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Abstract

In this paper, the problem of estimating a small frequency offset in a signal with a large carrier frequency is

addressed. The warped discrete-Fourier transform (WDFT) [A. Makur, S.K. Mitra, IEEE Trans. Circuits Systems—I:

Fundam. Theory Appl. 6 (9) (September 2001) 1086–1093] is used and the accuracy of estimation and computational

complexity of this technique is compared with the conventional discrete-Fourier transform (DFT) and the nonuniform

discrete-Fourier transform (NDFT). A numerical example is provided to illustrate the comparison.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are many places (e.g., receivers and base

stations of cellular systems) where a small fre-

quency offset of a signal around a large carrier

frequency needs to be estimated. Typically,

a signal

xðtÞ ¼ A cosð2pðf c þ Df Þ tÞ (1)

is available for a finite length of time. It is sampled

at a frequency f s and converted into a discrete

N-point sequence which can be represented as

x½n� ¼ A cosðo0 þ DoÞn; n ¼ 0; 2; . . . ;N � 1,

where

o0 ¼ 2p
f c
f s

and Do ¼ 2p
Df

f s
. (2)

In this paper, the warped discrete-Fourier

transform (WDFT) is used to estimate the offset

Do given x[n]. In a related work [2], single
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frequency estimation using WDFT has been

discussed.

Our paper is organized as follows: The WDFT

and the nonuniform discrete-Fourier transform

(NDFT) are briefly explained in this section. In

Section 2, the application of the WDFT to

estimate frequency offsets is discussed. The com-

putational procedure is described and an example

is provided. In Section 3, the results of the WDFT

technique are compared with the discrete Fourier

transform (DFT) and the NDFT on the basis of

accuracy and computational complexity. Conclu-

sions are presented in Section 4.

1.1. The discrete-Fourier transform (DFT)

The DFT finds widespread applications in the

spectral analysis of discrete-time signals. The N

point DFT, X ½k�; 0pkpN � 1, of a length N

sequence x½n� is given by the frequency samples of

the z-transform, X(z) of x[n], evaluated at N

uniformly spaced points on the unit circle , i.e.,

X ½k� ¼
X

N�1

n¼0

x½n� e�j2pk=N ;

0pkpN � 1. ð3Þ

In the problem of frequency offset estimation, it

is desirable to compute the frequency samples of

x[n] only at frequencies close to o0. Owing to the

fixed frequency resolution of 2p/N, the length of

the DFT to estimate small Do is very large. So the

use of alternative techniques, such as the warped

DFT [1] and the NDFT [3] is considered.

1.2. The nonuniform discrete-Fourier transform

(NDFT)

The NDFT [3] of an N point sequence x[n] is

defined as

XND½k� ¼ X ðzkÞ ¼
X

N�1

n¼0

x½n�z�n
k ; 0pkpN � 1:

(4)

The NDFT, the most general form of the DFT,

evaluates the frequency samples of X(z) at N

arbitrary, distinct points on the z-plane. In matrix

form, the equations can be written as

½XND½0�; . . . ;XND½N � 1��T

¼ DN ½x½0�; . . . ;x½N � 1��T, ð5Þ

where DN is the N�N NDFT matrix given by

DN ¼

1 z�1
0 z�2

0 :: z
�ðN�1Þ
0

1 z�1
1 :: :: z

�ðN�1Þ
1

1 :: :: :: ::

1 :: :: :: ::

1 z�1
N�1 :: :: z

�ðN�1Þ
N�1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

. (6)

For our problem of estimating frequency offset,

the NDFT can be used to evaluate the frequency

samples X ðejoÞ at o close to o0 and thereby

estimate the offset. In general, the computation of

the NDFT samples involves the multiplication of

DN with the length N vector composed of samples

of x[n]. The NDFT offers complete flexibility in

choosing the sampling points which leads to

spectral resolution that can be controlled as

desired. However, in general it is computationally

intensive, requiring N2 complex multiplications for

the direct method. In some special cases, such as

when the NDFT is evaluated at points on the unit

circle, a reduction in computational complexity

can be achieved by using methods such as the

Goertzel algorithm [4].

1.3. The warped discrete-Fourier transform

(WDFT)

The WDFT, proposed recently [1], is a special

case of the NDFT. Here, the locations of the

frequency points are modified by applying an

allpass transformation to warp the frequency axis.

Then, uniformly spaced points on the warped

frequency axis are equivalent to nonuniformly

spaced points on the original frequency axis. By

choosing the warping parameters suitably, we can

place some of the frequency samples close to each

other to provide higher resolution in the frequency

range of interest without increasing the length of

the DFT.

The WDFT of a sequence x[n] is defined as

follows. We first choose a polynomial Aðz0Þ to

construct an allpass function. Let Aðz0Þ be a
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polynomial in z0 with degree M. Define

X ðz0Þ ¼
X

N�1

n¼0

x½n�
Aðz0Þ

z0�MA z0�1
� �

" #

¼
Nðz0Þ

Dðz0Þ
. (7)

The N point WDFT XW ½k� of x[n] consists of

samples of X ðz0Þ evaluated at ej2pk=N , i.e.,

XW ½k� ¼ X ðz0Þjej2pk=N ¼
Nðz0Þjej2pk=N

Dðz0Þjej2pk=N
; 0pkpN � 1.

