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SUMMARY

Cell-to-cell variation in gene expression and the

propagation of such variation (PoV or ‘‘noise propa-

gation’’) from one gene to another in the gene

network, as reflected by gene-gene correlation

across single cells, are commonly observed in sin-

gle-cell transcriptomic studies and can shape the

phenotypic diversity of cell populations. While gene

network ‘‘rewiring’’ is known to accompany cellular

adaptation to different environments, how PoV

changes between environments and its underlying

regulatory mechanisms are less understood. Here,

we systematically explored context-dependent PoV

among genes in human macrophages, utilizing

different cytokines as natural perturbations of multi-

ple molecular parameters that may influence PoV.

Our single-cell, epigenomic, computational, and sto-

chastic simulation analyses reveal that environ-

mental adaptation can tune PoV to potentially shape

cellular heterogeneity by changing parameters

such as the degree of phosphorylation and transcrip-

tion factor-chromatin interactions. This quantitative

tuning of PoV may be a widespread, yet underex-

plored, property of cellular adaptation to distinct

environments.

INTRODUCTION

Single-cell expression data have revealed pervasive cell-to-cell

variability in mRNA and protein expression, even within isogenic

cell populations exposed to identical environments (Altschuler

and Wu, 2010; Eldar and Elowitz, 2010; Raj and van Oudenaar-

den, 2008). Such cell-to-cell differences in gene expression can

arise due to a combination of ‘‘intrinsic’’ (e.g., inherent stochas-

ticity in biochemical reactions underlying gene and protein

expression) and ‘‘extrinsic’’ (e.g., differences in the micro-envi-

ronment or ribosome concentration of individual cells) factors.

Importantly, variability in the expression of one gene can be

propagated to other genes in the underlying network (Pedraza

and van Oudenaarden, 2005; Rosenfeld et al., 2005); for

example, cells expressing higher levels of a transcription factor

(TF) could express higher levels of target genes activated by the

TF. Propagation of expression variability could contribute to

phenotypic differences among cells, such as the cell-to-cell

variability previously described for cellular differentiation poten-

tial (Chang et al., 2008), adaptation to environmental fluctua-

tions (Kussell and Leibler, 2005), or responsiveness upon

cellular activation (Feinerman et al., 2008). Such diversification

of cellular phenotypes can serve important functions at the

cell population level, such as generating functionally distinct

cell subsets and ensuring that a fraction of cells function prop-

erly despite unpredictable environmental changes (Acar et al.,

2008; Kussell and Leibler, 2005; Thattai and van Oudenaarden,

2004).

The propagation of variation (PoV; sometimes referred to as

‘‘noise propagation’’) of gene expression in regulatory networks

has been studied using a number of approaches, including

experimentally by following gene expression dynamics of engi-

neered circuits in bacterial cells or labeled proteins in yeast,

mathematically using stochastic differential equations, and

computationally using Gillespie simulations (Levchenko and

Nemenman, 2014). Theoretical, modeling work and intuition sug-

gest that a variety of parameters, frommRNA and protein degra-

dation rates to chromatin accessibility, can influence PoV.

However, the environmental, cellular, and biochemical condi-

tions affecting the extent of PoV remain poorly understood,

particularly in mammalian cells that often exhibit complex

signaling and gene-regulatory mechanisms.
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PoV between genes can be detected as correlation in gene

expression among single cells in a cell population (Dunlop

et al., 2008; Pedraza and van Oudenaarden, 2005; Stewart-Orn-

stein et al., 2012). Recently, multiplexed single-cell profiling us-

ing approaches such as microfluidic qPCR and single-cell RNA

sequencing (RNA-seq) revealed that such single-cell based

gene-gene correlations (scGGCs) are prevalent, and efforts are

underway to reconstruct the topology of gene networks by utiliz-

ing scGGCs (Pina et al., 2015). Context-dependent PoV behavior

among genes could in principle be revealed by comparing the

degree of scGGCs in cell populations exposed to distinct envi-

ronments. This approach utilizes the environment as a natural

perturbation of multiple biochemical parameters (such as chro-

matin accessibility and phosphorylation activity) simultaneously

regulating PoV. The combined effects generated by such natural

perturbations would be difficult to achieve by a priori selecting

and perturbing one parameter at a time. By linking changes in

scGGCs to those in signaling, chromatin, and transcriptional

activities among environments, we can begin to explore the

biochemical underpinnings of scGGCs and PoV.

Here we employ four different cytokine perturbation environ-

ments to systematically study environment-dependent PoV

in human macrophages. Macrophages provide an attractive

mammalian model for studying PoV across environments as

they are capable of diverse phenotypic adaptations and have

been implicated in many human diseases (Murray and Wynn,

2011). Generation and integrative analysis of both single-cell

and ‘‘stochastic profiling’’ (Janes et al., 2010) data revealed sig-

nificant differences in PoV under distinct conditions of cytokine

exposure. Our work illustrates how natural perturbations can

be utilized to reveal adaptive PoV behavior and suggests that

tuning of PoV in gene-regulatory networks may occur via post-

translational and chromatin-mediated mechanisms to drive or

buffer expression co-variation among genes in single cells.

Such tuning may be a widespread feature of cellular adaptation

to diverse environments and can shape environment-dependent

patterns of cellular heterogeneity.

