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Summary

Biological systems at various levels of organisation exhibit robustness, as well as phenotypic

variability or evolvability, the ability to evolve novel phenotypes. We still know very little about

the relationship between robustness and phenotypic variability at levels of organisation beyond indi-

vidual macromolecules, and especially for signalling circuits. Here, we examine multiple alternate

topologies of the Saccharomyces cerevisiae target-of-rapamycin (TOR) signalling circuit, in order

to understand the circuit’s robustness and phenotypic variability. We consider each of the topolog-

ical variants a genotype, a set of alternative interactions between TOR circuit components. Two

genotypes are neighbours in genotype space if they can be reached from each other by a single

small genetic change. Each genotype (topology) has a signalling phenotype, which we define via

the concentration trajectories of key signalling molecules. We find that the circuits we study can

produce almost 300 different phenotypes. The number of genotypes with a given phenotype varies

very widely among these phenotypes. Some phenotypes have few associated genotypes. Others

have many genotypes that form genotype networks extending far through genotype space. A mi-

nority of phenotypes accounts for the vast majority of genotypes. Importantly, we find that these

phenotypes tend to have large genotype networks, greater robustness and a greater ability to produce

novel phenotypes. Thus, over a broad range of phenotypic robustness, robustness facilitates pheno-

typic variability in our study system. Our observations show parallels to studies on macromolecules,

suggesting that similar principles might govern robustness and phenotypic variability in biological

systems. Our approach points a way towards mapping genotype spaces in complex circuitry, and it

exposes some challenges such mapping faces.

Introduction

Biological macromolecules such as proteins and RNA show intriguing properties that increase their

ability to withstand perturbations, as well as to evolve novel phenotypes with new functions. Their

genotypes — amino acid or nucleotide sequences — exist in vast genotype spaces. Genotypes that form

the same phenotype — a secondary or tertiary structure with a specific function — are connected into

large neutral networks or genotype networks1–5. Individual genotypes in such a network have many
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neighbours with the same phenotype. They are therefore to some extent robust to mutations that change

single amino acids or nucleotides5,6. At the same time, through evolutionary exploration of a genotype

network, these molecules encounter novel phenotypes in the immediate vicinity of the genotype network,

some of which may be useful evolutionary adaptations4–7. The existence of such genotype networks is

thus important for the evolvability of molecules.

Although much is known about how different molecular genotypes and their phenotypes are organ-

ised in genotype space, much less is known in this regard about biological systems on higher levels of

organisation, that is, about biological networks. We increasingly appreciate that biological systems on

multiple levels of organisation are robust to perturbations. They remain able to continue performing

their functions, even in the face of environmental or genetic perturbations8–14. This feature emerges

from how phenotypes form from genotypes, and how phenotypes are distributed in genotype space.

However, with few exceptions7,15–18, we know little about this organisation. Our ignorance in this area

is especially stark for the complex signalling circuits that play key roles in many physiological and de-

velopmental processes19–23. How do circuit genotypes map onto circuit phenotypes, and how are the

resulting signalling phenotypes distributed in genotype space? Does their organisation in genotype space

have implications for their robustness, as well as for their ability to evolve new phenotypes? We here

address these questions for a biochemically realistic model of a eukaryotic signalling circuit, namely the

target of rapamycin (TOR) signalling circuit in the budding yeast Saccharomyces cerevisiae21,24–26.

Quantitative modelling of biological systems forms the cornerstone of systems biology27,28. Mod-

elling and simulation provide powerful means for developing and testing hypotheses on the function and

behaviour of complex biological systems. Quantitative models have been useful in furthering the under-

standing of many biological systems29–32. Examples include bacterial chemotaxis33, early Drosophila

development10, and synthetic oscillator circuits34. Different models of the same process may differ in

their parameters, or in their topology, the qualitative interaction pattern of circuit components. Alterna-

tive circuit topologies often represent variants in circuit structures that can evolve through accumulating

small genotypic changes on evolutionary time scales35–37.

In this study, we ask how topological changes in the TOR signalling circuit in S. cerevisiae affect

the circuit’s behaviour. Tor is a highly conserved atypical protein kinase that controls the growth of

proliferating yeast, fly and mammalian cells in response to nutrients25,26. It is the target of rapamy-

cin, an immuno-suppressant and anti-cancer drug. Despite several biochemical experiments aimed at

characterising the components and the mechanisms of the TOR signalling circuit24,38–43, uncertainty

prevails about the qualitative interactions between various circuit components — the circuit topology —

and the parameters describing the quantitative dynamics of these components. Recently, Kuepfer and

co-workers proposed multiple alternate dynamic models for TOR signalling in S. cerevisiae24. Specif-

ically, these authors proposed a core topology of TOR signalling, consisting of molecular interactions

and reactions that are well-understood, along with 18 extensions to the core (Fig. 1). Each extension

can be viewed as a variant of the signalling circuit that affects a set of elementary molecular interactions

(Table S1, ref. 24), and represents a hypothesis about the mechanism of TOR signalling. Individual ex-

tensions are based on direct and indirect evidence from biochemical experiments (Table S1). For exam-

ple, variant V1 is based on a study by Hall and co-workers, who suggest that Tip41p is phosphorylated at
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multiple sites, based on immuno-precipitation of Tip41p followed by treatment with phosphatase41. The

complex formation between Tap42p and Pph21/22p or Sit4p (variants V17 and V18) has been suggested

by Di Como and Arndt38, based on the co-precipitation of Tap42p with Sit4p, as well as with Pph21/22p.

