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Abstract

In games with continuous strategy spaces, if a rest point of the replicator dy-
namics is asymptotically stable then the rest point must be finitely supported
(van Veelen and Spreij (2009)). In this article, we address the converse question
that is, we prove that a finitely supported population state is asymptotically
stable with respect to the variational norm when it is strongly uninvadable.
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1. Introduction

The growing interest in evolutionary games with continuous strategy spaces
is primarily because of the fact that many applications in economics are mod-
eled as evolutionary games with continuous strategy spaces. Some of the impor-
tant applications include oligopoly games, bargaining games, harvest preemp-5

tive game, and war of attrition. In these games, the strategy space is typically
a compact subset of an Euclidean space. Considering the vast literature on
evolutionary games with finite strategy spaces (see for e.g., Maynard Smith
(1974, 1982); Weibull (1995); Hofbauer and Sigmund (1988); Cressman (2003);
Sandholm (2010)), a natural approach is to approximate the strategy space by10

finite sets.
Oechssler and Riedel (2001) have already considered such an approach for

the Harvest preemption game. It is observed (see Section 5.4 in Oechssler and Riedel
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(2001)) that the limit of the ESS of the finite approximation is not ESS of the
harvest preemption game. The reason for such a negative result is the infinite15

dimensional nature of the space of all mixed strategy spaces.
Evolutionary games with continuous strategy spaces were first studied by

Bomze and Pötscher through what they called as “generalized” mixed strategy
games (Bomze and Pötscher (1989)). There is a vast literature relating evolu-
tionary stability and dynamic stability under various dynamics for games with20

finite strategy spaces (see for e.g., Weibull (1995); Cressman (2003); Sandholm
(2010); Hofbauer and Sigmund (2003); Bomze and Weibull (1995)). However
the literature in the continuous games is very little. In the works Bomze and Pötscher
(1989); Bomze (1990, 1991); Oechssler and Riedel (2001, 2002); Cressman (2005),
the relation is explored for replicator dynamics. For the literature concerning25

other dynamics, see Cheung (2014); Friedman and Ostrov (2013); Hofbauer et al.
(2009); Lahkar and Riedel (2015).

Replicator dynamics is one of the most important dynamics. In this article
we study the relation between evolutionary stability and dynamic stability un-
der replicator dynamics. In Bomze and Pötscher (1989); Oechssler and Riedel30

(2001, 2002), such a connection has been studied for a monomorphic population
states. In this article, we explore the relation for polymorphic population states.

The population states in evolutionary games with continuous strategy spaces
are nothing but probability measures on its strategy space. We can define the
static stability concepts of evolutionarily stable strategy (ESS) and uninvadabil-35

ity in these games. We can also define the replicator dynamics for these games
which captures the evolution of the population over time. Certain other stabil-
ity concepts can also be defined, but they depend on the notion of “closeness”
of the population states.

The closeness of the population states can be made precise using vari-40

ous metrics. In this article, we study the evolutionary dynamics and related
stability results under the metric defined by the variational or strong norm,
which gives rise to the strong topology. In particular, we can define the static
stability concepts of strong uninvadability (Bomze (1990, 1991)) and strong
unbeatability (Bomze and Weibull (1995)) along with the dynamic stability45

concepts such as Lyapunov stability and strongly attracting population states
(Bomze and Pötscher (1989); Oechssler and Riedel (2001)). We can also de-
fine the concepts of evolutionary robustness (Oechssler and Riedel (2002)) and
weakly attracting population states (Oechssler and Riedel (2001)) when we con-
sider the metric associated with the weak topology.50

Evolutionary games with continuous strategy spaces and the underlying
topology as the strong topology are studied in Oechssler and Riedel (2001).
They connected the static and dynamic stabilities for a population state where
all the individuals in the entire population play one and the same pure strat-
egy x. Such a population state is called a monomorphic population state and55

it is represented by the Dirac measure δx. They proved that an uninvadable
monomorphic population state is Lyapunov stable. Moreover, if the initial pop-
ulation state is close to this monomorphic population state in the strong sense
and the payoff function is continuous, then the monomorphic population state
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is weakly attracting.60

In Oechssler and Riedel (2002), the authors proved that for a doubly sym-
metric game with continuous payoff function and compact strategy space, an
evolutionary robust population state is Lyapunov stable when the underly-
ing topology is the weak topology. They also prove the asymptotic stabil-
ity of monomorphic evolutionary robust strategies under various assumptions.65

Cressman also studied evolutionary games with continuous strategy games in
Cressman (2005). One of the main result he proves in this paper is regard-
ing population states which have a finite support, which are also known as
polymorphic population states. He proved that a dimorphic (or polymorphic)
neighbourhood superior population state is neighbourhood attracting.70

Bomze has proved a couple of results regarding the asymptotic stability of
population states in Bomze (1990). In the first result (Bomze, 1990, Theorem
2), one of the condition that he imposes is that the set off all population states
has to be compact under the given topology. When the underlying topology is
strong, this becomes a very strong imposition. We can weaken the conditions75

of this theorem considerably when we talk about the stability of polymorphic
population states. In fact, in this article we prove that for the Lyapunov sta-
bility of the polymorphic population state, the strong unbeatability condition
is sufficient.