(8)

The reader is referred to [1] for a detailed

description of the WDFT.

2. Application of WDFT to estimate frequency

offset

For efficient estimation of the frequency offset

Do in (2), the frequency response of x½n� � X ðejoÞ-

has to be sampled densely at frequencies close to

o0. The frequency sample that gives the maximum

value of jX ðejoÞj enables us to determine the

frequency offset around o0. The parameters that

have to be chosen are:

1. the length of the WDFT used,

2. the order Mof the allpass function Cðz0Þ,

3. the coefficients of Aðz0Þ.

Assuming the parameters have been chosen, the

computational procedure we use for efficiently

computing the WDFT is described below.

2.1. Computation of the WDFT

We use the matrix-based implementation pro-

posed in [1] for the computation of the WDFT. We

give a very brief outline of the computational

procedure here; the details are described in [1].

Suppose we want to compute the N point WDFT

of x½n�. Define

N1ðz
0Þ ¼ Nðz0Þmod z0

N
(9)

with Nðz0Þ as in (7). N1ðz
0Þ is a polynomial of

degree N � 1. Similarly, define

D1ðz
0Þ ¼ Dðz0Þmod z0

N
. (10)

Then, the WDFT (8) can be computed by

replacing Nðz0Þ and Dðz0Þ with N1ðz
0Þand D1ðz

0Þ

respectively. That is,

XW ½k� ¼ X ðz0Þjz0¼ej2pk=N ¼
N1ðz

0Þjz0¼ej2pk=N

D1ðz0Þjz0¼ej2pk=N
,

0pkpN � 1. ð11Þ

It is shown in [1] that this can be efficiently

computed for a given signal x½n� ; 0pnpN � 1,

denoted x in vector form. In particular, it is

shown that

½XW ½0�XW ½1�; . . . ;XW ½N � 1��T ¼ LD �W �Q � x,

(12)

where W is the standard N �N DFT matrix, Q is

an N �N real matrix [1] and

KD ¼

1
D1½0�

0 0 . . . 0

0 1
D1½1�

. . . :: 0

: : ::

: :

0 0 1
D1½N�1�

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

. (13)

We now present an example to illustrate the

procedure and compare the results obtained with

the WDFT to those obtained with the DFT and

the NDFT.

2.2. Example

In (1), let f c and f s be such that f s ¼ 4f c and so

o0 ¼ ðp=2Þ. Further, let the sequence x½n� be of

length 64, i.e., N ¼ 64. When an N-point DFT is

used, the frequency separation between adjacent

samples is ð2p=NÞ rad/sample.

So, the maximum offset estimation error using a

64-point DFT is

errDFT ¼
1

2
�

2p

64
¼ 0:049 rad=sample: (14)

If we assume that f c ¼ 10 KHz, then this means

that a 64-point DFT can estimate frequency offsets

around f c, with a maximum error of

Df DFT ¼ errDFT �
f s
2p

¼ 312:5Hz: (15)

We now consider a 64-point WDFT with Cðz0Þ,

a second-order allpass function (M ¼ 2).
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Let Aðz0Þ be given by z0�2 þ az�1 þ b. Then the

frequency mapping is given by

z�1 ¼ Cðz0Þ ¼
z0�2 þ az0�1 þ b

bz0�2 þ az0�1 þ 1
, (16)

where a and b are real coefficients to be chosen

suitably.

Substituting z ¼ ejo and z0 ¼ ejo
0

, we obtain

e�jo ¼
e�j2o0

þ ae�jo0

þ b

be�j2o0
þ ae�jo0

þ 1
¼

Aðejo
0

Þ

A0ðejo
0
Þ
. (17)

Using

A0ðejo
0

Þ ¼ e�j2o0

Aðe�jo0

Þ (18)

and

A0�ðejo
0

Þ ¼ A0ðe�jo0

Þ, (19)

we obtain the frequency mapping by equating the

real and imaginary parts on either side of (17) as

cot
o

2

� �

¼
a cosecðo0Þ þ ð1þ bÞ cotðo0Þ

1� b
. (20)

3. Comparison of different algorithms

We now compare the performance of the

WDFT with two other techniques, viz., the simple

DFT and the DTFT sampled in the frequency

range of interest (NDFT). The algorithms are

evaluated on the basis of accuracy of determining

the frequency offset and the computational com-

plexity involved. For easy comparison, we use the

simple example considered in the previous section.