Jiang and Broach40 hypothesise that the Tap42p–Pph21/22p complex would protect substrate phospho-

proteins from dephosphorylation by PP2A or other phosphatases (variant V2)40; this hypothesis is able

to account for many of their observations on the effects of over-expressing or activating Tap42p. Each

combination of these and other elementary variants of the TOR signalling mechanism leads to a different

topology of the signal transduction circuit.

Any one yeast strain would typically harbour only one circuit topology. We can think of this topology

as the signalling circuit’s genotype, a pattern of molecular interactions that is ultimately encoded in the

strain’s genome. Other topologies, formed by different combinations of elementary variants may occur

in different yeast strains, or in one of several species closely related to S. cerevisiae, although such

variants have thus far not been characterised in yeasts. By examining all topologies, we may get insights

into different evolutionary trajectories that a signalling circuit may take.

A signalling circuit’s phenotype includes the concentrations of signalling molecules, and how this

concentration changes in response to environmental signals. We here determined the phenotype of each

TOR circuit topology based on the concentration trajectories of several key proteins/complexes (see

Methods). Specifically, we clustered these trajectories to group similar ‘signalling behaviours’, into

different phenotypes.

By mapping the topology of a signal transduction circuit to a genotype, and by computing a sig-

nalling phenotype from this genotype, we can address a number of questions with implications for cir-

cuit evolution: can one alter the topology of a signal transduction circuit without affecting its behaviour?

Can signal transduction circuits with significantly different topologies exhibit the same behaviour? Do

different topologies have very different or similar behaviours? How diverse is the range of novel be-

haviours that variation in a single topology can produce? We here address these questions by studying

multiple alternate circuit topologies for TOR signalling, and their phenotypes.

Results

The possible combinations of the 18 elementary variants we consider create 218 > 2.6 × 105 circuit

topologies. After eliminating incompatible combinations of such variants (see Methods), 6.9 × 104

topologies remain. To date, only few of them have been examined24. We here analyse all of them.

To facilitate their comparison, and to relate our observations to previous work4,5,7,15,16, we discretize

both genotypes and phenotypes. Specifically, we represent each genotype as an 18-bit long Boolean

vector (a vector with binary co-ordinates 0 or 1), where each bit indicates the presence or absence of one

elementary variant (Table S1) in a circuit topology.

For the signalling circuits that we study here, it is challenging to map genotypes to different sig-

nalling behaviours, because these behaviours are continuous in nature. To obtain a classification of

phenotypes, and a discrete mapping of genotypes to phenotypes, we therefore clustered the trajectories

for the 6.9×104 models to obtain 286 well-separated clusters, representative of different phenotypes (see
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Methods). Each ‘trajectory’ in this case represents a set of measurements of the (normalised) concentra-

tions of key signalling molecules including Tap42p P©( P© indicates phosphorylation), the Tip41p–Tap42p

complex and the Tap42p P©–Sit4p complex, at a set of time points (see Methods). Our approach provides

a clear separation of phenotypes into different clusters (Fig. S1).

To facilitate a systematic analysis, we also mapped the circuit topologies onto a graph. Each node

in this graph represents a specific topology. Two topologies are neighbours and thus connected by an

edge, if they differ in exactly one of the 18 elementary variants (Table S1). Any such difference can

potentially be caused by a small genetic change. This graph is the genotype space for the set of TOR

circuit topologies we study. A small portion of this space is shown in Fig. 1. The stubs emerging from the

blue circles (representing topologies in the figure) indicate that each topology has multiple neighbours,

of which only few are shown in detail. Since there are 18 elementary variants, each node in this graph

has at most 18 neighbours.

All genotypes that adopt a given phenotype form this phenotype’s genotype set. A genotype set

can consist of one or more connected genotype networks, which are connected sub-graphs of genotype

space. Such networks have also been called neutral networks1,6. We deliberately refrain from using

the term neutral network here, because phenotypes in one of the clusters we study may not be neutral

variants in the strict sense used by evolutionary biologists44. Genotype networks have very different

sizes and differ in many of their properties, which may have implications for the evolutionary dynamics

of these systems45. In the following sections, we discuss the genotype sets and genotype networks of

the TOR signal transduction circuit.

Most genotypes are contained in few genotype networks. The 6.9× 104 genotypes of the TOR sig-

nalling circuit that we analysed display 286 different phenotypes. The size distribution of the genotype

set for these 286 phenotypes is shown in Fig. 2A. The figure shows that a majority of the genotype sets

are quite small, but multiple large sets exist as well. The largest genotype set has 21,633 genotypes.

Fig. 2B illustrates a rank-ordered size distribution of genotype sets. It shows that most of the genotypes

are contained in a minority of genotype sets. Specifically, the 57 largest genotype sets contain over 90%

of all genotypes. We report results from most of the following analyses both for all genotype sets, and

for those genotype sets that contain 90% of the genotypes, in order to eliminate biases caused by the

many smaller networks that collectively contain few genotypes. For brevity, we will refer to the latter

genotype sets as large genotype sets.

Topologies sharing the same phenotype form highly connected networks. Two extreme scenar-

ios of genotype set organisation are possible, and a broad spectrum in between. In one scenario, all

genotypes in a genotype set are disconnected. In this case, the entire genotype set is a fragmented

collection of genotypes that cannot be reached from one another through phenotype-preserving evolu-

tionary change. In the other scenario, the entire genotype set is connected and thus consists of only one

genotype network. In this case, one can move from one topology to another on this network, through

small evolutionary steps that leave the phenotype unchanged. We next analysed the connectedness of

genotype sets.