Another result that Bomze (Theorem 3, Bomze (1990)) gives, depends on80

a first-order condition for strong uninvadability of a population state. This
condition may not be satisfied always when the population state is strongly un-
invadable. We present here with an example (Example 2 in Section 3) where
this first-order condition is not satisfied even though the population state is
strongly uninvadable. In this article we also prove that in the case of poly-85

morphic population states, strong uninvadability is a sufficient condition for
asymptotic stability which is our main result (Theorem 11 in Section 3).

In all the results mentioned above, to obtain dynamic stability for a pop-
ulation state, say P , the initial population state, say Q(0), for the replicator
dynamics is taken from a small neighbourhood of P . Moreover, Q(0) is chosen90

such that its support contains the support of P . This is a necessary condition to
study stability with respect to replicator dynamics since the replicator dynam-
ics can only increase or decrease the frequency of the strategies which already
exists at the start of the dynamics. Thus, in general, population state P will be
not be stable with respect to its complete neighbourhood.95

In van Veelen and Spreij (2009), the authors prove that when a population
state P is asymptotically stable with respect to a complete (strong) neighbour-
hood under the replicator dynamics then P should be a polymorphic population
state. The results we prove in this article establish the converse of the result by
van Veelen and Spreij.100

The rest of the article is structured as follows. Section 2 gives the prelimi-
nary notations, definitions and results to study continuous strategy evolutionary
games with the underlying topology as the strong topology. Section 3 is divided
into two parts. In the first part we discuss some properties of polymorphic
population states. In the second part, we discuss the stability of polymorphic105
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population states. We prove that a strongly uninvadable polymorphic popula-
tion state is asymptotically stable whereas for Lyapunov stability, it is enough
if the population state is strongly unbeatable. Concluding remarks are given in
Section 4. An Appendix is devoted to study the Lyapunov stability for differ-
ential equations in infinite dimensional spaces.110

2. Preliminaries and Problem Description

Let S be a Polish space (i.e., complete separable metric space) with the
associated metric d. We consider a symmetric two player game G = (S, u).
Here u : S × S → R represents the payoff function, which is bounded and
measurable. Recall that in a symmetric game if a player chooses z ∈ S and the115

other player chooses w ∈ S, then the player choosing z will get a payoff u(z, w).
Let B denote the Borel sigma-algebra on S, i.e., the sigma-algebra generated

by all open sets in S. Following the tradition of evolutionary game theory, a
population state of the game G is defined to be a probability measure, Q, on
the measurable space (S,B). The set of all population states is denoted by ∆.
The average payoff to a population P playing against a population Q is given
by

E(P,Q) :=

∫

S

∫

S

u(z, w) Q(dw) P (dz).

We recall few definitions from evolutionary game theory.

Definition 1 (Maynard Smith (1974); Bomze and Pötscher (1989)). A
population state P is called an evolutionarily stable strategy if for every “mu-
tation” Q 6= P , there is an invasion barrier ǫ(Q) > 0, such that, for all
0 < η ≤ ǫ(Q),

E(P, (1 − η)P + ηQ) > E(Q, (1− η)P + ηQ). (2.1)

Definition 2 (Vickers and Cannings (1987)). A population state P is called
uninvadable if, in Definition 1, ǫ(Q) can be chosen independent of Q ∈ ∆,
Q 6= P .120

Note that, we can rewrite the condition (2.1) in the ESS definition as

E(P,R) > E(R,R),

where R = (1 − η)P + ηQ for all 0 < η ≤ ǫ(Q). A neighbourhood of P can be
completely characterized by R, with η sufficiently small, when the set of pure
strategies is finite; but not when the set of pure strategies is infinite. In games
with infinite strategy set, the neighbourhoods of the population state P can be
determined using various topologies. In this article we consider the topology
generated by the variational (or strong) norm i.e., the variational (or strong)
topology. The variational norm of a probability measure P is given by

‖P‖ = 2 sup
B∈B

|P (B)|.
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Thus the distance between two probability measures P and Q is given by

‖P −Q‖ = 2 sup
B∈B

|P (B)−Q(B)|.

We next define strong uninvadability and strong unbeatability.

Definition 3 (Bomze (1990, 1991)). A population state P is called strongly
uninvadable if there is an ǫ > 0 such that for all population states R 6= P with
‖R− P‖ ≤ ǫ, we have

E(P,R) > E(R,R).