RESULTS

Environment-Dependent PoV

We sought to examine how PoV may change in an environment-

dependent manner. While observing scGGCs is often expected

when a gene X is capable of regulating another gene Y, it is

possible that cells may tune PoV, for example to attenuate PoV

when buffering of stochastic fluctuation in gene expression level

is beneficial, or to enhance PoV when robust transmission of

upstream signals is desired (Figure 1A). Changes in PoV could

change the co-variation of gene expression among single cells

and thus also the pattern of cellular heterogeneity in the popula-

tion (Figure 1B). As certain ‘‘hub’’ genesmay regulate many part-

ners, changes in PoV involving hubs may lead to modules of

genes showing differential scGGC between different environ-

ments (Figure 1C).

To begin to explore environment-dependent PoV, we per-

formed in silico stochastic simulations of a simple, prototypical

two-gene cascade model consisting of a TF (X) regulating

a target gene (Y) in single cells across multiple randomly

selected sets of parameter combinations, with each parameter

X mRNA

Y
 m

R
N

A

Upstream variation buffered,

Y varies independently from X
Upstream variation propagated,

Y varies coherently with X

Environment I Environment II

Difference in measured single cell gene-gene 

correlation (scGGC) between enivironments; 

may be independent of average expression level (+)

X mRNA

Y
 m

R
N

A

 

Environment-specific changes in propagation of variation (PoV)

Enivironment I

Enivironment II

Correlation of 

module of genes

to putative hub

∆ Differential scGGC/PoV

between environments

(dscGGC)

A

B

C

A

B
D

C

E

F

Module of 

correlated genes

Putative hub gene

scGGC

between

genes

Gene X Gene Y
Gene Y
Gene YGene Y
Gene Y
G YG Y

Gene X
Gene XGene XGene XGene XGene XX Gene X

Gene X
Gene XGene XGene XGene XGene XXGene Y

Biochemical parameters of the 

system affected by the environment

Environment could tune system 

parameters to favor PoV

+ +

System parameters 

(transcription rates, 

degradation rates, etc.)

Figure 1. Assessing Condition/Environment-Dependent Propaga-

tion of Variation

(A) A regulatory connection between two genes (such as a transcription factor

X that binds to the enhancer/promoter region of a target gene Y to regulate the

transcription of the target gene) could have different degrees of ‘‘activity’’

(e.g., active versus inactive) depending on the environmental context. The

environmental context could affect biochemical parameters governing the

expression of and interaction between X and Y, and could hence affect

the quantitative extent of propagation of variation (PoV) between the two

genes within cells.

(B) PoV between two genes can be inferred from the degree of their correlation

among single cells in the cell population. Thus, differences in PoV between the

two conditions can be detected as changes in the strength of single-cell gene-

gene correlations (scGGCs). Such correlation changes may or may not be

associated with average expression.

(C) Since genes function in larger regulatory networks within cells, changes in

the value of parameters governing PoV among genes could result in modules

of genes showing differential scGGCs (dscGGCs) among conditions. In

particular, certain ‘‘hub’’ genes, such as transcription factors that regulate and

thus can propagate expression variation to multiple downstream target genes,

may exhibit dscGGCs with many of its targets.
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combination representing a different environment that perturbs

multiple parameters at once. Confirming our intuitions, these

simulations revealed that the strength of PoV between two genes

can be tuned by the biochemical parameters governing their

expression and interaction, and high PoV only occurs for specific

parameter combinations such as those permitting a sufficiently

high rate of degradation of protein X and rate of interaction of

protein X with the promoter/enhancer of gene Y (Figure S1 and

Table S1).

Cell-to-Cell Variation Can Be Robustly Detected in

Macrophages under Multiple Environmental Conditions

To utilize natural environmental perturbations of cells to study

the effect of altering multiple biochemical parameters on PoV,

we used human macrophages, an immune cell type known for

its phenotypic and functional diversity (Gordon and Taylor,

2005). Environmental adaptations of macrophages, particularly

their tissue-dependent behavior and in vitro responses to cyto-

kines or bacterial products such as tumor necrosis factor alpha

(TNF-a), lipopolysaccharide, interferon g (IFN-g), or interleukin-4

(IL-4), have been productively studied at the transcriptomic,

signaling, and epigenomic levels (Schultze and Schmidt, 2015).

We obtained single-cell expression profiles from human blood

monocyte-derived macrophages cultured in four conditions:

(1) baseline (CNT), (2) after stimulation for 24 hr using IFN-g in

conjunction with TNF-a (IFN + TNF), (3) 24 hr post IL-4 stimula-

tion, and (4) 24 hr post IL-10 stimulation. The latter three condi-

tions are intended to model, respectively, the cellular state in

inflammatory, anti-parasitic, and regulatory environments (Mur-

ray and Wynn, 2011).

We sorted single cells using indexed fluorescence-activated

cell sorting into 96-well plates followed by microfluidic-based

multiplexed qPCR transcript profiling (Figure 2A). Our flow cyto-

metric and qPCR panels measure genes associated with macro-

phage activation (e.g., CD36, CD206, STATs, PPARG), genes

known to function in core cellular and metabolic processes, as

well as genes selected based on publicly available gene expres-

sion compendia of activated macrophages and human immune

cells (Figure 2B).