Fig. 2C shows the distribution of the fraction of a genotype set occupied by its largest genotype
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network, for phenotypes corresponding to the large genotype sets. Fig. S2A shows the distribution for

all genotype sets. For large genotype sets, merely 14% have the majority of their nodes contained in

a single genotype network. The largest genotype set contains 21,633 genotypes, 21,307 of which are

connected in a single genotype network. On such a large genotype network, one can change the circuit’s

topology (genotype) through small evolutionary steps dramatically, without altering the behaviour of the

signalling circuit.

Dissimilar genotypes can exhibit the same phenotype. The distance between two genotypes can

be calculated as the Hamming distance between the binary vectors representing the genotypes. This

genotype distance corresponds to the number of elementary variants in which two circuit topologies dif-

fer. Within a genotype network, the maximal genotype distance indicates how different two genotypes

sharing the same phenotype can be. Fig. 2D shows the distribution of the maximum genotype distance

between any two genotypes in a genotype network, for the large genotype sets. We refer to this maximal

distance as the diameter of the genotype network46. We express this distance as a fraction of the maxi-

mally possible distance, the diameter of genotype space, which is 18 in our model. Fig. S2B shows the

distribution of maximum genotype distance, for all phenotypes.

The largest genotype set of size 21,633 contains the largest genotype network of size 21,307. This

network has a diameter of 18, equal to the genotype space diameter. This network corresponds to a

cluster of circuits whose phenotype is closest to the experimentally determined reference signalling

phenotype24,38–41. The second and third largest genotype networks have 6,913 and 4,446 genotypes,

and show maximal distances of 17 and 16, respectively. The median distance for the 10 largest genotype

networks, containing nearly 60% of all genotypes, is 15.5.

Fig. S3A shows, for all phenotypes, the association between the fraction of genotypes contained in

the largest genotype network and this network’s diameter. When only the large genotype sets are con-

sidered (Fig. S3B), a significant positive correlation is seen between the two quantities: unsurprisingly,

phenotypes that have a greater fraction of their genotypes connected in a single network also have a

relatively larger diameters. However, this correlation disappears when smaller networks are included

(Fig. S3A). The reason is that many of the phenotypes have fragmented genotype sets with very small

networks, which must have small diameters. Taken together, these observations indicate that circuit

genotypes with a given phenotype can be very diverse. Phenotypes with large genotype sets can well

differ in most of the elementary topological variants we study. For such phenotypes, one can move

through the associated genotype network via single changes of elementary topological variants, and

change the topology of a signal transduction circuit dramatically, while preserving similar signalling

behaviour. However, for many phenotypes with small or fragmented genotype sets, such flexibility is

much more limited.

Robust phenotypes have larger genotype sets. The patterns of genotype network connectivity we

discussed above (Fig. 2C) also have implications for robust signalling behaviour. In a highly fragmented

or small genotype set, many mutations (changes in topology) would lead to a change in the signalling

phenotype. The other extreme is a large genotype set consisting of only one large genotype network.

In such a network, individual genotypes can have many neighbours — circuits differing in only one
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topology-altering mutation — with the same phenotype. A circuit that is part of such a large genotype

network could absorb many mutations without changing its phenotype. We define the robustness of a

circuit (genotype) as the fraction of its neighbours with the same phenotype.

Fig. S4 shows the distributions of genotype robustness for six genotype networks — the three largest

genotype networks, and three genotype networks of smaller sizes. As one might expect, the median

robustness is substantially higher for the large genotype sets than for the smaller genotype sets. In the

largest genotype network, for example, robustness ranges from 0.056 to 0.94, and the average robustness

is 0.49.

Analogously to the robustness of a genotype, we can define the robustness of a phenotype as the

average robustness of all genotypes with this phenotype5. Robust phenotypes are less easy to perturb by

changing their circuit’s topology. In Figs. 3A and S5A, we analyse the relationship between genotype

set size and phenotype robustness. We observe a high (and highly significant) positive association. In

other words, robust phenotypes typically are phenotypes adopted by many genotypes. For example, the

largest genotype network (with 21,307 genotypes) corresponds to a phenotype that has the highest aver-

age robustness of 0.49. This is also the phenotype displaying the TOR reference signalling behaviour.

Every circuit displaying this TOR reference behaviour is on average connected to 9 neighbouring circuit

topologies with this behaviour. Fig. S5B illustrates a strong positive correlation between genotype net-

work diameter and phenotype robustness. Genotype networks with greater diameters exhibit more robust

phenotypes. This can be understood in light of the fact that genotype networks with large diameters har-

bour circuits that differ widely in their topologies, yet exhibit similar behaviour. Thus, their phenotypes

are invariant to many changes in topology, or in other words, show a robust signalling behaviour.