Definition 4 (Bomze and Weibull (1995)). A population state P is called
strongly unbeatable if there is an ǫ > 0 such that for all population states R 6= P
with ‖R− P‖ ≤ ǫ, we have

E(P,R) ≥ E(R,R).

It can be easily seen that a strongly uninvadable state is uninvadable and
an uninvadable state is an ESS (Bomze (1991)).

We now consider the evolution of the population over time using the repli-
cator dynamics (Oechssler and Riedel (2001, 2002)). To this end, we note that
the success (or lack of success) of a strategy z ∈ S against a strategy w ∈ S is
given by

σ(z, w) := u(z, w)− u(w,w).

The average success (or lack of success) of a strategy z ∈ S against a population
Q ∈ ∆ is given by

σ(z,Q) :=

∫

S

u(z, w) Q(dw)−

∫

S

∫

S

u(z̄, w̄) Q(dw̄) Q(dz̄) = E(δz, Q)−E(Q,Q),

where the Dirac measure δz represents a monomorphic population state.
The replicator dynamics is derived based on the idea that the relative in-

crement in the frequency of strategies in a set B ∈ B is given by the average
success of strategies in B. That is, for every B ∈ B,

Q′(t)(B) =
dQ(t)

dt
(B) =

∫

B

σ(z,Q(t)) Q(t)(dz) (2.2)

where Q(t) denotes the population state at time t.125

The replicator dynamics equation (2.2) can be also written as

Q′(t) = F (Q(t)), (2.3)

where for every B ∈ B, F (Q(t))(B) =
∫

B σ(z,Q(t)) Q(t)(dz); that is, F (Q(t))

is the signed measure whose Radon-Nikodym derivative
dF (Q(t))

dQ(t)
, w.r.t. Q(t)

is σ(·, Q(t)).
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Since the payoff function u is bounded and measurable, it follows that the
replicator dynamics is well posed ((Oechssler and Riedel, 2001, Theorem 2))130

which in turn assures the existence of a unique solution to the replicator dy-
namics (2.2) with the initial condition Q(0).

We can now introduce a few dynamic stability definitions for population
states. Let P be a rest point of the replicator dynamics, i.e., F (P ) = 0.

Definition 5. Rest point P is called Lyapunov stable if for all ǫ > 0, there
exists an η > 0 such that,

||Q(0)− P || < η ⇒ ||Q(t)− P || < ǫ for all t > 0.

Definition 6. P is called strongly attracting if there exists an η > 0 such that135

Q(t) converges to P strongly as t→ ∞, whenever ||Q(0)− P || < η.

Definition 7. P is called asymptotically stable if P is Lyapunov stable and
strongly attracting.

One of the main interest in studying games with continuous strategy spaces
is to establish conditions under which the population states will be dynamically140

stable. We recall here some of the existing results in this direction.
Oechssler and Riedel (2001) provide with sufficient conditions for a monomor-

phic population state Q∗ = δx to be Lyapunov stable and “weakly attracting”.
More precisely, they prove the following result.

Theorem 1 (Oechssler and Riedel (2001)). If Q∗ = δx is an uninvadable,145

monomorphic population state, then Q∗ is Lyapunov stable. Moreover, if u is
continuous then Q∗ is weakly attracting, in the sense that the trajectory w.r.t
the replicator dynamics converges to Q∗ weakly when the initial population state
is from a small (strong) neighbourhood of Q∗.

In Bomze (1990), there are a couple of results regarding the asymptotic150

stability of population states under very strong assumptions. The first theorem
that he gives is as follows.

Theorem 2 (Bomze (1990)). Suppose that ∆ is relatively τ-compact, where
τ is a topology on the L-space, L, of (S,B,∆) such that the map Q 7→ ‖Q‖
form L to R is lower semicontinuous. If P ∈ ∆ is strongly uninvadable, and if
the map Q 7→ E(P,Q) − E(Q,Q) on ∆ is τ-continuous, then every replicator
dynamics trajectory Q(t), t ≥ 0, starting in

UP =

{

Q ∈ ∆ : P ≪ Q and

∫

S

ln

(

dP

dQ

)

dP < δ

}

converges to P as t→ ∞, with respect to τ , provided that δ > 0 is small enough.

The τ -compactness condition in the above theorem is a very strong condition
when τ is taken to be the strong topology. Bomze gives another result regarding155
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the asymptotic stability of the population state P with τ as the strong topology
under the condition of the following theorem.

Let M be the linear span of ∆, with variational norm, and F be the space of
all bounded measurable functions with the norm ‖F‖∞ = supz∈S |F (z)|. Also,
for FQ ∈ F , FQ(z) denotes the mean payoff to z ∈ S against Q ∈ ∆.160

Theorem 3 (Bomze (1990)). Let P ∈ ∆ be a rest point and assume that the
map Q 7→ FQ from ∆ to F is Fréchet differentiable at Q = P in the sense that
there is a continuous linear map DFP : M → F such that for all η > 0 there is
a ρ > 0 fulfilling

‖FQ − FP −DFP (Q − P )‖∞ ≤ η‖Q− P‖

whenever ‖Q− P‖ < ρ and Q ∈ ∆.

