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I give a local description of the Euclidean regime (M, g,u) of Lorentzian spacetimes (M, g) based
on timelike geodesics u passing through an arbitrary event p0 ∈ M . I show that, to leading order,
the Euclidean Einstein-Hilbert action IE is proportional to the Einstein tensor G [g] (u,u). The
positivity of IE follows if G [g] (u,u) > 0 holds. I suggest an interpretation of this result in terms
of the amplitude A [Σ0] = exp[−IE ] for a single space-like hypersurface Σ0 ∈ I+(p0) to emerge at a
constant geodesic distance λ0 from p0. Implications for classical and quantum gravity are discussed.

PACS numbers: 04.60.-m

I. INTRODUCTION

Feynman’s path-integral formulation of quantum the-
ory provides a powerful basis for setting up a quan-
tum framework for a theory described by certain de-
grees of freedom, say qA, with probability amplitudes
for different configurations determined by the classical
action I[qA]. If one therefore wishes to study the quan-
tum aspects of gravity within the path integral formal-
ism, it is natural to start with the Einstein-Hilbert ac-
tion on a manifold (M, g), determined by the lagrangian
Lgrav[g] = RicSc[g] - the Ricci scalar constructed from
g (and appropriate boundary term for each boundary
of M). The corresponding path-integral for gravity is
then defined as a sum-over-histories g of the amplitude
A [Gf ,Gi|g] = exp [iI [Gf ,Gi|g] /~] which is the transi-
tion amplitude between the 3-geometries Gi and Gf cor-
responding to a given g (mathematically, a Lorentzian
cobordism). All these steps are merely formal - they
simply state the standard prescription of path-integrals
for a classical tensor field g. But of course, gravity is
more than simply a theory of a classical field, it is also
a manifestation of the curvature of spacetime which pro-
vides the background over which all other field theories
are constructed. This makes the situation much more
complicated, and has been discussed at length in the vast
literature on the topic.

In this work, I focus on the most basic of these: The Eu-
clidean version of the gravitational path-integral [1]. The
conventional approach here is to perform a suitable Wick
rotation (analytic continuation of time coordinate t to
complex plane), and then study the path-integral based
on the lagrangian Lgrav[gE ] = RicSc[gE ], where gE is
the Euclidean metric. Of course, Wick rotation does not
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always yield a sensible gE , and many variants have been
proposed which analytically continue some metric degree
of freedom as a cure for issues related to analytic con-
tinuation of t and/or those related to the unboundedness
of the Euclidean action. Be that as it may, such issues
definitely make it worthwhile to probe deeper the class
of Euclidean geometries that can be introduced in the
path-integral, and that is compatible with the existence
of a Lorentzian metric on M .

With this in mind, I here consider a covariant alterna-
tive to conventional Wick rotation (t → it), which is es-
sentially motivated by a simple result about existence of
Lorentzian metrics on manifolds that possess a Euclidean
metric [Sec. 2.6, Hawking and Ellis [2]]. Specifically, a
manifold with a Euclidean metric admits a Lorentzian
metric (or the converse, which is more relevant for our
case) if there exists a smooth, nowhere vanishing vector
field u on it. Such a vector field always exists for non-
compact manifolds, while compact manifolds admit one
iff their Euler number is zero. I therefore focus on the
class of Euclidean metrics ĝab = gab−Θ(λ)uaub where ua

is a well-defined unit timelike vector field parametrised
by λ (that is, gabu

aub = −1 and ua∂aλ = 1), and Θ(λ)
is a transition function that satisfies lim

x→0
Θ(x) = −2 and

lim
x→∞

Θ(x) = 0 corresponding to the metric ĝ being Eu-

clidean or Lorentzian – in particular, gE ≡ ĝ(Θ = −2)
[2–4]. I will assume that the transition between these
two values of Θ is sharp – see Fig. (1). Although the two
domains – Euclidean and Lorentzian – are of primary
interest here, the transition between these also leads
to interesting mathematical structure in the curvature
tensors, represented by terms with delta function sup-
port. Several novel and remarkable consequences follow
from this proposal for Euclidean regimes associated with
Lorentzian spacetimes [5], resulting in a rich geometrical
structure. As we shall see, combined with the geodesic
structure of Riemannian/Lorentzian space(time)s, these
features imply a very specific relationship between the Eu-
clidean Einstein-Hilbert action IE := −iI[gE ] and the
Einstein tensor G[g].