Robust phenotypes have higher evolvability. We will now turn to the ability of signalling circuits

to explore new phenotypes in a blind, phenotype-preserving search of their genotype space. We will

refer to this ability as evolvability, and focus here on those phenotypes that occur in the immediate

neighbourhood of a genotype or a genotype set. Specifically, we define genotype evolvability as the

number of different phenotypes found in the 1-neighbourhood of a circuit genotype G. This neighbour-

hood is the set of genotypes that differ from G in exactly one of the elementary topological variants

(Table S1). Analogously, we define phenotype evolvability as the number of different phenotypes found

in the immediate neighbourhood of the largest genotype network associated with a phenotype P . Since

the majority of genotypes lie on the largest genotype networks, these networks are most appropriate for

our analysis. This neighbourhood includes all genotypes that are neighbours of genotypes in the largest

genotype network of P , but that are not themselves members of this network. The different phenotypes

in these neighbourhoods are precisely the phenotypes that are readily accessible from a genotype or a

genotype network, via single topology-changing mutations.

We first analyse the relationship between a genotype’s robustness and its evolvability. Fig. 3B shows

that genotypes with high robustness can access fewer phenotypes in their neighbourhood. This is not

entirely surprising, because robust genotypes have many neighbours with the same phenotype, and thus

fewer neighbours with different phenotypes. Perhaps more surprising is that the robustness of a pheno-

type and its evolvability show a strongly positive association (Fig. 3C). The more robust a phenotype

is, the greater the number of novel phenotypes that occur in its phenotypic neighbourhood. This rela-
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tionship is a joint consequence of two facts. First, robust phenotypes tend to be phenotypes with large

genotype networks, as we discussed earlier (Fig. 3A). Second, large genotype networks tend to have

a larger number of different phenotypes in their neighbourhood, as shown by the analysis of Figs. 3D

and S5C. These observations mirror observations made earlier in evolving macromolecules5. A high

phenotypic evolvability implies that a large number of unique phenotypes are accessible from the corre-

sponding genotype network; however, a genotype may have to undergo one or more neutral mutations,

before it accesses these novel phenotypes, particularly on very large genotype networks.

Evolving networks encounter novel phenotypes in their immediate neighbourhood. In an ex-

tended genotype network, genotypes can change substantially without changing their phenotypes. Two

different genotypes Gi and Gj on the same genotype network, but at some distance dij may contain

very different phenotypes in their 1-neighbourhoods. How many novel phenotypes are accessible in the

immediate neighbourhood of these genotypes? To address this question, we now study the fraction u of

phenotypes that occur in the neighbourhood of one but not the other genotype. This fraction u(Gi, Gj)

can be calculated as:

u(Gi, Gj) = 1−
|Ni ∩ Nj |

|Ni ∪ Nj |

where Ni and Nj represent the sets of unique phenotypes in the 1-neighbourhoods of the genotype Gi

and Gj respectively, and |N | represents the number of elements in the set N . Note that this fraction

may depend on the distance dij between two genotypes.

This analysis speaks to a circuit’s evolvability in a fashion complementary to the last section. If u

is large even at small genotype distance d, then a genotype would not have to change by much until it

can access a different spectrum of novel phenotypes via single mutations. This is exactly the case, as

Fig. 4A shows. The figure is based on averages over all 286 phenotypes. Even at the smallest possible

distance between genotypes, over 70% of phenotypes occur in the neighbourhood of one but not the

other genotype. This percentage does not increase dramatically for larger distances.

Circuits with different signalling behaviours can be close together in genotype space. In addition

to the above analysis, we asked how far one must travel in genotype space from one genotype set to

find another genotype set with an arbitrary new phenotype. To address this question, we computed the

minimal distance between genotypes having different phenotypes (see Methods). If this distance is typi-

cally large, then it would be rather difficult to reach a new phenotype from a genotype having a different

phenotype through a small series of genetic changes that alter the topology of the signalling circuit. If,

in contrast, this distance is typically small, it would be possible to discover new phenotypes through a

relatively small number of genetic changes. This distance thus has implications for the evolvability of

signalling circuits.

Fig. S6 indicates the distribution of minimal genotype distances between different genotype sets.

The minimal distances between smaller genotype sets are larger. We do not normalise for the size of the

genotype networks here, because we are interested in the number of mutations — evolutionary distance

— that separate two genotype networks, irrespective of their sizes. For larger genotype sets, most

distances are equal to 6% of the genotype space’s diameter, corresponding to a single topology-altering
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mutation (Fig S6B). Thus, it is possible to access many novel phenotypes on large genotype networks

through only a single change in circuit topology. This again reaffirms the earlier observation that robust

phenotypes are also more evolvable; they have many novel phenotypes in their neighbourhood, and their

genotype sets are also located closer to genotype sets of novel phenotypes.

Populations evolving on larger genotype networks can access a wider variety of phenotypes. All

evolution occurs in populations of organisms. In order to understand the evolvability of any biological

system, a population perspective is thus necessary. To see whether phenotypic robustness also facilitates

the evolution of new circuit phenotypes in a population context, we allowed a population of N = 100

initially identical circuits to evolve via repeated cycles of mutation — defined as an elementary change

in the bit-string representing circuit topology — and selection confining the circuits to one genotype net-

work. During this process, we recorded the number of unique phenotypes PU (t) in the 1-neighbourhood

of the entire population. PU indicates the number of novel phenotypes that are immediately accessible

to individuals in an evolving population. Fig. 4B shows how PU after t = 100 generations depends on

genotype network size, for a mutation rate corresponding to µ = 0.25 (per generation, per individual).

Fig. S7 shows the same for mutation rates corresponding to µ = 0.10, 0.50. For all mutation rates,

populations evolving on larger genotype networks generally have greater access to novel phenotypes.