We observed widespread cell-to-cell heterogeneity among

macrophages harvested from the same culture. Namely, cells

exposed to the same environment exhibited markedly different

transcriptional profiles (Figure 2C; expanded heatmap in Fig-

ure S2A). IFN + TNF-treated cells had clearly distinct expression

profiles from the other three treatments (Figures 2C and 2D). By

contrast, even though changes were clearly apparent after IL-10

or IL-4 treatment, including upregulation in surface protein

marker expression (e.g., CD163 in IL-10; CD206 in IL-4; Fig-

ure 2E), cells in these conditions were less separable based on

mRNA expression from each other and from those in CNT, likely

owing to the overall milder changes in average expression and

extensive cell-to-cell heterogeneity in these conditions. Many

genes had bimodal expression patterns within the same treat-

ment condition: one mode corresponds to cells with undetect-

able levels of expression (‘‘OFF’’ cells), while the other reflects

the continuous differences among cells expressing detectable

levels of the transcript (‘‘ON’’ cells). This bimodal pattern was un-

likely due to the presence of cells that failed to detect the cyto-

kine treatment since phospho-flow analysis of cells harvested

from each treatment condition exhibited activation of the ex-

pected canonical signaling pathways (Figure 2F). Visualization

of cells in dimensionality-reduced space based on gene expres-

sion for each condition independently also did not reveal any

clearly distinct clusters of cells (Figure S2B).

Since technical noise can be large in single-cell mRNA mea-

surements (Gr€un et al., 2014), we next adopted stochastic

profiling (Bajikar et al., 2014; Janes et al., 2010), by repeatedly

profiling samples of ten random cells for all four conditions

(Figure S2C). This process provides information about the under-

lying single-cell expression distribution but is less prone to tech-

nical noise than direct single-cell profiling due to a 10-fold

increase in the average amount of input RNA (Janes et al.,

2010). A comparison of the mean expression of single cells

with that of the ten-cell samples (divided by ten) showed that

for most gene/condition combinations with moderate to high

expression, single- and ten-cell samples are largely concordant.

For lowly expressed gene/condition combinations, ten-cell data

shows better detection sensitivity, as expected (Figure S2D). To

better understand the prevalence of true versus technically

induced false OFFs in the single-cell data, we applied a Bayesian

method we developed (QVARKS; Narayanan et al., 2016) to inte-

grate both single- and ten-cell data, and found that only a few

gene-condition combinations suffered from large technical

detection problems (Figure S2E; e.g., CD36 in IL-4 condition).

Consistent with our observations using only single-cell data,

this analysis revealed that expression heterogeneity originated

primarily from ON versus OFF cells and from continuous expres-

sion differences among ON cells (Figures S2F and S2G). Thus,

macrophages under distinct environments exhibit substantial

cell-to-cell variations. Although the ultimate origin of this hetero-

geneity is not known, we can utilize these robust variations to

assess condition-dependent scGGCs and PoV.

Environment-Dependent scGGCs and PoV in Human

Macrophages

To assess scGGCs within each stimulation condition, we chose

to use the ten-cell data (Table 1; step 1), which robustly captures

scGGCs computed from single cells from the same population

(Bajikar et al., 2014) (Figures S3A and S3B). Importantly, we

uncovered many more significant correlations using ten-cell

data (Figures S3A and S3B), likely reflecting the improved

robustness of ten-cell measurements. Both discrete- and contin-

uous-type correlation present in the single-cell data could be

found as continuous correlations in the ten-cell data (Figure 3A).

Thus, ten-cell data provide a robust readout of both single-cell

variation and scGGCs. The scGGCswere also largely unaffected

by correction for differences in cell size (see STAR Methods and

Figure S3C), indicating that this known extrinsic factor was not

driving these observations.

We assessed the replicability of the detected correlations

using additional ten-cell data obtained from two independent

experiments on sorted cells derived from the same donor. The

significant gene-gene correlations we detected earlier exhibited

significant replication (Table S2, p < 0.05 for replication for each

condition in each experiment, with IL-10 and CNT conditions ex-

hibiting the most significant replication). We next assembled

gene-gene correlations detected in the discovery and at least

one of the two replication experiments to build scGGC networks

Cell Systems 4, 379–392, April 26, 2017 381



representing the underlying co-variation of gene expression

among cells in each condition (Figure 3B; see STAR Methods

and Data S1). Shared patterns of scGGCs among conditions

were observed, such as that between CREG1 and FTL,

CASP3, and IFI30. These interactions could reflect PoV in a

core network that operates in macrophages independent of

the environment, given that CREG1 was predicted as a tran-

scriptional regulator of core macrophage-associated genes in

mouse cells (Gautier et al., 2012). Some scGGCs also appeared

to be condition-specific. For example, correlations involving

CD274 were higher in the IFN + TNF condition, which may be

because CD274 has higher expression in IFN + TNF (Table S3)

and a substantially higher fraction of cells had detectable

CD274 expression in that condition (Figure 2C).

An interesting feature of these networks is the presence of

modules of genes that appeared correlated to each other either

directly or indirectly through hub genes in a condition-dependent

manner. To test whether some of these differences across

A

B

C

D

E F

Figure 2. Robust Gene Expression Heterogeneity in Macrophages Provides the Substrate to Study PoV

(A) Experimental setup of single-cell macrophage analysis. Macrophages differentiated in vitro from human blood monocytes using M-CSF are treated with

different cytokines for 24 hr, followed by surfacemarker labeling, indexed single-cell sorting, and balanced profiling of samples fromdifferent conditions in each of

the Fluidigm qPCR plates.

(B) Functional category distribution of genes in our Fluidigm qPCR panel.