Before proceeding to prove this relationship, let me high-
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FIG. 1: Left: A typical profile for Θ(λ); the dashed curve is the idealised step profile used in this paper. Right:
Euclidean to Lorentzian transition characterised by u and Θ(λ). Σ represent level surfaces of u.

light two key advantages of studying Euclidean quantum
gravity in the framework proposed here. First, it helps
us to define a Euclidean geometry corresponding to a
given Lorentzian geometry without any ambiguity and
without having to worry about the metric components
becoming imaginary. This is in contrast to what hap-
pens with conventional Wick rotation. Second, the fact
that the resultant Euclideanisation depends on a vector
field u allows us to introduce the notion of observer de-
pendence at a very basic level in the quantum description
of gravity, a desirable feature since quantum theory is ex-
pected to be inherently observer dependent (a fact that
has not received as much careful attention as other as-
pects of quantum gravity, though some discussions exist;
for e.g., see [6]).

II. THE CURVATURE TENSORS ASSOCIATED
WITH ĝ

I will now describe the geometrical features associated
with the metric ĝ that will allow us to construct the ac-
tion I[ĝ], whose Euclidean regime will be our key point of
focus. After lengthy algebra and judicious use of Gauss-
Codazzi and Gauss-Weingarten equations, it is possi-
ble to write down the geometrical quantities associated
with ĝ in terms of those associated with g. This in-
evitably involves the intrinsic and extrinsic geometry of
u foliation with the induced metric (the projection of)
hab = δab + uatb. (Here, ta = gabu

b.) Some relevant ex-
pressions are given in the Appendix for completeness;
these lead to the final expression for the Ricci scalar
which is of direct relevance for further discussion of the

Euclidean action

RicSc[ĝ] = (1 + Θ) RicSc[g]−Θ RΣ +

(
dΘ

dλ

)
K (1)

where RΣ represents the intrinsic Ricci scalar of level
surfaces of u (see Fig. (1)), and K their extrinsic curva-
ture. We will now use the above to evaluate the action
in the Euclidean regime of ĝ. For this, we will choose
a sharp (step-function) profile for the transition function
Θ(λ) = 2θ(λ−λ0)−2. Since dΘ/dλ = 2δ(λ−λ0) ≡ 2δΣ0 ,
the last term in the above expression will contribute
(2K)δΣ0 to the Euclidean action, which happens to be
precisely the Gibbons-Hawking-York (GHY) boundary
term in D = 4! This somewhat curious result arises
because the metric signature changes by 2 (which leads
to the correct factor of 2 in the GHY term).

We are now in a position to analyse the action

I[ĝ]

~
=

1

`D−2
0

∫
RicSc[ĝ] dvD (2)

where dvD is the volume measure based on ĝ 1 . We will
be interested in the Euclidean regime Θ = −2, and hence
the volume integration will be over the corresponding

1 `0, with dimensions of length, is defined by this expression (it is
the natural relativistic reduced Planck scale). To avoid clutter,
we will set λ0 = `0, since we expect the transition to take place
close to Planck scale. It is easy to do away with this choice, in
which case the ratio (λ0/`0) will appear in the final result.
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domain. Finally, we note that, det ĝ = (1 + Θ)−1 det g,

and since det g < 0,
√
−det ĝ is imaginary for Θ < −1,

and in particular for Θ = −2. This is expected. However,
for Θ = −1, the metric ĝ is degenerate (in fact, equal to
hab). Therefore, we shall choose the volume measure dvD
as equal to

√
−det ĝ d4x = i

√
−det g d4x for Θ < −1,

and equal to
√
−deth d4x = i

√
deth d4x for Θ = −1.

III. THE LOCAL EUCLIDEAN GEOMETRY OF
SPACETIME

We are now ready to study the Euclidean regime in a
geodesically convex neighbourhood of an arbitrary event
p0 in a manifold possessing a Lorentzian metric g, using
for u the set of timelike geodesics emanating from p0.
Our construction, being anchored at an (otherwise arbi-
trary) spacetime event p0 and valid within I+(p0), there-
fore provides a local, covariant prescription for Euclidean
action as an alternative to conventional Wick rotation.