P is strongly uninvadable if there is a constant c > 0 such that

∫

S

DFP (Q − P ) d(Q − P ) ≤ −c ‖Q− P‖2 for all Q ∈ ∆. (2.4)

Note that games satisfying this last condition are known as negative defi-
nite games. Negative definite games possess many interesting properties and
they have been studied extensively in the literature (Sandholm (2010); Cheung
(2014); Lahkar and Riedel (2015)).

The above theorem gives a first-order condition for P to be strongly unin-165

vadable. The next one gives another set of conditions for asymptotic stability
of a population state P .

Theorem 4 (Bomze (1990)). Under the assumptions of Theorem 3, every
replicator dynamics trajectory Q(t), t ≥ 0, starting in UP (as in Theorem 2)
satisfies ‖Q(t)− P‖ → 0 as t→ ∞.170

The first-order condition for strong uninvadability of P , given in Theorem 3
is not a necessary condition, as illustrated by Example 2 in the next section. We
observe that the conditions for stability can be weakened when we are dealing
with polymorphic population states. In the next section we focus on the poly-
morphic population states and provide with conditions for their stability with175

the underlying topology as the strong topology.

3. Stability of Polymorphic Population States

In this section, we will first study some properties of polymorphic population
states and then we will move on to the stability of these population states. As the
name suggests, polymorphic population states have a finite support. Moreover180

we can view them as convex combinations of monomorphic population states.
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3.1. Properties of Polymorphic Population States

We begin by characterizing rest points of the replicator dynamics 2.3.

Lemma 5. A population state P is a rest point of the replicator dynamics 2.3
if and only if

∫

S
u(z, w)P (dw) is constant a.s. z(P ).185

Proof. Clearly, P is a rest point of the replicator dynamics if and only if for
all B ∈ B,

F (P )(B) =

∫

B

σ(z, P ) P (dz) = 0.

This is equivalent to
σ(·, P ) = 0 a.s.(P ).

This implies and is implied by

E(δz, P ) = E(P, P ) a.s. z(P ).

From this it follows that P is a rest point of the replicator dynamics if and only
if,
∫

S u(z, w)P (dw) is independent of z a.s.(P ). �

In the case of the polymorphic population state given by

P ∗ = α1δx1
+ α2δx2

+ · · ·+ αkδxk
, (3.1)

where x1, x2, · · · , xk are distinct points in S and the sum of the positive numbers
α1, α2, · · · , αk is 1, this lemma reduces to the following corollary.

Corollary 6. Let P ∗ be a polymorphic population state given by (3.1). Then,190

P ∗ is a rest point of the replicator dynamics if and only if the sum
k
∑

j=1

αju(xi, xj)

is independent of i.

Proof. The proof follows since the support of P ∗ is {x1, x2, · · · , xk}. �

We illustrate the above corollary using the following example.

Example 1. Let S = [0, 1] and the payoff function be defined by

u(z, w) =

{

w if z < w
z − w if z ≥ w

Consider the polymorphic population state

P ∗ = α1δx1
+ α2δx2

+ α3δx3
=

1

3
δ0 +

1

3
δ1/2 +

1

3
δ1.

Then for i = 1,

k
∑

j=1

αju(x1, xj) =
1

3

3
∑

j=1

u(0, xj) =
1

3
{u(0, 0) + u(0, 1/2) + u(0, 1)}

=
1

3

{

0 +
1

2
+ 1

}

=
1

2
.
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Similarly, for i = 2 and i = 3, we get the sum
∑k

j=1 αju(xi, xj) as 1/2. Thus,195

by Corollary 6, P ∗ is a rest point of the replicator dynamics.

Now that we have established the condition for the polymorphic population
state P ∗ to be a rest point of the replicator dynamics, we move on to charac-
terizing small neighbourhoods of P ∗ with respect to the variational topology.

Consider population states P and Q from ∆. Then by Lebesgue decompo-
sition, we can decompose Q in terms of the Borel measures Q1 and Q2 such
that

Q = Q1 +Q2

where Q1 is absolutely continuous with respect to P and Q2 is singular with
respect to P . Now

‖Q− P‖ = 2 sup
B∈B

|Q1(B) +Q2(B)− P (B)| ≥ 2|Q1(A)− P (A)|

for every Borel set A ⊆ Support(P ).200

We can similarly decompose the population state Q, by taking P = P ∗, the
polymorphic population state. Now since the support of P ∗ = {x1, x2, · · · , xk},
note that whenever the support of Q is a strict subset of the support of P ∗,
form the above inequality, we obtain

‖Q− P ∗‖ ≥ 2 inf {αj : xj 6∈ Support(Q)}.