(C) Gene expression profiles of single cells obtained from the same donor and exposed to the indicated treatments. Heatmap shows the expression levels in Et

units (40-Ct, normalized across plates) of single cells (columns) sorted from the indicated treatment conditions. Only genes that have at least 10% of cells having

non-zero expression (i.e., ‘‘ON’’) in at least one treatment condition are shown (77 of 93 measured genes). See also Figure S2A.

(D) Visualization of single-cell gene expression profiles in reduced dimensions. Each dot is a single cell, and the 77 genes shown in (B) are reduced to three

dimensions (or factors) by using zero-inflated factor analysis (Pierson and Yau, 2015). See also Figure S2B.

(E) Selected surface marker phenotype of macrophages in the indicated treatment conditions as measured by flow cytometry.

(F) Phosphorylation status of canonical STAT signaling proteins under the cytokine treatment doses used (data from a representative experiment shown [out of a

total of two experiments]).
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conditions are indeed statistically significant (Table 1; step 2) and

not an artifact of the cutoffs used to construct/visualize these

networks, for each gene (as a potential correlation hub) we

used a bootstrap/resampling-based procedure to assess

whether the correlation strength between this potential hub

gene and other partner genes, in aggregate, in one condition is

significantly different from those in another condition. Testing

for differential correlation for each scGGC between two condi-

tions will have increased statistical uncertainty beyond detecting

scGGCs in a single condition; here we have increased statistical

power by testing for differences in correlation at the genemodule

level rather than at the level of each gene-gene correlation, which

is also more robust against experimental noise compared with

assessing individual scGGCs. Consistent with IL-10 and CNT

scGGCs exhibiting the most significant replication as reported

above, this analysis revealed seven genes showing hub-like dif-

ferential scGGC/PoV (dscGGC) with their partners in the IL-10

versus CNT comparison (false discovery rate [FDR] < 0.1 cutoff

in the primary ten-cell experiment followed by replication in

two independent ten-cell experiments at p < 0.1; Figure S3D;

see also Table S4); while other condition comparisons yielded

some dscGGC hits (see Table S4), they lacked the overall signif-

icant replication signal found for IL-10 versus CNT and were thus

not further considered (see STAR Methods).

Hubs exhibiting dscGGCswith at least ten partner genes in the

IL-10 versus CNT comparison include ATF2, CASP1,GLUL, and

HIF1A (Figure 3C). The correlated gene partners for these hub

genes are highly overlapping, and thus they can be considered

together as a larger, merged gene module exhibiting higher

PoV/scGGCs in the IL-10 condition relative to CNT (Figure S3E).

Of the four IL-10-specific dscGGC hubs, ATF2 and HIF1A are

known to encode TFs, and hence are candidates to directly regu-

late the expression of their partner genes. To assess whether

ATF2 or HIF1a may directly regulate genes in the larger

merged module, we generated histone H3 lysine 27 acetylation

(H3K27ac) chromatin immunoprecipitation sequencing (ChIP-

seq) data for both CNT- and IL-10-treated macrophages to iden-

tify enhancer/promoter peaks nearby module genes (Creyghton

et al., 2010). Based on motif enrichment in the union of peaks

found in CNT and IL-10 near module genes, enrichment was

found for the AP-1 motif bound by ATF2 (p = 1.41 3 10�56),

while no enrichment was found for HIF1a (p > 0.9, relative to

genomic background; p values from the threshold-free log-

normal distribution based-enrichment test provided in the

PWMEnrich package; see STAR Methods). The detection of a

potential IL-10-specific role of ATF2, a member of the AP-1 TF

complex, is particularly intriguing: despite IL-10 being classically

thought of as an anti-inflammatory activator and ATF2 as acti-

vated downstream of inflammatory signals such as lipopolysac-

charide (Liu et al., 2009; Murray, 2006), our results showed that

ATF2 exhibited significant dscGGCs in IL-10-treated cells rather

than in the inflammatory condition IFN + TNF (Figure 3B). We

hereafter refer to the larger gene module from the merged sets

of these four dscGGC hubs as the ‘‘ATF2 extended module’’

(Figure S3E and Table 1; step 3).

In principle, changes in scGGCs between different conditions

may occur without overt changes in average expression mea-

sured at the cell population level (Figure 1). In support of this

notion, many genes in the ATF2 extended dscGGC module in

IL-10 versus CNT were not differentially expressed based on

average expression obtained from ten-cell data (Table S3B;

Figure S3F shows average fold change of genes in the ATF2

extended module, based on ten-cell data). To further assess

the relationship between dscGGCs and average expression esti-

mated from multiple donors through an alternate profiling tech-

nology, we utilized bulk RNA-seq data that we generated from

CNT- and IL-10-treated cells in a related study (our unpublished

data; data available at NCBI GEO: GSE81444). As a group, the

extended module genes exhibited statistically indistinguishable

change after IL-10 treatment relative to CNT when compared

with that of a set of ‘‘negative controls,’’ which is comprised of

genes from our qPCR panel that were not correlated to ATF2 in

the IL-10 treatment andwere not part of the ATF2 extendedmod-

ule (p = 0.8469, Wilcoxon test, Figure S3G; see STAR Methods

Table 1. Systematic Identification of the Extended ATF2 dscGGC Module

Step Description

1. Compute scGGC network in

each condition.

1a. Perform integrative analysis of single/ten-cell data, and identify genes with sufficient detects

and hence robust cell-to-cell variation in each condition (Figures 2 and S2).

1b. Compute ten-cell Spearman correlation for each pair of genes to construct scGGC networks

within each condition, after verifying that single- and ten-cell correlations are broadly

concordant (Figures 3 and S3).