Since u are timelike geodesics emanating from p0, the
surfaces of constant geodesic distance along u are or-
thogonal to u; see Lemma 4.5.2 of Hawking and Ellis [2].
The corresponding surfaces, which we call equi-geodesic
surfaces, then represent Σ, and comprise of events p ly-
ing at constant (squared) geodesic interval σ2(p, p0) from
p0. The relevant geometrical properties of such surfaces
in arbitrary curved spacetimes were discussed in [11],
and we briefly quote the results which we will need here.
First, it is easy to show that ta = ∇aσ2/2

√
−σ2. From

this, the extrinsic curvature of Σ can be computed as

Kab =
(
−σ2

)−1/2 (∇a∇b (σ2/2
)

+ tatb
)
. All the inter-

esting geometric properties of Σ can therefore be derived
from the well known covariant Taylor series expansion of
the bi-tensor ∇a∇b

(
σ2/2

)
at p near p0 [7]. The quanti-

ties of relevance to us have the following covariant Taylor
expansions (in λ =

√
−σ2) characterised essentially by

the tidal tensor Eab = Rambnu
mun

K = D1/λ− (1/3)λE + (1/12)λ2∇uE − (1/60)λ3F +O(λ4)

RΣ = −D1D2 λ
−2 +R+ (2/3)(D + 1)E +O(λ) (3)

where E = gabEab, F = ∇2
uE+(4/3)Eab Eba, and we use the

convenient shorthand D# to denote D −#.

IV. THE EUCLIDEAN ACTION

To evaluate the Euclidean action, it is convenient to write
the Lorentzian metric g at events p ∈ I+(p0) in the
synchronous coordinates: g = −dλ ⊗ dλ + h(λ, χ,ΩA),
where χ is the local boost coordinate and ΩA, A = 3 . . . D

are angular coordinates. It is easy to show that deth
has the following expansion in λ:

√
deth dχdΩA =

λD−1
[
1− (1/6)Eλ2 +O(λ3)

]
(sinhχ)D−2 dχdΩA. 2

We can now use Eq. (1) with Θ = −2, along with (3),
the expression for dvD (discussed below Eq. (2)), and the

above expansion for
√

deth, to evaluate the Euclidean
action. The λ integral goes from λ = 0 to λ = `0, and
keeping in mind the (2K)δΣ0

term, a lengthy computa-
tion finally yields (recall that IE := −iI[gE ])

IE
~

=
1

D

∫
`20

[
R+

1

3
(D1D2 −D−1D4) E

]
dHD−1

1

+ O(`30 ×∇R . . .)︸ ︷︷ ︸
higher curvature terms

which, upon using E = Rabu
aub = Gabu

aub − (1/2)R,
simplifies remarkably, thereby yielding our key result

IE
~

=
2

D

∫
`20Gab(p0)uaubdHD−1

1 + O(`30 ×∇R . . .)︸ ︷︷ ︸
higher curvature terms

≈ 2

D
`20Gab(p0) τab (4)

where τab =
∫
uaubdHD−1

1 represent the average of unit
timelike vectors ua(χ,ΩA) over the unit (D − 1) hyper-

bolic spaceHD−1
1 . In particular, it is evident that, as long

as G [g] (u,u) > 0 for all timelike vectors u, I[gE ] > 0.

This is a remarkable result, and the only inputs that
have gone into deriving this result are (i) the characteri-
sation of ĝ, and (ii) geometry of level surfaces of timelike
geodesics emanating from a spacetime event p0. Both
of these inputs are rooted in basic differential geometry
(see, for e.g., [2]), and provide a more rigorous alternative
to Wick rotation for studying Euclidean regime of space-
time. Irrespective of how one proceeds further from it,
Eq. (4), which is our main result, is sufficient to indicate
the non-trivial role that the Einstein tensor of a given
Lorentzian geometry plays in determining the structure
of the action in the Euclidean regime of this geometry.
To the best of my knowledge, such a connection has nei-
ther been expected nor arrived at in the conventional
approach to Euclidean quantum gravity.

Formally, of course, τab is divergent due to the exponen-
tially divergent volume of the hyperbolic space. I briefly
mention below two possible ways for evaluating τab. Al-
though both are mathematically straightforward, I must
add that there is no preferred way of choosing one over

2 Note that E = Eab(p0)ua(χ,ΩA)ub(χ,ΩA), though we will sup-
press the dependence on (χ,ΩA) to avoid notational clutter.
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FIG. 2: Geodesic structure of spacetime near an arbitrary event p0. Right inset: Future timelike geodesics in
I+(p0) will serve as the basis for the local Euclidean regime in the neighbourhood of p0. The shaded region

represents the Euclidean domain.

other without entering into the realm of speculations. It
is not even clear whether one should bother about it at
this stage, since it is the Euclidean path integral based on
IE which is expected to be more relevant than IE itself.