The exceptions are the very largest genotype networks, where access to novel genotypes declines, again

similar to earlier observations in macromolecules47. We also observe this trend in Fig. S8, where we

illustrate the evolution of PU (t) for four different genotype networks. Except for the largest genotype

network, we find an increase in the number of unique phenotypes in the 1-neighbourhood of the evolving

population. Also, for larger population sizes, we see an increase in the number of unique phenotypes

accessible in the 1-neighbourhood of the population (Fig. S8B). These results highlight the importance

of a population-centric view to understand the evolvability of these signalling circuits.

Diverse topologies can describe TOR signal transduction. We next focus on the phenotype that

describes the canonical TOR signalling behaviour. The genotype set for this phenotype is the largest

set in our genotype space. We will refer to this genotype set as the TOR genotype set. This set com-

prises 21,633 genotypes, with the vast majority of 98.5 percent (21,307 genotypes) connected in a single

network, the largest genotype network for all phenotypes. A typical circuit genotype on this network

can absorb multiple mutations without losing its phenotype. The maximum genotype distance within

this genotype network is 18; this means that topologies that differ maximally in their structure can

still preserve the TOR signalling phenotype. For example, the models represented by the genotypes

[000001001010011111] and [111110110101100000] differ in all their elementary topological variants,

but are still on the same genotype network. In addition, the neighbourhood of this genotype network

contains 272 novel phenotypes, >95% of all phenotypes. This observation hints at the high evolvability

of this phenotype. We note that some of these properties may be a by-product of our parameter opti-

misation procedure; we optimised the parameters to reproduce the canonical TOR signalling behaviour

(see Discussion).

We now address the question how unusual the structure of this genotype set is, by comparing it to a

specific class of random graphs. These random graphs have the same number of circuits as the genotype
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set, and two circuits are connected if they differ in exactly one topological variant; however, these

circuits are simply drawn at random from genotype space, and thus need not have the same phenotype.

Fig. 5 shows the distribution of three different measures describing the structure of these random graphs,

and compares them to the TOR genotype set. It can be seen that the structure of the TOR genotype set

is dramatically different from that of the random graphs. Specifically, the random graphs are highly

fragmented and contain many disconnected networks (Fig. 5A), which are also smaller in size (Fig. 5B).

In contrast, the genotype set for TOR is cohesively connected, containing one very large network and few

tiny networks (Figs. 5A and 5B). The number of edges in the TOR genotype network is also substantially

higher, by almost an order of magnitude, compared to the average number of edges in random graphs

(Fig. 5C). Taken together, these observations show that the genotype set characterising the canonical

TOR behaviour is highly unusual in its connectivity properties, which also affects its evolvability.

Discussion

We here studied nearly 70,000 biochemically realisable genotypic variants of the yeast TOR circuit, in

order to understand its robustness, phenotypic variability, and the relationship of phenotypic variants to

experimentally characterised signalling behaviour24. The ≈70,000 potential TOR genotypes represent

alternative interactions between TOR circuit components, and thus alternative TOR circuit topologies.

We represent these genotypes using systems of ordinary differential equations, describing mass-action

kinetics24. For each topology, i. e. genotype, we compute a phenotype based on the concentration

trajectories of key signalling molecules. Mapping a phenotype to each of the signalling circuits enabled

us to identify genotype networks, connected sets of genotypes with the same phenotype. Genotype

networks have been previously investigated for RNA molecules1,5, regulatory networks7,15,16,18, as well

as protein structures3,4. Earlier studies on the evolution of robustness in biological networks, such

as circadian oscillators15 and transcriptional regulatory networks7,16,18 were based on more abstract

models. In contrast, the TOR circuit we study is more biochemically detailed; the core of this model is

also experimentally validated24.

Our observations fall into three categories. First, we show that the circuit genotype space can be

partitioned into almost 300 sets of genotypes, where genotypes in each set adopt the same signalling

phenotype. The size distribution of these sets is highly skewed, with a minority of such sets (phe-

notypes) encompassing the vast majority of genotypes. Smaller genotype sets are highly fragmented

and typically contain multiple small genotype networks. In contrast, large sets contain extended and

connected genotype networks that reach far through genotype space. Some of these networks contain

thousands of genotypes (circuits). In large and extended genotype networks, circuits with substantially

different topologies exhibit similar signalling behaviour. Genotypes on larger genotype networks also

have a signalling phenotype that is more robust to changes in circuit topology. Such high robustness of

biological circuitry to genotypic change is not unprecedented. For example, it may exist in Caenorhab-

ditis elegans vulva development36,48, where despite substantial variation in the underlying pathways in

different environments, observed phenotypes are very similar.

The organisation of the genotype space we study shows some similarities to that of macromolecules
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and gene networks1–5,7,15–18, including a highly non-uniform genotype set size distribution, and the ex-

istence of genotype networks. However, it also shows differences, for example a stronger fragmentation

of genotype sets into smaller genotype networks of low diameter. In this regard, we note that our geno-

type space is tiny compared to the astronomical genotype spaces of macromolecules such as proteins

and RNAs. The fragmentation we observe may result from this fact.

A second category of observation regards the phenotypic variability of signalling circuits, the ability

to explore novel signalling behaviour. We have shown that over a broad range of robustness, robust

phenotypes exhibit higher phenotypic variability. The reason is that robust phenotypes typically have

large genotype networks, which have more novel phenotypes in their neighbourhood. These observa-

tions have interesting parallels to a recent study on RNA5, where phenotypic robustness can lead to

higher evolvability, whereas genotypic robustness hinders evolvability. The only exception in our study

system regards the most robust phenotypes (Figs. 4B and S7), which have access to slightly fewer novel

phenotypes. Again, this observation has precedents, for example in models of RNA evolution47, and in

population genetic models of evolvability49, which suggest that extreme robustness can hinder access to

novel phenotypes.