2. Compute dscGGC (differential

scGGC) in each pair of

conditions.

2a. Use scGGC networks to select hub/partner gene modules for testing dscGGC when comparing

two conditions; use the first two ten-cell experiments to choose the FDR cutoff of these scGGC

networks, and the unseen third ten-cell experiment to perform the final replication test.

2b. Test each module for statistically significant dscGGC signal (i.e., statistically significant gain or

loss of correlation strength in one condition relative to another).

3. Identify the most replicated

dscGGC modules using all three

ten-cell experiments, and TF

binding motif enrichment based

on H3K27ac enhancer profiling.

3a. Identify condition pairs with independent replication of dscGGC signals: IL-10 versus CNT

pair satisfied this criteria (Figure S3), and resulted in seven replicated dscGGC modules

(Figures 3 and S3).

3b. Merge the four largest of these seven dscGGC modules since they had overlapping genes.

As this merged module was enriched for ATF2/AP-1 binding motif in nearby enhancers with

activity (H3K27ac) marks, call it the extended ATF2 dscGGC module (Figure S3). Also use

H3K27ac data in IL-10 versus CNT (Figure S4) to select enhancer regions for follow-up by

ChIP-qPCR (Figures 4 and S4).
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for the negative control gene set selection procedure). We also

note that for the negative control genes no significant association

was detected between the changes in their correlation strength

with ATF2 and the changes in their average expression between

the IL-10 and CNT conditions (p > 0.1 for all three experiments;

Spearman correlation test; Figure S3H); thus, increased expres-

sion and hence increased sensitivity to detect changes in corre-

lations between IL-10 and CNT alone is unlikely to explain the

increased correlations we observed among genes in the ATF2

module in the IL-10 relative to CNT condition.

Molecular Basis of IL-10-Dependent PoV

We next explored the potential molecular mechanisms driving

condition-dependent PoV by focusing on the ATF2 extended

module in IL-10 versus CNT conditions. PoV/scGGC tuning

may involve altering the degree of interactions between the up-

stream regulator, postulated to be ATF2 in this case, and the

enhancer/promoter of its regulated genes. To explore this possi-

bility, we examined the activity of enhancers bearing ATF2 bind-

ing motifs using the H3K27ac ChIP-seq data introduced above

and also the levels of bidirectional enhancer RNAs (eRNAs)

measured by Cap Analysis of Gene Expression (CAGE; Ander-

sson et al., 2014). Overall, the H3K27ac or eRNA peaks that con-

tained predicted AP-1/ATF2 binding sites nearby the dscGGC

genes have very mildly elevated signal compared with the non-

dscGGC-negative control genes (p = 0.075 for H3K27ac peaks,

p = 0.049 for eRNA peaks, Figures S4B and S4C), suggesting

increased enhancer activity at these sites after IL-10 treatment.

To assess whether IL-10 treatment also induced ATF2 bind-

ing to putative AP-1 motif-containing sites within promoter/

enhancer peaks near ATF2 extended module genes, we used

genome-wide ATF2 ChIP-seq data to predict individual ATF2

binding sites within a set of select enhancer peaks (see STAR

Methods for selection criteria, including the criterion used for

selecting peaks having higher H3K27ac signal in cells treated

with IL-10 compared with CNT condition). We then used ATF2

ChIP-qPCR to validate whether these predicted sites indeed

exhibit ATF2 binding and have quantitatively higher ChIP signal

in IL-10 than in CNT. Compared with background regions not

containing ATF2-binding motifs, the predicted ATF2-binding re-

gions have substantially higher signal in both conditions (Fig-

ure 4A, p = 3.8 3 10�5 and 4.996 3 10�5, respectively, in IL-10

and CNT, F test comparing two nested linear models after

accounting for donor/region effects as described in STAR

Methods).While the signal from the background control genomic

regions was not different between CNT and IL-10 conditions, the

predicted sites exhibited higher signal in the IL-10 condition

(p = 9.209 3 10�5, F test as above; Figure 4A). The ATF2 ChIP

signal for the predicted sites was also higher in IL-10 than in

CNT when the data are expressed as fold enrichment values

against background (p = 1.996 3 10�6, F test as above; Fig-

ure 4B). Together, these data suggest that quantitatively

increased interaction between ATF2/AP1 and enhancers/pro-

moters nearby dscGGC genes is a potential contributor to the

gain of correlation between ATF2 and dscGGC genes following

IL-10 activation.

Increased interaction between ATF2 and enhancers in the

IL-10 condition could reflect better enhancer accessibility facili-

tated by chromatin regulatory factors and/or higher levels of

active ATF2/AP-1. Like many TFs, the activity of ATF2 is regu-

lated by phosphorylation through kinase signaling cascades in

the cytoplasm, which promotes ATF2 translocation to the nu-

cleus and its DNA binding activity (Lau and Ronai, 2012). Thus,

despite the fact that IL-10-treated cells only showed mildly

elevated average ATF2 mRNA expression versus CNT (1.2-fold

increase, p = 3.94 3 10�5, Wald test by DESeq2; Figure S3G),

the activity of ATF2, as indicated by the amount of phosphory-

lated ATF2 in the nucleus, could be different between the two

conditions. To test this hypothesis, we first assessed Thr71

phosphorylation of the ATF2 protein (pATF2). Phospho-flow ex-

periments indicated a non-zero baseline pATF2 signal in CNT

conditions and a mild, rapid increase in median pATF2 levels

post IL-10 activation (Figure 4C), which peaked at 2 hr and

remained elevated at 24 hr, the same time point at which our

single- and ten-cell transcript profiling data were collected.

