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Abstract

In this paper, the problem of estimating a small frequency offset in a signal with a large carrier frequency is
addressed. The warped discrete-Fourier transform (WDFT) [A. Makur, S.K. Mitra, IEEE Trans. Circuits Systems—I:
Fundam. Theory Appl. 6 (9) (September 2001) 1086—-1093] is used and the accuracy of estimation and computational
complexity of this technique is compared with the conventional discrete-Fourier transform (DFT) and the nonuniform
discrete-Fourier transform (NDFT). A numerical example is provided to illustrate the comparison.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are many places (e.g., receivers and base
stations of cellular systems) where a small fre-
quency offset of a signal around a large carrier
frequency needs to be estimated. Typically,
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a signal
x(t) = A cosQn(f, + Af) 1) (1)
is available for a finite length of time. It is sampled

at a frequency f, and converted into a discrete
N-point sequence which can be represented as

x[n] = A cos(wyg + Aw)n, n=20,2,...,N — 1,
where

. Af

wy = 27r& and Aw = 27r—f. 2)
fs /s

In this paper, the warped discrete-Fourier

transform (WDFT) is used to estimate the offset

Aw given x[n]. In a related work [2], single
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frequency estimation using WDFT has been
discussed.

Our paper is organized as follows: The WDFT
and the nonuniform discrete-Fourier transform
(NDFT) are briefly explained in this section. In
Section 2, the application of the WDFT to
estimate frequency offsets is discussed. The com-
putational procedure is described and an example
is provided. In Section 3, the results of the WDFT
technique are compared with the discrete Fourier
transform (DFT) and the NDFT on the basis of
accuracy and computational complexity. Conclu-
sions are presented in Section 4.

1.1. The discrete-Fourier transform (DFT)

The DFT finds widespread applications in the
spectral analysis of discrete-time signals. The N
point DFT, X[k],0<k<N —1, of a length N
sequence x[n] is given by the frequency samples of
the z-transform, X(z) of x[n], evaluated at N
uniformly spaced points on the unit circle , i.e.,

N-1

X[k =" x[n]e PN,
n=0
0<k<N —1. (3)

In the problem of frequency offset estimation, it
is desirable to compute the frequency samples of
x[n] only at frequencies close to wy. Owing to the
fixed frequency resolution of 2zn/N, the length of
the DFT to estimate small Aw is very large. So the
use of alternative techniques, such as the warped
DFT [1] and the NDFT [3] is considered.

1.2. The nonuniform discrete-Fourier transform
(NDFT)

The NDFT [3] of an N point sequence x[n] is
defined as

N-1
Xnplk] = X(zi) = Zx[n]z,:", 0<k<N — 1.
n=0

“)
The NDFT, the most general form of the DFT,

evaluates the frequency samples of X(z) at N
arbitrary, distinct points on the z-plane. In matrix

form, the equations can be written as

[X~p[0], ..., Xnp[N — 1711

= Dy[x[0],....x[N —1]I", (5)
where Dy is the N x N NDFT matrix given by
1 Za] 252 . Z(;(Nfl)_
1zt .. zl_(N_l)
Dy=|1 (6)
_ —(N—1
_1 ZNLI .. ZN(_1 )

For our problem of estimating frequency offset,
the NDFT can be used to evaluate the frequency
samples X(el”) at w close to w, and thereby
estimate the offset. In general, the computation of
the NDFT samples involves the multiplication of
Dy with the length N vector composed of samples
of x[n]. The NDFT offers complete flexibility in
choosing the sampling points which leads to
spectral resolution that can be controlled as
desired. However, in general it is computationally
intensive, requiring N* complex multiplications for
the direct method. In some special cases, such as
when the NDFT is evaluated at points on the unit
circle, a reduction in computational complexity
can be achieved by using methods such as the
Goertzel algorithm [4].

1.3. The warped discrete-Fourier transform
(WDFT)

The WDFT, proposed recently [1], is a special
case of the NDFT. Here, the locations of the
frequency points are modified by applying an
allpass transformation to warp the frequency axis.
Then, uniformly spaced points on the warped
frequency axis are equivalent to nonuniformly
spaced points on the original frequency axis. By
choosing the warping parameters suitably, we can
place some of the frequency samples close to each
other to provide higher resolution in the frequency
range of interest without increasing the length of
the DFT.