Thirdly, we analysed the phenotype that represents the canonical TOR signalling behaviour. Among

all phenotypes we studied, this phenotype has the largest genotype network. It extends through the entire

genotype space, and its neighbourhood contains > 95% of all other phenotypes. The large size of this

genotype network means that many circuits with different topologies exhibit a signalling behaviour close

to the experimentally observed TOR signalling behaviour24,38–41. The large diameter of the network

indicates that widely different topologies can exhibit a similar behaviour. Together, these observations

show that the TOR signalling phenotype is robust, because the TOR circuit can accommodate multiple

changes to its topology without losing this phenotype. Furthermore, the large number of phenotypes in

the neighbourhood of this genotype network indicate its ability to access many novel phenotypes.

Our work has several limitations. A serious limitation of our study relates to the complexity of our

circuits and the resulting computational requirements for our analysis. We computed phenotypes from a

single parameter set, obtained through a lengthy optimisation procedure aimed at finding parameters for

which a given topology reproduces the canonical TOR signalling behaviour most faithfully. One might

argue that a more sophisticated approach should be pursued. For example, we could have explored

the entire parameter space for each topology. However, this is infeasible. First, our parameter space,

depending on topology, may have more than 100 dimensions, and sampling it for even just one topology

can be difficult. Second, we needed to examine not one but almost 70,000 different topologies. Rigorous

sampling of the parameter space for all of them is impossible.

These computational constraints also introduce uncertainty in our phenotypic analysis. Our pheno-

types result from only a single parameter set per genotype, while in reality, a large number of different

parameter sets might produce widely varying behaviours. Because we cannot explore all possible be-

haviours a particular topology can produce, we limited ourselves to one behaviour per topology, which

arises from a single parameter set. In addition, our choice to search for parameter sets that reproduced

the canonical TOR behaviour most faithfully may have introduced artifacts. For example, although our

analysis shows that the TOR signalling behaviour is a robust phenotype, because many genotypes can
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display it, the observation that it is the most robust phenotype may be influenced by our optimisation

procedure. To validate whether such artifacts exist, one could in principle optimise for different sig-

nalling behaviours, and ask whether these behaviours then become associated with the largest genotype

network. However, to do this in a systematic way again exceeds our current computational abilities.

Further, not all of the different topologies examined in this study may be realised in vivo. However,

many of the individual variants or hypotheses we considered have varying degrees of support from bio-

chemical experiments, as we mentioned before. Another limitation lies in the definition of a phenotype.

To categorise phenotypes is challenging for all systems where phenotypes are continuous and not dis-

crete in nature. This is the case for our system, whose signalling behaviour results from (continuous)

concentration changes in signalling molecules. Because categorisation and enumeration of phenotypes

is useful in analysing phenotypic variability, we categorised phenotypes according to their similarity in

a continuous space. To do so, we used a clustering approach that assigned each phenotype to a cluster of

similar phenotypes. Although our approach yielded a clear separation of phenotypic clusters, this may

not be the case for all comparable systems. In addition, completely different definitions of phenotypes

are conceivable.

In sum, we see two main values of this contribution. First, it highlights a general approach to analyse

the genotype space of complex regulatory circuitry with many components and parameters. It provides

a framework to systematically analyse a vast space of alternate circuit configurations, and provides in-

sights into the organisation of this space. Also, it permits us to compare and contrast the robustness and

evolvability of regulatory circuits to that of macromolecules and other well-studied systems1–5,7,15–18.

For example, our observations suggest that robustness of a circuit’s signalling phenotype can facilitate

the exploration of novel phenotypes. This hypothesis could also be experimentally tested in the labo-

ratory: if we were to evolve two yeast species harbouring signalling circuits with differing robustness,

then the species with the more robust circuit should be able to evolve new signalling behaviours and

exhibit more diverse signalling behaviours over time. Second, our approach exposes several challenges

that we need to address if we want to understand complex biological circuitry, and the organisation of

their genotype space. This organisation will hold the key to understand both robustness and evolvability

of regulatory systems.

Methods

Genotype space. We view each topology of the TOR signalling circuit as one genotype. Such a

topology comprises the core pathway with one or more of the 18 elementary pathway variants listed in

Table S1. Since there are 18 different variants of the TOR signalling circuit, and because multiple such

variants can occur simultaneously in the circuit, the total number of topologies is equal to 218 ≈ 2.6 ×

105. However, some combinations of variants are incompatible with one another. For example, variants

V2 and V6 represent conflicting hypotheses on the mechanism of TOR signalling: while V2 proposes

that the Tap42p P©-Pph21/22p complex forms an anti-phosphatase that protects phosphoproteins from

de-phosphorylation, V6 proposes that the same complex has phosphatase activity. V8 and V9 propose

opposing roles for the Tap42p P©-Sit4 complex. On excluding all such incompatible variants, the total
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number of possible TOR circuit topologies reduces to 69,120. Each topology corresponds to a set of

reactions describing TOR signalling and is represented by a set of differential equations describing the

dynamics of each of the chemical species involved in the signalling circuit. The number of reactions in

any topology varies from 19–72, while the number of differential equations ranges from 24–56. These

equations involve a number of parameters, which range from as few as 24 for the core pathway, to as

many as 117, for more complex topologies.