(a) Imposing cut-off on χ: The most straightforward eval-
uation is done by replacing

∫∞
0

dχ(. . .) →
∫ χc

0
dχ(. . .)

to extract the leading χc → ∞ divergences. The eval-
uation for τab in this case is most conveniently done by
parametrising ua with standard Lorentz transformations:
ua(χ,ΩA) = (coshχ)T a + (sinhχ)Na, where T a, Na are
arbitrary unit timelike, spacelike vectors in the tangent
space Tp0(M), with T aNa = 0. It is then straightforward
to show that τab/SD−2 = (ID/(D−1))

[
ηab +DT aT b

]
+

ID−2T
aT b, where SD−2 is the volume of unit (D − 2)

sphere. In this form, the χc → ∞ divergences are cap-
tured through the integrals ID =

∫ χc

0
dχ (sinhχ)D. It

is worth highlighting that the first term in the struc-
ture of τab, being traceless, would pick the traceless part
Gtr
ab = Gab−(1/D)Ggab of the Einstein tensor. Explicitly,

Gabτ
ab/SD−2 = (DID/(D−1))Gtr

abT
aT b+ID−2GabT

aT b.
The Euclidean action with this regularisation is worth ex-
ploring further, and can lead to new insights into quan-
tum gravity as well as its classical limit. It might also
be of direct conceptual significance for ideas that treat
gravity as an emergent phenomenon [8].

(b) Regularised hyperbolic volume: As an alternative to
the above regularisation, one might mention that there
has been discussion on handling precisely the above kind
of divergences in the context of AdS-CFT, which essen-
tially regularises the volume ofHN (which is exactly what
arises in our setup as well). It is straightforward to show

that τab ≡ (volreg(HD−1
1 )/D)gab(p0) [9]. In this case,

Gabτ
ab = (volreg(HD−1

1 )/D)G = −volreg(HD−1
1 )((D −

2)/2D)RicSc[g]. The Euclidean action is now indeed
proportional to RicSc[g], but the proportionality con-
stant is not the standard one. The relevance and/or jus-
tification for this particular regularisation is unclear (at
least to this author).

V. DISCUSSION AND IMPLICATIONS

Let me first summarise the approach presented here and
the result it has led us to. I began by considering a
class of spacetime metrics ĝ derivable from a Lorentzian
metric g and timelike geodesics u, which interpolate be-
tween the Euclidean and Lorentzian space(time)s. This
turns out to lead to a rich mathematical structure, with
the transition between Euclidean and Lorentzian regimes
leading to terms in curvature with delta function support
on the hypersurface on which the transition takes place.
Even more surprisingly, the Ricci scalar RicSc[ĝ] cor-
responding to ĝ has a delta function term which corre-
sponds precisely to the GHY boundary term in the con-
ventional formalism of the Einstein-Hilbert action prin-
ciple. In addition, RicSc[ĝ] in the Euclidean regime has
an additional term involving intrinsic Ricci scalar of the
co-dimension one transition surface. This entire formal-
ism is then applied to the causal future of an arbitrary
spacetime event p0, using for u the timelike geodesics
emanating from p0. This yields a local description of
Euclidean regime in the neighbourhood of any event p0.
I then computed the Euclidean action IE explicitly and
exhibited it’s direct connection with the Einstein tensor
of g.
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I must emphasize that the connection between the Eu-
clidean action and the Lorentzian Einstein tensor, de-
rived here, is a highly non-trivial result and there seems
to be no a priori reason for expecting such a connection.
3 Since it uses covariant expansions valid in arbitrary
Lorentzian spacetimes, the result has direct implications
for studying quantum properties of the small scale struc-
ture of spacetime (perhaps along the lines of [10, 11]).
Let me elaborate a little bit on this, taking cue from
the domain in which similar ideas from Euclidean quan-
tum gravity were first applied and developed - quantum
cosmology. We will focus on the well known Hawking-
Hartle prescription for the ground state wave function of
the universe [1, 13]. This is defined via the path inte-
gral over Euclidean geometries that have a (D − 1) hy-
persurface Σ0 as their only boundary, and, in the semi-
classical limit, the corresponding wave function Ψ[Σ0] is
interpreted as yielding the amplitude for the universe to
emerge from nothing. With this as motivation, we may
consider the result here derived as yielding a wave func-

tion Ψp0 ∼ e−(2/D)`20Gabτ
ab

describing emergence of a sin-
gle space like surface at a fixed geodesic distance from an
arbitrary event p0. Since the analysis is completely local,
one may then apply it all of spacetime, in which case one
would then be effectively talking about the wave function
Ψ = Π

p0
Ψp0 for a spacetime with a given Lorentzian met-

ric g to exist. Understanding of our result along these
lines would also then pave way to understand better the
role of an observer as far as the small scale structure
of spacetime is concerned, somewhat along the lines of
Calzetta and Kandus [6], who argued that quantum cos-
mology inherits the observer dependence of vacuum in
quantum field theory (in their case, through the choice
of Wick rotation).