The pATF2 induction dynamics followed that of pSTAT3, the

canonical STAT downstream of IL-10 activation via the IL-10 re-

ceptor (Figure 4C, lower panel); and pATF2 induction following

IL-10 activation was consistently observed in multiple indepen-

dent experiments (Figure 4D, p = 0.0061, paired t test). Staining

with an antibody against total ATF2 protein showed similar or

slightly reduced average levels of total ATF2 after 24 hr of

IL-10 treatment (Figure S4D), consistent with the mild bulk fold

change inATF2mRNAexpression. Together, these data suggest

that the observed elevation in pATF2 level in IL-10 versus CNT

can be attributed to a higher ATF2 phosphorylation rate (or a

lower rate of dephosphorylation) rather than to increases in the

average expression of the ATF2 protein.

Consistent with the increase in pATF2 observed by flow

cytometry, confocal imaging revealed increased nuclear pATF2

24 hr after IL-10 activation, after accounting for changes in nu-

clear size, and these data also highlight the cell-cell heterogene-

ity in nuclear pATF2 levels in each condition (Figures 4E and 4F,

p = 6.63 10�7, t test). While other mechanismsmay be involved,

Figure 3. Systematic Identification of scGGC Networks and Differential scGGC (dscGGC) Hubs and Gene Modules

(A) Concordance between discrete/continuous single-cell GGCs and continuous ten-cell GGCs for two example gene pairs. Simulated ten-cell GGCs shown as 2D

contour density (in gray) are computed using the single-cell data only (see STARMethods). See also Figures S3A and S3B. r, Spearman correlation; OR, OddsRatio.

(B) Within each treatment condition, scGGC networks are assembled based on individual gene-gene correlations (i.e., edges in the network) computed using the

‘‘discovery’’ ten-cell dataset passing the false discovery rate < 0.2 cutoff. Thickness of edges indicate the extent of replication in additional validation experiments.

Genes and edges discussed in the text are highlighted in color. Note that nodes are fixed in the same relative position for each network. See also Figure S3C.

(C) The four dscGGC hubs with the largest number of partner genes identified in the IL-10 versus CNT comparison, which were then combined to form the ATF2

extended module. The Spearman correlation coefficients between the hub gene (e.g., ATF2 in the first panel) and partner genes are shown for the IL-10 and CNT

conditions as boxplots (see STAR Methods). For each hub gene and its associated gene module, dscGGC p value from the bootstrap procedure (see STAR

Methods) is shown after adjustment for the discovery experiment (Exp. 1) and as is for the two validation experiments (Exp. 2 and 3). See also Table S4, and

Figures S3D and S3E.
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these data provide evidence that the increased interaction be-

tween ATF2 and the enhancers of dscGGC genes in IL-10

compared with CNT conditions can be attributed, at least in

part, to elevation in ATF2 phosphorylation and nuclear localiza-

tion. Interestingly, the non-zero level of pATF2 in both IL-10

and CNT conditions (according to both phospho-flow and imag-

ing, based on comparison with antibody-isotype control stained

cells; Figures 4C and 4E) suggests that the increased enhancer

interactions result from fine-tuning of ATF2 phosphorylation

rather than ‘‘digital’’ ON/OFF switching of ATF2 activity. In addi-

tion, the large cell-to-cell variation in the extent of pATF2 nuclear

localization (Figures 4E and 4F) further supports the hypothesis

that ample variation exists in the TF activity of ATF2 at the

single-cell level in both conditions, but such variation was trans-

mitted more effectively to downstream genes in the IL-10 than in

the CNT environments.

To test whether the phosphorylation of ATF2 was a direct

downstream effect of IL-10 ligation to its receptor, we stimulated

macrophages using IL-10 together with an IL-10 receptor-block-

ing antibody and then assessed pSTAT3 and pATF2 levels (Fig-

ure 4G). In the presence of the blocking antibody, both pSTAT3

and pATF2 were not elevated, thus confirming that the activation

of ATF2 was a direct effect of IL-10 and not due to reasons such

as activation by other agents in the cytokine preparation.

Although the mechanism by which the IL-10 receptor mediates

the phosphorylation of ATF2 is unclear, the level of pATF2 was

found to be significantly correlated with that of pSTAT3 among

single cells following IL-10 activation, even after accounting for

cell size via linear modeling (Figure S4E; p < 2 3 10�16 at

2 and 24 hr after IL-10 treatment, see STAR Methods for meth-

odological details), further suggesting that ATF2 may be linked

to the IL-10 receptor-mediated signaling pathway.

IL-10 has been proposed to play an anti-atherogenic role

and can increase both cholesterol uptake and efflux in macro-

phages (Han andBoisvert, 2015). Several of the genes correlated

with ATF2 specifically in the IL-10 condition, including CD36

and MSR1 (both receptors mediating uptake of low-density

lipoprotein), TLR2, PPARG, and MAFB, have been linked to
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Figure 4. Changes in Chromatin Interaction and Protein Activation

Are Associated with Enhanced PoV in the ATF2 Extended Module

after IL-10 Treatment

(A and B) ATF2 ChIP-qPCR data (expressed as percent of input or fold

enrichment, respectively) was used to evaluate binding of ATF2 to select

H3K27ac peak regions near ATF2 dscGGC extended module genes in CNT

and IL-10 environments. Data are obtained from three independent ChIP ex-

periments using cells from three donors for 14 target and four background

regions. The p values are based on F test comparing two nested linear models

after accounting for donor and target region effects (see STAR Methods).