The various genotypes form a genotype network, which can be represented as a graph whose nodes

are the genotypes, and where two nodes are connected by an edge if they differ in exactly one of the

18 elementary variants. Implicit in this concept is the assumption that single mutations can change a

topology and transform it into another, neighbouring topology. For example, a mutation in one or more

amino acid residues could cause the loss or gain of a phosphorylation site (e. g. Variants V1, V11 in

Table S1). Indeed, it is known that mutations in residues such as serine, threonine and tyrosine can

lead to a loss or gain of phosphorylation sites on proteins50,51. It is also known that point mutations

that modify the interface between interacting proteins can affect protein–protein interactions52–54, and

consequently the topology of signalling network.

The simple representation of genotypes that we use enables the easy calculation of a distance be-

tween two genotypes. We here use the Hamming distance between the two binary genotype vectors,

which indicates the number of differences between the two genotypes when represented as binary strings.

This distance represents the length of the shortest mutational path between the two genotypes, in the

genotype space. Note that this is different from (and likely to be smaller than) the length of the shortest

path between the two genotypes on any one genotype network, because not all the intermediate geno-

types on the shortest mutational path may be part of the same genotype network.

Parameter estimation. The equations describing the TOR core pathway contain 24 kinetic parame-

ters24, but some pathway variants contain over 100 parameters; these parameters capture the rates for

the association/dissociation of various protein complexes involved in the signal transduction circuit, as

well as the rates of important protein modifications, such as protein phosphorylation and dephospho-

rylation. For the core pathway and those 18 topologies that can be obtained by incorporating a single

variant (Table S1) into the core, the parameters have already been estimated earlier24. These estimates

have been obtained through a global optimisation method employing an evolutionary algorithm, with the

objective of minimising the deviation between predicted behaviour and experimental data. For each of

the 6.9 × 104 models, we applied an Evolutionary Strategy (ES) based optimisation procedure, similar

to the one described in ref. 24 (for 100 generations), to find an optimal parameter set that minimises

the deviation of the model predictions from the available experimental data. In each case, we started

with a parameter set based on the published data for the multiple TOR extensions24. We bounded the

parameters in the interval {10−2, 103}, as suggested in ref. 24.

For each topology, this approach aims to finds the set of parameters, K, that can best reproduce the

reference signalling behaviour. In other words, it aims to find a parameter set that minimises the devia-

tion of the model’s predictions from the experimental data. This set of parameters is then used to predict

the signalling behaviour of the topology, and to estimate the deviation from the reference behaviour.

Owing to the differences in topologies between different circuits, many circuits may not reproduce the
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reference signalling behaviour, and give rise to multiple signalling phenotypes. We calculate the devia-

tion Di from the reference signalling behaviour, for each experimental measurement i (0 ≤ i ≤ 11) as

in ref. 24:

Di =
∑

j

(

x∗j − x
p
j (K)

δj · x∗j

)2

where the integer j runs through all measurements from the ithexperiment (see Table S2, Table S3). The

vector x∗ contains the values of those state variables of the pathway that were measured experimentally.

The vector xp(K) contains the values of the same state variables, but as predicted by integrating the

differential equations24 corresponding to a genotype. Note that xp is a function of a particular parameter

set K (see below). The variable δj is the estimated accuracy of the measured data point j (see Table S3,

ref. 24). For the computed optimal parameter set, we computed the predicted trajectories of various

species in the model, which we used to determine the phenotypes. Figs. S9 and S10 illustrate for two

example models, the time-course data for some of the signalling molecules and how the predicted time

courses compare with the experimental data.

Clustering phenotypes for TOR signalling. We identify phenotypes for the different models by clus-

tering the ‘trajectories’ or the time-courses for different species, thereby distinguishing models with

different behaviours. In particular, we consider eight species with non-zero concentrations at t = −90,

viz. Tap42p, Tor12p, Pph2122p, Cdc55p–Tpd3p, Sit4p, Sap, Tip41p and Fpr1p; the time-courses for

these species can be normalised with respect to the initial concentrations. t = 0 represents the steady

state, at which rapamycin is introduced into the system. The time course was computed at another

22 time points in the time interval [0, 180]. These also include time-points for which data have not

been previously estimated. By performing the parameter estimate as described above, we have already

attempted to fit the trajectories to the available data (reference signalling behaviour). By introducing ad-

ditional time-points and by computing the predicted values of the different species at these time-points,

we increase the amount of information available, to better differentiate between different models. For

each model, there are 22 × 8 = 176 data axes or ‘features’ to discriminate different model behaviours.

We computed these features using a single parameter set for each model, which we had obtained after

extensive optimisation, as described above.

Owing to the large size of the data, we performed an approximate on-line unsupervised clustering

using BIRCH (balanced iterative reducing and clustering using hierarchies)55. The data were grouped

into 286 different clusters/phenotypes. Fig. S1 shows the distribution of inter-cluster distances and

intra-cluster distances for these clusters. The figure illustrates a stark contrast between the inter-cluster

distances and the intra-cluster distances, which are much lower, indicating good cluster separation.

