations in our answer, the
complexity if this algorithm does not scale with the di-
mension of Hilbert space of the physical system under
consideration. This is not an unreasonable assumption
as efficient decomposition of some quantized chaotic sys-
tems is known [44–46] and used in quantum simulations
[29, 47]. In the above, the inherent assumption is that the
initial state of the system is perfectly known. By taking
the initial state |ψ0〉 〈ψ0| to be completely mixed, that
is proportional to I, we get the trace of OTOC, which
is the measurement with respect to a thermal state at
infinite temperature. Therefore, OTOCs with respect to
the thermal state at infinite temperature is a perfect can-
didate for the implementation with DQC1, that employs
only 1 qubit of quantum information, and hence a happy
accident.

V. ESTIMATING THE EIGENVLAUE
SPECTRUM OF OTOC

Not only the expectation value of OTOCs, the eigen-
value spectrum of OTOCs is also of interest. Just
like energy eigenvalue spacing for integrable and chaotic
systems form distinct distribution, the level spacing of
OTOCs also shows marked difference [48, 49]. One can
obtain the eigenvalue density of OTOCs using a DQC1
algorithm. The circuit is similar to the previous one. But
now, apart from the n-qubit register for the system, we
also need an extra n2-qubit ancilla and perform discrete
Fourier transforms. The circuit is shown in Fig. 3.
In this circuit, |u〉 is the initialized state of the second

ancilla register of n2 qubits, with the expectation value
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|0〉 H H

|ψ0〉 V Uτ W U†
τ V † U†

τ W Uτ

t1 t2

FIG. 2: This circuit evaluates the expectation value of OTOC with respect to |ψ0〉 . Time progresses along the horizontal line.
The top register is the single-qubit ancilla or probe. The bottom register is the system on which controlled gates act. When the
probe qubit is |0〉, the system is left unchanged, whereas when the probe is |1〉, controlled operations take place. Measurement
of σz or σy is performed on the probe qubit, in the end, revealing the value of OTOC.

|0〉〈0| H H

|u〉〈u| FT FT

ρ0 W †
τ V

†WτV

FIG. 3: Circuit for obtaining the spectral density of OTOC. Now there are two ancillas. Controlled Fourier transform is applied
twice on the second ancilla. The operation W †

τ V
†WτV which acts on the system is written in a condensed form and should be

implemented by decomposing into constituent gates as in Fig. 2. Only the single-qubit probe/ancilla is measured in the end
as before.

of OTOC equal to u. The OTOC, W †
τ V

†WτV , which
can be implemented as before. Let N2 = 2n2 and at the
end of circuit, measuring σz and σy on the probe qubit
as before, we get

f(u) =
1

N2

N2−1
∑

s=0

exp(i4πus/N2)tr[(W
†
τ V

†WτV )ρ0] (7)

Where s is the Fourier domain variable of u. Spectral
information is now contained in the phases, and can be

estimated. Normalizing, so that
∑N2−1

u=0 f(u) = 1, we get
the probability function of eigenvalues. The resolution of
the spectral density is determined by the number of an-
cilla qubits n2. As in the previous case, the DQC1 imple-
mentation provides an exponential speed up in obtaining
spectral density over any known classical algorithm.

VI. CONCLUSION

We have shown that using a single bit of quantum in-
formation, one can estimate OTOCs with an exponen-
tial speed-up over the best known classical algorithm. In
the spirit of the slogan, “classical chaos generates classi-
cal information, as captured by classical Lyapunov expo-

nents and the classical Kolmogorov-Sinai entropy, quan-
tum chaos generates quantum information”, leading to
the growth of OTOCs (till the Ehrenfest time), which are
popular quantifiers for this. In this work, we have given
an efficient quantum algorithm for estimating OTOCs
and capturing the growth of quantum complexity. One
possible avenue is to estimate the semiclassical formulas,
like the Gutzwiller trace formula on a quantum computer.
There are existing algorithms for this [50] that give a
polynomial speed-up over similar implementations on a
classical computer. We aim to explore the possibility of
such computations using the DQC1 model of quantum
computation, which can even operate on highly mixed
initial states. One can also consider a perturbed OTOC
where the operator W †

τ that occurs in W †
τ V

†WτV , un-
dergoes time evolution with a slightly perturbed Hamil-
tonian as compared to Wτ and therefore provides a di-
rect analog to classically chaotic systems under stochas-
tic noise. Moreover, understanding the power behind
DQC1 is still an open question. Future directions include
determining the nature of resources quantum mechanics
provides for information processing tasks that are supe-
rior to their classical counterparts as well as other av-
enues where mixed-state quantum computation can be
applied.
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