The WDFT of a sequence x[n] is defined as
follows. We first choose a polynomial A(z') to
construct an allpass function. Let A(z') be a
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polynomial in z/ with degree M. Define

N-1

N _ A(Z')
X(@@) = 2 x[n] M4z

The N point WDFT X y[k] of x[n] consists of
samples of X(z) evaluated at e™*/V je.,

N(Z,)|e]27rk/N
D(2")|gjanr/n

__N(Z)
T D)’

@)

Xw[k] = X(Z’)'eiEnk/N = ) OSkSN -1

®)
The reader is referred to [1] for a detailed
description of the WDFT.

2. Application of WDFT to estimate frequency
offset

For efficient estimation of the frequency offset
A in (2), the frequency response of x[n] — X (el”)-
has to be sampled densely at frequencies close to
. The frequency sample that gives the maximum
value of |X(e!”)| enables us to determine the
frequency offset around w,. The parameters that
have to be chosen are:

1. the length of the WDFT used,
2. the order Mof the allpass function C(z'),
3. the coefficients of A(Z').

Assuming the parameters have been chosen, the
computational procedure we use for efficiently
computing the WDFT is described below.

2.1. Computation of the WDFT

We use the matrix-based implementation pro-
posed in [1] for the computation of the WDFT. We
give a very brief outline of the computational
procedure here; the details are described in [1].
Suppose we want to compute the N point WDFT
of x[n]. Define

Ni(Z) = N(Z)mod 2 )

with N(z') as in (7). Ni(Z') is a polynomial of
degree N — 1. Similarly, define

Di(Z) = D(z)mod 2. (10)

Then, the WDFT (8) can be computed by
replacing N(z') and D(z') with Ni(z')and D(z')
respectively. That is,

N (2] —gern
D1(2),—eizeirn
0<k<N -1 (11)

Xw[k] = X(Z/)lz/:ejan/N =

It is shown in [1] that this can be efficiently
computed for a given signal x[n], 0<n<N —1,
denoted x in vector form. In particular, it is
shown that

X w0 X wl],..., XwIN —1]]' = Ap-W-Q-x,
(12)

where W is the standard N x N DFT matrix, Q is
an N x N real matrix [1] and

- -
5@ 0 0 ... 0
0 ﬁl] 0
Ap = (13)
0 0 1
L Di[N—1] |

We now present an example to illustrate the
procedure and compare the results obtained with
the WDFT to those obtained with the DFT and
the NDFT.

2.2. Example

In (1), let f, and f; be such that f, = 4f and so
o = (n/2). Further, let the sequence x[n] be of
length 64, i.e., N = 64. When an N-point DFT is
used, the frequency separation between adjacent
samples is (27/N) rad/sample.

So, the maximum offset estimation error using a
64-point DFT is

2n

1
CITDFT = 5 X ) = 0.049 rad /sample. (14)

If we assume that f, = 10 KHz, then this means
that a 64-point DFT can estimate frequency offsets
around f, with a maximum error of

Af ppr = errprr X J;—;T = 312.5Hz. (15)

We now consider a 64-point WDFT with C(2),
a second-order allpass function (M = 2).
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Let A(Z') be given by 2> + az~! + b. Then the
frequency mapping is given by
22 4aZ Vb
bz 24 az '+ 1°
where a and b are real coefficients to be chosen

suitably. _ ‘
Substituting z = ¢ and z' = &', we obtain

e 4 ae o 1 b AE”)

T =CFE) = (16)

N = T T e 11 =A@ a7
Using

A'(@”) = e 4(e7) (18)
and

A7(@7) = A7), (19)

we obtain the frequency mapping by equating the
real and imaginary parts on either side of (17) as

cot (w) = acosec(w') + (1 + b) cot(w) , (20)

2 1-b

3. Comparison of different algorithms

We now compare the performance of the
WDFT with two other techniques, viz., the simple
DFT and the DTFT sampled in the frequency
range of interest (NDFT). The algorithms are
evaluated on the basis of accuracy of determining
the frequency offset and the computational com-
plexity involved. For easy comparison, we use the
simple example considered in the previous section.

3.1. Accuracy

We propose evaluating the WDFT with 2 sets of
values for the pair [a, bl—one set of values for
frequency points corresponding to positive devia-
tions around 7/2 and the other for negative
deviations. This was found to give better resolu-
tion than a single WDFT spanning frequency
samples on either side of (n/2). Equivalently, a
much larger length of WDFT is required to get a
resolution comparable to that obtained by using
two appropriate sets of values for @ and b. For a
64-point WDFT, using [a=2.176,b = —1.166]

and [a = —2.087,b = —1.633] was found to give
the best resolution for w around 7/2 for negative
and positive deviations, respectively. The fre-
quency mapping for [a =2.176,b = —1.166] is
shown in Fig. 1. The corresponding frequency
points @ on the z-plane are as shown in Fig. 2.