Fraction of unique phenotypes in a genotypic neighbourhood. The immediate neighbourhood (1-

neighbourhood) of a TOR topology (genotype) G consists of all topologies that differ from G in exactly

one of the 18 elementary variants (Table S1). We consider all phenotypes in the 1-neighbourhood of G,

which are different from the phenotype of G itself. For brevity, we refer to these phenotypes as novel

phenotypes here. For two genotypes Gi and Gj , we compute the average fraction of novel phenotypes in
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the 1-neighbourhood of Gj that are different from novel phenotypes in the 1-neighbourhood of Gi, for

all pairs of genotypes with a fixed genotypic distance k (d(Gi, Gj) = k, k = 1, 2, . . . , 18). Where the

number of such pairs was greater than 105, we performed the computations only for 105 pairs, chosen at

random.

Minimal distance between genotype sets. We performed this analysis for all pairs of genotype sets.

The minimal distance between two genotype sets can be defined as:

Dmin(Pi,Pj) = min
∀Gm∈Pi,∀Gn∈Pj

d(Gm, Gn)

where P stands for the genotype set whose genotypes have the same phenotype P . The distance be-

tween two genotypes is calculated through the Hamming distance of their bit-string representations, as

described above.

Population dynamics on genotype networks. For a given genotype network, we chose a random

genotype (circuit topology) and seeded a population of size N = 100 with this genotype. At time t = 0,

the population thus consists of N individuals with the same genotype (and thus the same phenotype). We

allowed the population to evolve through repeated cycles (“generations”) of replication and “mutation”,

where each mutation corresponds to a change in a single topological variant of the model (we used

various rates of mutation, specifically µ = 0.10, 0.25, 0.50 per circuit and generation). During this

process, we confined the population to the genotype network. Specifically, whenever any mutation

yielded genotype(s) outside the genotype network, we discarded these genotype(s) and maintained the

population size by replacing these individuals with random individuals sampled (with replacement) from

the previous generation. At each generation t, we computed the number of unique phenotypes PU (t) in

the neighbourhood of the entire population. We allowed the population to evolve for 100 generations.

We examined the association between PU (t = 100) and genotype set size.
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Figure 1: Schematic of TOR signal transduction models. Schematic illustration of the connectivity

of TOR circuit genotypes in genotype space. The figure illustrates a few circuit topologies (blue cir-

cles), and indicates neighbouring topologies through black lines. Each of the displayed genotypes has

18 neighbours in genotype space (stubs emerging from blue circles), only few of which are shown in

detail. Each topology is labelled by the elementary topological variants (Table S1) that it contains. The

core circuit (top rectangle), together with three other topologies (middle and bottom rectangles) are illus-

trated. Differences in topologies are indicated by shaded boxes. Each topology is represented according

to a standardised process diagram graphical notation56,57. In this notation, green rectangles represent

proteins and protein complexes (with or without phosphorylation), while green ellipses correspond to

small molecules, such as rapamycin. On arrows, open squares indicate transitions, while filled circles

indicate complex formation. Arrows ending in open circles adjacent to reactions indicate catalysis. The

process diagrams were drawn using CellDesigner58.
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Figure 2: (A) Genotype set size distribution. Note the logarithmic scale on the vertical axis. While a

majority of the genotype sets are small in size, there are a few genotype sets that are very large. (B) Most
genotypes are contained within the largest genotype sets. The horizontal axis (log-scale) represents

genotype sets ranked in descending order of size. The vertical axis indicates the fraction of genotypes

contained in genotype sets within a given size. The dotted line illustrates that 90% of the genotypes

are contained within the largest 57 genotype sets. (C) Distribution of the fraction of a genotype set
occupied by the largest genotype network. (D) Distribution of maximum genotype distance within
the largest genotype network of a set. Note that the maximum genotype distance has been expressed

as a fraction of genotype space diameter (18). In both (C) and (D), only the large genotype sets are

shown.
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Figure 3: (A) Phenotypes of larger genotype sets are more robust. (B) Robust genotypes encounter
fewer phenotypes in their neighbourhood. (C) Robust phenotypes encounter more novel phe-
notypes in their neighbourhood. (D) Larger genotype networks encounter a greater number of
phenotypes in their neighbourhood. The panel shows the correlation between phenotype evolvability

and the size of the largest genotype network for the large genotype sets.
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Figure 4: (A) Phenotypic diversity of different neighbourhoods. The horizontal axis shows the dis-

tance dij between two circuits with the same phenotype. The vertical axis shows the mean fraction

u(Gi, Gj), of unique phenotypes found in a 1-neighbourhood around these circuits, as defined in the

main text. The analysis is based on the largest genotype network for each of the 286 genotype sets. The

error bars indicate one standard deviation. (B) Populations evolving on larger genotype networks
can access more new phenotypes. The largest genotype network from each of the genotype sets that

contained over 90% of the genotypes were binned by size and the mean number of unique phenotypes

in the 1-neighbourhood of a population evolving on each network (after 100 generations) is indicated

for the different bins. The error bars indicate one standard deviation. Mutation rate per generation per

individual µ = 0.25; population size N = 100.
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Figure 5: The TOR genotype set exhibits unusual connectivity properties compared to random
graphs of similar size. The distributions of three graph characteristics for 10,000 random graphs,

whose nodes correspond to the possible alternate models of TOR, are shown. Each random graph was

established by choosing a random sample of genotypes (as many as in the genotype set corresponding

to the TOR phenotype, viz. 21,633), with the genotypes being connected if they differed by exactly one

variant. (A) Number of networks. (B) Size of the largest network. (C) Number of edges. In all three

cases, the TOR genotype set shows a significant departure from the characteristics of the random graphs.
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