3.1. Accuracy

We propose evaluating the WDFT with 2 sets of

values for the pair [a, b]—one set of values for

frequency points corresponding to positive devia-

tions around p/2 and the other for negative

deviations. This was found to give better resolu-

tion than a single WDFT spanning frequency

samples on either side of ðp=2Þ. Equivalently, a

much larger length of WDFT is required to get a

resolution comparable to that obtained by using

two appropriate sets of values for a and b. For a

64-point WDFT, using [a ¼ 2:176; b ¼ �1:166]

and [a ¼ �2:087; b ¼ �1:633] was found to give

the best resolution for o around p=2 for negative

and positive deviations, respectively. The fre-

quency mapping for [a ¼ 2:176; b ¼ �1:166] is

shown in Fig. 1. The corresponding frequency

points o on the z-plane are as shown in Fig. 2.

The 64-point WDFT was computed for each of

the sets of [a, b] using (12). The offset was

determined using (20) from the frequency at which

the WDFT sample had the largest magnitude. The

performance of this method was tested on

MATLAB using offsets Do around p/2 ranging

from �0.05 rad/sample to +0.05 rad/sample. The

estimated offset for a 64-point DFT and 64-point

WDFT (evaluated at 2 sets of values of [a, b]) are

shown in Fig. 3. The offset estimation error for

each case is shown in Fig. 4. As indicated by (14), a

64-point DFT cannot estimate offsets in the

specified range. In comparison, a 64-point WDFT

can estimate offsets in the range with a maximum

error of

errWDFT ¼ 0:0055 rad=sample. (21)

For the f c and f s used in (15), this translates to

DfWDFT ¼ errWDFT �
f s
2p

¼ 35Hz. (22)

As shown in Fig. 4, to get a performance to the

comparable 64-point WDFT (� 2), a 1024-point

DFT is required.

We now examine the performance obtained by

using a 64-point NDFT. The frequency sample

points are chosen to be uniformly spaced in the

frequency range of interest [p/2�0.05 rad,

p/2+0.05 rad]. Thus, this is the DTFT sam-

pled at 64 points spaced in [p/2�0.05 rad,

p/2+0.05 rad]. The maximum error obtained is

errNDFT ¼ 0:0016 rad=sample (23)

and

Df NDFT ¼ errNDFT �
f s
2p

¼ 10:2Hz: (24)

Evidently, the NDFT offers better resolution

than the WDFT for M ¼ 2. However, this is

achieved at the expense of an increase in the

number of computations, as discussed in the next

section. It should also be noted that by using a

higher-order warping function (larger M) and
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choosing the warping parameters suitably, the

resolution of the WDFT can be improved sig-

nificantly.

3.2. Computational complexity

Let x be the N-dimensional input vector

(complex in general). An N-point DFT requires

ðN=2Þlog2N complex multiplications and N log2 N

complex additions. Since one complex multiplica-

tion involves four real multiplications and two real

additions, and one complex addition involves two

real additions, an N-point FFT involves 2N log2 N

real multiplications and 3N log2N real additions.

Evaluation of the WDFT as a product of

matrices involves NðN þ 2 log2 N þ 4Þ real multi-

plications and Nð2N þ 3 log2NÞ real additions [1].

For N ¼ 64, this works out to 5120 real multi-

plications and 9344 real additions. For an equiva-

lent performance, a 1024-point FFT is required

which involves 20,480 real multiplications and

30,720 real additions.

If we use the NDFT, we get maximum flexibility

in choosing the sample points. The resolution can

be controlled more precisely than the WDFT, but

at the expense of increased computation. The

direct method of evaluating of the NDFT involves

4N2 real multiplications and N(4N�2) real addi-

tions. For N ¼ 64, this works out to 16,384 real

multiplications and 16,256 real additions. Using

the fact that the NDFT is being evaluated at

points on the unit circle in the z-plane, the number

of computations can be reduced using the Goertzel

algorithm [4]. The second-order recursive filter

implementation of the Goertzel algorithm requires

N(2N+8) real multiplications and N(4N+6) real

additions. For N ¼ 64, this works out to 8704 real

multiplications and 16,768 real additions.

The complexities of the different algorithms for

N ¼ 64 are summarized in Table 1. When larger

values of N are required, the computational

savings obtained by the WDFT is still higher.
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Fig. 1. Frequency mapping for second-order allpass warping

function (M ¼ 2).

Fig. 2. Frequency sample points on the Z-plane.
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Fig. 3. Frequency offset, as estimated by DFT and WDFT.

Fig. 4. Error in frequency offset, as estimated by DFT and WDFT.
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4. Conclusions

In this paper, we discuss the application of the

WDFT to estimate frequency offsets. We have

shown that the WDFT, with parameters appro-

priately chosen, gives superior performance in

terms of resolution and computational complexity

over the FFT. It is also computationally more

efficient than the sampled DTFT method (NDFT),

especially for large values of N, although the latter

offers more flexibility in choosing the frequency

sample points. Though the example presented in

this paper uses a second-order allpass function for

warping, a higher-order function could be easily

used. This increases the number of parameters to

be chosen, which would lead to better resolution

by offering more flexibility in choosing the

sampling points.
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Table 1

Computational complexities of different algorithms

Algorithm (N ¼ 64)) Computations

Number of

multiplications

Number of

additions

DFT 768 1152

WDFT 5120 9344

Nonuniformly sampled

DTFT (Goertzel algorithm)

16,384 16,256
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