Let 0 < ǫ < 2 inf {αj : j = 1, 2, · · · , k}. From the above, it follows that every
Q in the ǫ-neighbourhood of P ∗, the support of Q1 must be equal to the support
of P ∗.

In conclusion, every population state Q sufficiently close to P ∗ will be of the
form

Q =
k
∑

j=1

βjδxj
+ βk+1R ;

k+1
∑

j=1

βj = 1 (3.2)

where the support of R ∈ ∆ is disjoint from the support of P ∗.205

One useful consequence of this fact is the following lemma, whose proof is a
straight forward application of the representation (3.2).

Lemma 7. Let P ∗ be the polymorphic state given by (3.1). Then for suffi-
ciently small ǫ, P ∗ is absolutely continuous with respect to Q, for every Q in
ǫ-neighbourhood of P ∗.210

Not surprisingly, this lemma fails when P ∗ is infinitely supported. In fact,
the Lebesgue measure on [0, 1] provides a counter example.

Another consequence of the equation (3.2) is the following lemma which
gives bounds for the variational distance between population states in a small215

neighbourhood of P ∗.
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Lemma 8. Let ǫ > 0 be small enough such that all population states in the
neighbourhood Ω(ǫ) := {Q ∈ ∆ : ‖Q− P ∗‖ < ǫ} are of the form (3.2). If

Q1 =
k
∑

j=1

βjδxj
+ βk+1R1 ;

k+1
∑

j=1

βj = 1,

Q2 =

k
∑

j=1

γjδxj
+ γk+1R2 ;

k+1
∑

j=1

γj = 1

are population states in Ω(ǫ) then we have,

2 max
1≤j≤k

{|βj − γj |} ≤ ‖Q1 −Q2‖ ≤ 2max







k
∑

j=1

|βj − γj | , 2



1−
k
∑

j=1

βj











.

The proof of this lemma is omitted as it follows from straight forward calcu-
lations of the variational distance. From this lemma, we can write the bounds
for variational distance of P ∗ and a population state Q in its neighbourhood,
with the form given in (3.2), as

max
1≤j≤k

|αj − βj | ≤
1

2
‖Q− P ∗‖ ≤ max







k
∑

j=1

|αj − βj |, 2



1−
k
∑

j=1

βj











. (3.3)

Remark 1. The above lemma and its application not only gives us lower and
upper bounds for the variational distance but it also proves that ‖Q− P ∗‖ → 0
if and only if |βj −αj | → 0 for every j = 1, 2, · · · , k. Thus to prove convergence
of a population state to P ∗, it is enough to prove the convergence of the weights220

on each of xj’s.

Before proceeding further to study the stability of polymorphic population
states, we present with an example which shows that the first order condition
in Theorem 3 is not necessary to guarantee that P ∗ is strongly uninvadable.

Example 2. Let S = [−1, 1] and the payoff function be defined as

u(z, w) = 2− zw for all z, w ∈ S.

The polymorphic state P ∗ = αδ−1 + (1 − α)δ1 with α = 1/2 is a rest point of
the replicator dynamics. Now consider a population state Q from an arbitrarily
small strong neighbourhood of P ∗ (as given in Lemma 7). Then, Q will be of
the form

Q = βδ−1 + γδ1 + (1− β − γ)R,

where R ∈ ∆ such that R({−1, 1}) = 0 and 0 < β + γ ≤ 1.225

Note that E(δz, P
∗) = 2 for all z ∈ S which implies that

E(P ∗, P ∗) = E(P ∗, Q) = E(Q,P ∗) = 2.
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By definition of u,

E(Q,Q) = 2− (γ − β + (1 − β − γ)µ)
2

where µ =
∫

S zR(dz).
Therefore, P ∗ is strongly uninvadable since E(P ∗, Q) − E(Q,Q) > 0 for

every Q 6= P ∗ in a strong neighbourhood of P ∗.
However, we can show that the condition (2.4) is not true. In fact, the map

FQ =
∫

S
u(·, w) Q(dw) is Frèchet differentiable and DFP∗(Q − P ∗) = FQ−P∗ .

Hence,
∫

S

DFP∗(Q− P ∗) d(Q − P ∗) = E(Q,Q)− E(P ∗, Q)− E(Q,P ∗) + E(P ∗, P ∗).

Taking Q = 1
2
(δ−1/2 + δ1/2) we note that

∫

S

DFP∗(Q − P ∗) d(Q− P ∗) = 0.

Thus the game is not negative definite game.

3.2. Stability of P ∗
230

We are now ready to discuss the stability of polymorphic population states.
First, we recall the following result from (van Veelen and Spreij, 2009, Propo-
sition 13). Since this result forms the background for our work, we provide a
proof which is slightly different from that of van Veelen and Spreij.