It would also be of interest to understand implications
of the result derived here for the positive action conjec-
ture in Euclidean gravity, and its connection with the en-
ergy conditions of classical general relativity. Such a con-
nection is hinted by the proportionality derived here (to
leading order in curvature) between IE and G[g](u,u),
since G[g](u,u) ≥ 0 is (the geometrical version of) the
weak energy condition. (There is already a connection be-
tween positive energy theorem in (D+ 1) dimensions and
positive action conjecture in D dimensions - the former
implies the latter [14].)

Finally, as is evident, the result presented here has obvi-

3 One plausible connection is hinted by the case of static solu-
tions in standard field theories. Here, it is well known that the
Euclidean action is the Hamiltonian (apart from a factor of the
periodicity of euclidean time). Since G0

0 is essentially the gravita-
tional Hamiltonian, the connection with Euclidean action seems
plausible. However, for static solutions in general relativity, the
situation can be more subtle [12]. Moreover, the result derived
here does not assume staticity etc. I nevertheless thank the ref-
eree for bringing this interesting point to my notice.

ous relevance to quantum gravity, particular those frame-
works that use the gravitational path integral as their
basic starting point (e.g., Causal Sets, Causal Dynami-
cal Triangulation (CDT)). One would like to study the
partition function Z for quantum gravity based on the
class of space(time)s described by ĝ:

Z =

∫
Dg Du exp

[
+i

∫
R̂
√
−detĝ

]
Studying the behaviour of this path integral in the Eu-
clidean regime of ĝ should yield new insights, since the
integrand in that limit directly depends on the Einstein
tensor Gab. This would entail addressing several issues,
conceptual as well as mathematical, so as to fully extract
the consequences of the result for small scale structure
of spacetime. It would also be of interest to investigate
the effective action obtained by integrating over u. Al-
though the full treatment of this might be involved, in
the limit being considered, since the euclidean action be-
comes quadratic in u, the path integral can presumably
be done (and will be determined by the determinant of
the Einstein tensor G). However, it is best not to spec-
ulate about this without further careful consideration of
the higher curvature terms in the (euclidean) action IE.

Of particular interest is the question as to whether the
semiclassical limit of Z has any connection with the so
called entropy functional formalism of gravitational dy-
namics [15], and, more broadly, for any of the results for
the so called emergent gravity paradigm [8]. Since the
path amplitudes (to leading order in curvature expan-

sion) are given by Ψp0 ∼ e−(2/D)`20Gabτ
ab

, the Lorentzian
metrics g satisfying G[g] = 0 - the vacuum Einstein equa-
tions - would dominate the path-integral. It would be
interesting to make this connection mathematically rig-
orous after including the matter coupling. Such a possi-
bility is also very strongly suggested by the fact that, for
a canonical matter action quadratic in first derivatives,
Lmatter[gE ] = −Tabuaub! Also of interest in this context
is the understanding of the cosmological constant [16] as
a low energy relic of small scale structure of spacetime.
Moving on to quantum gravity, a natural next step would
be to see if any of the existing frameworks lead naturally
to ĝ (perhaps as an effective metric). Indeed, the no-
tion of signature change at small scales has appeared in
several quantum gravity frameworks (see [17, 18] for ex-
amples from Loop Quantum Cosmology and CDT). The
result derived here, being applicable for arbitrary curved
spacetimes (M, g), should therefore provide a useful tool
for a mathematically rigorous discussion of such a change
in quantum spacetime.
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ment of Science and Technology (DST), India, through
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Appendix : I quote here the expression for Riemann ten-
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sor for ĝ:

R̂abcd = Rabcd+2Θ

[
tmR

m[a
cdu

b]+K
[a

[cK
b]
d]

]
+2Θ̇u[aK

b]
[c td]

(Θ̇ = dΘ/dλ) from which all other tensors, including

the Ricci scalar quoted in the text, can be obtained
in a straightforward manner [5]. It is also worth high-
lighting the following limit on the hypersurface Θ =
−1, where the metric (expectedly) becomes degenerate:

lim
Θ→−1

R̂abcd e
(µ)
a e

(ν)
b ec(ρ)e

d
(σ) = RΣ

µν
ρσ yielding similar

limits for all the other tensors; for e.g., lim
Θ→−1

R̂ = RΣ.
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