(C) pATF2 and pSTAT3 induction dynamics following IL-10 treatment.

Representative of two independent experiments. The plot showsmean ± SD of

replicate samples from one experiment. See also Figures S4D and S4E.

(D) pATF2 induction at 2 hr following IL-10 treatment from seven independent

experiments using cells from four different donors is shown (paired data from

each experiment is connected by a line). The p value was obtained from paired

t test.

(E and F) Nuclear pATF2 staining 24 hr post IL-10 treatment measured using

confocal imaging. Each dot in (F) corresponds to the level of pATF2 staining

intensity in a single nuclei after normalization by nuclear size delineated by

DAPI co-staining. Multiple fields of view are combined; data shown are from

one experiment, and are representative of two experiments utilizing cells from

different donors. The p value shown in (F) was obtained from Student’s t test.

(G) pATF2 and pSTAT3 induction dynamics after IL-10 treatment in the

absence/presence of an IL-10 receptor-blocking antibody. Points represent

data from three independent experiments, measured at 1 hr, 2 hr, or both time

points. Values shown correspond to changes in median fluorescence intensity

(MFI) relative to the non-treated cells (baseline).
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atherosclerosis (Hamada et al., 2014; Moore et al., 2013; Zhang

and Chawla, 2004). Ingenuity pathway analysis of the ATF2

extended module genes revealed connections between many

of the these genes and lipid metabolism-related pathways (Fig-

ure S4F), and H3K27ac peaks detected in this study nearby

several of the extended module genes harbor genetic variants

known to be associated with lipid/metabolic traits based on

genome-wide association studies (GWAS) (Table S5). Further

supporting a link between this group of genes and atheroscle-

rosis, comparison of the expression of genes in both the ATF2

module and the extended module using two external microarray

datasets of atherosclerosis plaque macrophages revealed that

the module genes tended to be more differentially expressed

than the negative control gene set in plaque macrophages

compared with other control cell types (Figures S4G and S4H).

Proposed Model and Its Quantitative Assessment via

Stochastic Simulations

Our experiments reveal that environment-dependent, quantita-

tive tuning of chromatin-TF interactions near genes in the ATF2

module can modulate their PoV behavior (Figure 5A). Specif-

ically, by increasing the average rate of phosphorylation (or

decreasing the rate of dephosphorylation) and nuclear localiza-

tion of ATF2, the IL-10/IL-10R signaling pathway may serve to

further open up the ‘‘channel’’ for the propagation of ATF2 tran-

script variability to downstream genes (Figure 5A). For example,

comparing with a cell in CNT, an IL-10-treated cell expressing

similar levels of the ATF2 transcript tends to have a higher level

of nuclear pATF2, which potentially has a better capacity to

interact with the enhancer/promoters of downstream partner

genes. This is supported by the elevated ATF2 ChIP-qPCR,

A

B C

E

D

Figure 5. Proposed Model and Stochastic

Simulation of Condition-Dependent PoV

(A) Our results suggest a model where environ-

ment-dependent scGGCs/PoV between an up-

stream factor and downstream target genes is

achieved by tuning the degree of phosphorylation

or translocation of the factor and enhancer activity

nearby the targets. Context-dependent PoV could

potentially lead to functional diversification among

cells in the population, with for instance increased

PoV resulting in coordinated expression of func-

tionally related genes in a module.

(B) Modeling schematic of a two-gene-regulatory

cascade in which the activated protein product of

geneX regulates the transcription of geneY.mRNA

and protein are abbreviated respectively with

‘‘m’’ and ‘‘p’’ subscripts in the parameter names.

(C) A colormap of scGGCvalues (computed among

single cells in a simulated cell population at a

fixed, ‘‘snapshot’’ time point) is shown as a function

of different combinations of activation (ON) and

deactivation (OFF) rates of the Y promoter (corre-

sponding to kYon; k
Y
off values in Figure S1D, respec-

tively). Values used for other parameters are listed

alongside theplot.Unitsofparametersareevents/hr

or events/hr/molecule as in Figure S1D.

(D) Different representation of (C) where the frac-

tion of simulated cells with accessible promoter/

enhancer at the fixed snapshot estimated by

kYon=ðk
Y
on + k

Y
off Þ is shown along the x axis and

scGGC is shown along the y axis.

(E) Assessing changes in scGCC by increasing the

activation rate of protein X and hence the average

level of active protein X (APX) in silico, simu-

lated over different combinations of Y promoter/

enhancer accessibility, achieved by considering

every kYoff value shown in (C) with every other kYon
value in (C) for better clarity. Two environments are

simulated, High-APX and medium-APX (Med-APX)

conditions, with arrows connecting the paired APX

conditions for each kYon and kYoff combination

(where the only difference is the protein X activa-

tion rate; the color of the arrow indicates if the

mRNA X-Y correlation is higher in the Med-APX or

the High-APX condition). For a selected parameter

set, the inset panel shows a scatterplot of mRNA

X and Y transcript levels in each simulated cell

and associated Spearman correlation rs (at a fixed

snapshot time point, see STAR Methods).
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H3K27ac, and eRNA signals nearby partner genes in the IL-10

environment. Consistent with this notion, the subset of genes

in the ATF2 extended module whose enhancers/promoters

were selected for ChIP-qPCR testing and thus exhibited exper-

imental evidence of ATF2 binding showmildly increased average

mRNA expression compared with the negative control set

(p = 0.0067, Wilcoxon test; Figure S5A; see STAR Methods for

selection criteria). Elevated H3K27ac and eRNA signals could

be a result of ATF2 binding or factors other than ATF2 acting

independently or in conjunction with ATF2 to increase activity

of the promoter/enhancer region near partner genes post IL-10

treatment. As these effects are rendered over cells in the popu-

lation expressing different levels of ATF2, increases in scGGCs

between the mRNA of ATF2 and that of its partner genes in

IL-10 relative to CNT could emerge (Figure 5A), which may

then lead to heterogeneity in the module-related phenotype

among cells in the IL-10 condition.