Theorem 9 (van Veelen and Spreij (2009)). Every asymptotically stable rest235

point of the replicator dynamics in variational distance is finitely supported.

Proof. From (Bomze, 1991, Lemma 2), we have

Support(Q(t)) = Support(Q)

where Q(·) is the trajectory of the replicator dynamics (2.2) with initial condi-
tion Q(0) = Q. If Q(t) converges to P strongly, then, by Portmanteau theorem
(Billingsley, 1999, Theorem 2.1), we must have

Support(P ) ⊆ Support(Q). (3.4)

To prove the theorem, we exhibit a probability measure Q in any arbitrary
neighbourhood of P contradicting (3.4), provided P is not finitely supported.

If P is not finitely supported, then for each ǫ > 0, we can find a set C such
that 0 < P (C) < ǫ (van Veelen and Spreij, 2009, Lemma 15). Choose Q which
is defined by

Q(B) =
1

1− P (C)
Q(B \ C), for B ∈ B.

Now, it is easy to verify that ‖P −Q‖ < ǫ, giving the required contradiction. �

11



Remark 2. In fact, the above proof also proves the result in the case of weak240

convergence. See Proposition 14 in van Veelen and Spreij (2009).

Let P ∗ be a rest point of the replicator dynamics where P ∗ is as in (3.1).
Let Q(0) be a population state in a small neighborhood of P ∗ as in Lemma 7.
Hence

Q(0) =
k
∑

j=1

βjδxj
+ βk+1R(0) ;

k+1
∑

j=1

βj = 1 (3.5)

where R(0) ∈ ∆ with R(0)({x1, x2, · · · , xk}) = 0.
Consider the solution Q(·) of the replicator dynamics equation (2.2) starting

from Q(0). Since the support of Q(0) and Q(t) is the same, Q(t)({xj}) > 0 for
all j = 1, 2, · · · , k.245

Using this, from the replicator dynamics equation (2.2), we obtain,

Q′(t)({xj}) = Q(t)({xj}) σ(xj , Q(t)), Q(0)({xj}) = βj (3.6)

for j = 1, 2, · · · , k.
We are, now, ready to prove the stability of polymorphic population state

with the following theorem which establishes its Lyapunov stability.

Theorem 10. Let P ∗ be the polymorphic population state as in (3.1). If P ∗ is
strongly unbeatable then P ∗ is Lyapunov stable.250

Proof. Let the polymorphic population state P ∗ be strongly unbeatable. Then,
there exists ǫ > 0 such that for R(6= P ∗), with ‖R− P ∗‖ ≤ ǫ,

E(P ∗, R) ≥ E(R,R)

Let δ < 2min{α1, α2, · · · , αk}, θ = min{ǫ, δ} and Ω = {Q ∈ ∆ : ‖Q−P ∗‖ < θ}.
By the definition of θ, it follows from Lemma 7 that P ∗ is absolutely con-

tinuous with respect to Q, for every Q ∈ Ω. Therefore, for every Q ∈ Ω and
B ∈ B, we have

P ∗(B) =

∫

B

dP ∗

dQ
dQ.

Putting B = {xj}, we get,

dP ∗

dQ
(xj) =

αj

Q({xj})
; j = 1, 2, · · · , k. (3.7)

Define V : Ω → R by,

V (Q) =

∫

S

ln

(

dP ∗

dQ

)

dP ∗. (3.8)

Since P ∗ is polymorphic, using (3.7), we can rewrite (3.8) as follows.

V (Q) =

k
∑

j=1

αj ln

(

dP ∗

dQ
(xj)

)

=

k
∑

j=1

αj ln

(

αj

Q({xj})

)

. (3.9)
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Using continuity of the log function, one may show that V is continuous in Ω.
Moreover, V (P ∗) = 0 and for Q ∈ Ω such that Q 6= P ∗, we have,

V (Q) =
k
∑

j=1

αj ln

(

αj

Q({xj})

)

= −

k
∑

j=1

αj ln

(

Q({xj})

αj

)

> −

k
∑

j=1

αj

(

Q({xj})

αj
− 1

)

(∵ ln(z) < z − 1 for z 6= 1)

= 1−

k
∑

j=1

Q({xj}) ≥ 0.

Thus, V (Q) ≥ 0 and the equality holds if and only if Q = P ∗; in other words,
V is positive definite.

From Pinsker’s inequality ( see (Reiss, 1989, (3.3.6) and (3.3.9)) and (Bomze,
1991, Lemma 3)) we see that ‖Q− P ∗‖2 ≤ V (Q) for every Q ∈ Ω.255

Now, let Q(t) be the trajectory of the replicator dynamics with the initial
population state as Q ∈ Ω. Then,

d

dt
V (Q(t)) =

d

dt





k
∑

j=1

αj ln

(

αj

Q(t)({xj})

)



 (from (3.9))

= −

k
∑

j=1

αj
d

dt

(

ln

(

Q(t)({xj})

αj

))

= −

k
∑

j=1

αj
Q′(t)({xj})

Q(t)({xj})

= −
k
∑

j=1

αj σ(xj , Q(t)) (from (3.6))

= −
k
∑

j=1

αj [E(δxj
, Q(t))− E(Q(t), Q(t))]

= −E(P ∗, Q(t)) + E(Q(t), Q(t)).