The 64-point WDFT was computed for each of
the sets of [a, b] using (12). The offset was
determined using (20) from the frequency at which
the WDFT sample had the largest magnitude. The
performance of this method was tested on
MATLAB using offsets Aw around 7/2 ranging
from —0.05rad/sample to +0.05rad/sample. The
estimated offset for a 64-point DFT and 64-point
WDFT (evaluated at 2 sets of values of [a, b]) are
shown in Fig. 3. The offset estimation error for
each case is shown in Fig. 4. As indicated by (14), a
64-point DFT cannot estimate offsets in the
specified range. In comparison, a 64-point WDFT
can estimate offsets in the range with a maximum
error of

errwprr = 0.0055 rad /sample. (21)
For the f. and f used in (15), this translates to

Af wprr = eITwpFT X % = 35Hz. (22)
T

As shown in Fig. 4, to get a performance to the
comparable 64-point WDFT ( x 2), a 1024-point
DFT is required.

We now examine the performance obtained by
using a 64-point NDFT. The frequency sample
points are chosen to be uniformly spaced in the
frequency range of interest [n/2—0.05rad,
7/2+0.05rad]. Thus, this is the DTFT sam-
pled at 64 points spaced in [r/2—0.05rad,
7/2+0.05 rad]. The maximum error obtained is

errnprr = 0.0016 rad /sample (23)
and
A appr = fs _

\/ NDFT = €ITNDFT X i 10.2 Hz. (24)

Evidently, the NDFT offers better resolution
than the WDFT for M = 2. However, this is
achieved at the expense of an increase in the
number of computations, as discussed in the next
section. It should also be noted that by using a
higher-order warping function (larger M) and
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choosing the warping parameters suitably, the
resolution of the WDFT can be improved sig-
nificantly.

3.2. Computational complexity

Let x be the N-dimensional input vector
(complex in general). An N-point DFT requires
(N/2)log, N complex multiplications and N log, N
complex additions. Since one complex multiplica-
tion involves four real multiplications and two real
additions, and one complex addition involves two
real additions, an N-point FFT involves 2N log, N
real multiplications and 3N log, N real additions.

Evaluation of the WDFT as a product of
matrices involves N(N + 2log, N + 4) real multi-
plications and N(2N + 3log, N) real additions [1].
For N = 64, this works out to 5120 real multi-
plications and 9344 real additions. For an equiva-
lent performance, a 1024-point FFT is required
which involves 20,480 real multiplications and
30,720 real additions.

If we use the NDFT, we get maximum flexibility
in choosing the sample points. The resolution can
be controlled more precisely than the WDFT, but
at the expense of increased computation. The
direct method of evaluating of the NDFT involves
4N? real multiplications and N(4N—2) real addi-

Freguency mapping for M=2

2r a=2.176 p
h=-1.166

Original Frequency w

3 -2 -1 0 1 2 3
Warped Frequency

Fig. 1. Frequency mapping for second-order allpass warping
function (M = 2).
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Fig. 2. Frequency sample points on the Z-plane.

tions. For N = 64, this works out to 16,384 real
multiplications and 16,256 real additions. Using
the fact that the NDFT is being evaluated at
points on the unit circle in the z-plane, the number
of computations can be reduced using the Goertzel
algorithm [4]. The second-order recursive filter
implementation of the Goertzel algorithm requires
N(2N +8) real multiplications and N(4N + 6) real
additions. For N = 64, this works out to 8704 real
multiplications and 16,768 real additions.

The complexities of the different algorithms for
N = 64 are summarized in Table 1. When larger
values of N are required, the computational
savings obtained by the WDFT is still higher.
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Fig. 3. Frequency offset, as estimated by DFT and WDFT.
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Fig. 4. Error in frequency offset, as estimated by DFT and WDFT.
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Table 1
Computational complexities of different algorithms

Algorithm (N = 64)) Computations

Number of Number of

multiplications  additions
DFT 768 1152
WDFT 5120 9344
Nonuniformly sampled 16,384 16,256

DTFT (Goertzel algorithm)

4. Conclusions

In this paper, we discuss the application of the
WDFT to estimate frequency offsets. We have
shown that the WDFT, with parameters appro-
priately chosen, gives superior performance in
terms of resolution and computational complexity
over the FFT. It is also computationally more
efficient than the sampled DTFT method (NDFT),
especially for large values of N, although the latter

offers more flexibility in choosing the frequency
sample points. Though the example presented in
this paper uses a second-order allpass function for
warping, a higher-order function could be easily
used. This increases the number of parameters to
be chosen, which would lead to better resolution
by offering more flexibility in choosing the
sampling points.
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