Therefore,
V̇ (Q) = −E(P ∗, Q) + E(Q,Q).

Since, P ∗ is strongly unbeatable, V̇ (Q) ≤ 0 for any Q ∈ Ω which proves that V
is non-increasing along replicator dynamics trajectories.

Thus, by Theorem 12 (in the Appendix), we can conclude that P ∗ is Lya-
punov stable. �
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The above theorem establishes the Lyapunov stability of unbeatable poly-260

morphic population states. We next prove a result regarding their asymptotic
stability.

Theorem 11. Let P ∗ be the polymorphic population state as in (3.1). If P ∗ is
strongly uninvadable then P ∗ is asymptotically stable.

Proof. Let the polymorphic population state P ∗ be strongly uninvadable.
Then there exists ǫ > 0 such that for all R(6= P ∗) with ‖R− P ∗‖ ≤ ǫ,

E(P ∗, R) > E(R,R).

We can define Ω and the function V as in the proof of Theorem 10 where V is
a positive definite continuous function for which

V̇ (Q) = −E(P ∗, Q) + E(Q,Q)

for every Q ∈ Ω. Since, P ∗ is strongly uninvadable, V̇ (Q) < 0 for any Q ∈ Ω,265

Q 6= P ∗ which proves that V is strictly decreasing along replicator dynamics
trajectories which remain in Ω.

Now, for any 0 < ǫ1 < θ, by Theorem 10, there exists δ1 > 0 such that every
trajectory starting from the open ball centered at P ∗ with radius δ1 (denoted270

by B(P ∗, δ1)), will remain in B(P ∗, ǫ1
2k ).

Consider the trajectory Q(t) = Q(t;Q0) starting from Q0 ∈ B(P ∗, δ1). For this
trajectory Q(t), clearly, there exists a sequence tn → ∞ such that Q(tn)({xj})
converges to a limit, say β∗

j ; j = 1, 2, · · · , k.275

Since Q(tn) ∈ B(P ∗, ǫ1
2k ), it follows from (3.3) that |αj − β∗

j | ≤
ǫ1
2k for every

j = 1, 2, · · · , k and hence
k
∑

j=1

|αj −β
∗
j | ≤

ǫ1
2
< θ. In particular, by the definition

of θ we now have β∗
j > 0 for every j = 1, 2, · · · , k.

This implies that

V (Q(tn)) =

k
∑

j=1

αj ln

(

αj

Q(tn)({xj})

)

converges to

V (Q∗) =

k
∑

j=1

αj ln

(

αj

β∗
j

)

for any (fixed) Q∗ ∈ Λ ⊂ Ω where

Λ =







Q ∈ Ω | Q =

k
∑

j=1

β∗
j δxj

+



1−

k
∑

j=1

β∗
j



R; R({x1, x2, · · · , xk}) = 0







.
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For s > 0, by the replicator dynamics equations (3.6), we know that

Q(s;Q∗)({xj}) = β∗
j exp

(∫ s

0

σ (xj , Q(t;Q∗)) dt

)

= β∗
j T (s) (3.10)

and

Q(s;Q(tn))({xj}) = Q(tn)({xj}) exp

(∫ s

0

σ (xj , Q(t;Q(tn))) dt

)

= Q(tn)({xj}) Tn(s). (3.11)

Therefore we have,

|V (Q(s;Q∗))− V (Q(s,Q(tn)))|

=

∣

∣

∣

∣

∣

k
∑

j=1

αj ln

(

αj

β∗
j T (s)

)

−

k
∑

j=1

αj ln

(

αj

Q(tn)({xj}) Tn(s)

)

∣

∣

∣

∣

∣

=

k
∑

j=1

αj

∣

∣

∣

∣

∣

ln

(

Q(tn)({xj}) Tn(s)

β∗
j T (s)

) ∣

∣

∣

∣

∣

(3.12)

Since σ(·, Q) is bounded, it follows that
Tn(s)

T (s)
→ 1 (uniformly in n) as s ↓ 0

and hence from (3.12), we get,

lim
s↓0, n↑∞

|V (Q(s;Q∗))− V (Q(s,Q(tn)))| = 0.

Thus, by Theorem 13 (in Appendix), we can conclude that P ∗ is asymptotically280

stable. �

In the next section we make some concluding remarks which is followed by
Appendix that gives complete proof of general Lyapunov stability results.

4. Conclusions

In this article, we studied the stability of polymorphic population states in285

games with continuous strategy spaces. We proved that strong uninvadability is
a sufficient condition for asymptotic stability of a polymorphic population state
whereas, strong unbeatability is enough for the Lyapunov stability. Beyond
finitely supported population states, one cannot establish similar stability results
unless we weaken the notion of stability. This is an interesting future research290

topic in games with continuous strategy spaces.
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Appendix

Here we establish two abstract stability theorems used to prove our main
theorems in Section 3. To this end, we consider an abstract differential equation

φ′(t) = H(φ(t)) (A.1)

on a Banach space (X, ‖ · ‖X). It is assumed that for each initial condition φ0
in an invariant set Y ⊂ X , the differential equation (A.1) has a unique solution
φ(t) = φ(t;φ0) defined for every t ≥ 0. We want to analyze this system around
a rest point φ∗ ∈ Y . We recall the definition of K∞

0 functions:

K∞
0 = {ω : [0,∞) → [0,∞) | ω is strictly increasing, continuous,

ω(0) = 0 and lim
s→∞

ω(s) = ∞}.

Theorem 12. Let Ω be an open subset of Y containing the rest point φ∗ of
(A.1). Assume that V : Ω → R is continuous at φ∗ and satisfies

(i) V (φ) ≥ 0 on Ω and V (φ∗) = 0;295

(ii) there exists ω ∈ K∞
0 such that w(‖φ− φ∗‖X) ≤ V (φ) for all φ ∈ Ω;

(iii) V is non increasing along trajectories of (A.1) that lie in Ω.

Then φ∗ is Lyapunov stable.

Proof. Let B(φ∗, ǫ) be the open ball around φ∗ with radius ǫ. Let ǫ > 0 be
small enough such that the closure of B(φ∗, ǫ) is contained in Ω.300

By continuity of V at φ∗ and condition (i), there exists δ > 0 such that
V (φ) < ω(ǫ) whenever, φ ∈ B(φ∗, δ).

Clearly, by condition (iii) the set U = {φ ∈ Ω | V (φ) < ω(ǫ)} is invariant.
Without loss of generality we can assume that closure of U is a subset of Ω.
Therefore, for every φ0 ∈ B(φ∗, δ), the trajectory φ(t) = φ(t;φ0) lies in U and
hence,

ω (‖φ(t)− φ∗‖X) ≤ V (φ(t)) < ω(ǫ).

As ω ∈ K∞
0 , it is invertible and from above it follows that

‖φ(t)− φ∗‖X < ǫ.

Thus we have proved that the trajectory φ(t) lies in B(φ∗, ǫ) whenever φ0 ∈
B(φ∗, δ). �

Theorem 13. Let Ω be an open subset of Y containing the rest point φ∗ of305

(A.1). Assume that V : Ω → R is continuous on Ω and satisfies

(i) V (φ) ≥ 0 on Ω and V (φ∗) = 0;

(ii) there exists ω ∈ K∞
0 such that w(‖φ− φ∗‖X) ≤ V (φ) for all φ ∈ Ω;
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(iii) V is strictly decreasing along trajectories of (A.1) that lie in Ω \ {φ∗};

(iv) there exists δ1 > 0 such that for every trajectory φ(t) emanating from
B(φ∗, δ1), there exists a sequence tn → ∞ such that V (φ(tn)) converges
to V (ψ) for some ψ ∈ Ω and

lim
s↓0, n↑∞

|V (φ(s;ψ)) − V (φ(s, φ(tn)))| = 0.

Then φ∗ is asymptotically stable.310

Proof. As the Lyapunov stability follows from the above theorem it remains
to show that φ∗ is attracting.

Let B(φ∗, δ) and B(φ∗, ǫ) be as defined in the proof of the above theorem.
Without loss of generality, we may assume that δ ≤ ǫ. Similarly, there exists
δ2 > 0 such that all trajectories emanating from B(φ∗, δ2) lie in B(φ∗, δ

2
).315

Let δ̄ = min{δ1, δ2} and φ(t) = φ(t;φ0) be the trajectory of the differential
equation (A.1) with the initial condition φ0 ∈ B(φ∗, δ̄). Then, by condition
(iv), there exists a sequence tn → ∞ such that V (φ(tn)) converges to V (ψ) for
some ψ ∈ Ω.320

We need to show that ψ = φ∗. By condition (iii), V (φ(t)) > V (ψ) for every
t ≥ 0.

If ψ 6= φ∗, let ψ(t) = φ(t;ψ). For any t > 0, V (ψ(t)) < V (ψ). By condition
(iv),

lim
s↓0, n↑∞

|V (φ(s;ψ)) − V (φ(s, φ(tn)))| = 0.

and hence
V (φ(s, φ(tn))) < V (ψ)

for s > 0 small enough and n large enough which is a contradiction because
φ(s, φ(tn)) = φ(s + tn;φ0). Hence, ψ = φ∗. �325
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