To assess whether key features of this proposed model are

quantitatively consistent with our experimental observations,

we next simulated an augmented version of the prototypical

two-gene cascade model (gene X regulates gene Y) evaluated

earlier in Figure S1. To capture the activation of a protein via

post-translational modification (phosphorylation) and subse-

quent nuclear translocation as in the case of ATF2, we added

an activation and a corresponding deactivation reaction for

protein X, where only the activated form can affect the tran-

scription of gene Y (Figure 5B). We then assessed via in silico

stochastic simulations if increase in scGGC is observed after:

(1) increasing the accessibility or activity of enhancers/pro-

moters of gene Y (modeled as having higher ON rate and/or

lower OFF rate values [kYon and kYoff in Figure 5B]), as suggested

experimentally by the increase in H3K27ac and CAGE signals

near promoters/enhancers of the ATF2 partner genes in the

IL-10 relative to CNT condition; and (2) increasing the activa-

tion rate of the upstream protein X and thereby the average

level of active protein X by 1.74-fold, given that the average

level of the phosphorylated, nuclear ATF2 protein in the IL-10

condition was 1.74-fold higher relative to the CNT condition

(Figure 4F).

Our simulations confirmed that increasing the accessibility of

Y promoters/enhancers alone can lead to increases in scGGC

and hence in PoV (Figures 5C and 5D). Note also that in general,

the Y promoters/enhancers have to frequently reside in the

‘‘active’’ state in order to achieve high PoV (see kYon and kYoff plots

in Figure S1D). Increasing the activation rate of protein X by

the set amount can also increase scGGC across a range of Y

promoter/enhancer accessibility scenarios (Figure 5E). These

observations are robust under alternate modeling setups, such

as when the activated form of protein X not only influences

transcription initiation of gene Y, but also affects accessibility

of the Y promoter/enhancer (as modeled by having kYon
depend on the level of active protein X; see STAR Methods)

(Figures S5B and S5C). Furthermore, given a combination of

biochemical parameters that can generate high scGGC

(Spearman correlation > 0.7 as in Figure S1C), increasing the

activation rate of protein X alone tends to further elevate the

strength of the correlation (Figure S5D). Together, these simula-

tion results further strengthen key features of our proposed

model, including the notion that tuning the promoter/enhancer

accessibility and/or the upstream protein’s activation can mark-

edly influence PoV.

DISCUSSION

Our analysis of single-cell gene-gene correlation in human mac-

rophages exposed to distinct environments lends concrete

experimental support to the notion of environment-dependent

regulation of PoV, and highlights the potential role for contextu-

ally triggered differences in phosphorylation, nuclear localiza-

tion, and enhancer statuses in tuning PoV. While these

processes are commonly appreciated to be involved in signal

transduction and cellular adaptation to different environments,

their role in adaptively regulating PoV and thus patterns of

cellular heterogeneity from a single-cell biology perspective,

was not well known and appreciated. Our results suggest that

the propagation of single-cell variationsmay be regulated across

different environments through fine-tuning of key gene-regula-

tory network parameters that govern the sensitivity of down-

stream genes to the fluctuations in the upstream regulator.

Environment-dependent regulation of PoV is needed given the

diverse, complex niches in which cells operate, particularly in

multicellular organisms. In the context of various sources of

biochemical ‘‘noise’’ individual cells face, homeostasis and

phenotypic diversity in the cell population must be maintained

or regulated. Adaptive mechanisms are therefore required to

buffer the propagation of expression variation in networks, other-

wise fluctuations in highly connected ‘‘hub’’ genes may drive

large phenotypic changes within cells, resulting in undesirable,

functionally detrimental cellular heterogeneities in the population

(Eldar and Elowitz, 2010). When cells are exposed to certain en-

vironments, however, diversity within the cell population may be

advantageous, in which case PoV across components in the

network may be selectively harnessed to drive diversity in the

cell population (Raj and van Oudenaarden, 2008; Raser and

O’Shea, 2005). The immune system, for instance, is often faced

with changing threats such as rapidly evolving pathogens.

Thus, in some situations it may be advantageous to use a ‘‘bet-

hedging’’ strategy whereby a range of responses are induced

upon immune activation so that some cells are ‘‘pre-adapted’’

to unforeseen phenotypic evolutions of the pathogen.

PoV may regulate cellular heterogeneity. For example, strong

PoV between two genes can render their expression tightly

coupled. In this case, the number of states (as defined by the

expression level of the two genes) that cells can reside in is

actually less than when the genes are loosely coupled. Such a

mechanism involving a negative and a positive regulator of

T cell activation that are strongly coupled was found to help

narrow the response diversity of naive T cells upon antigen

encounter (Feinerman et al., 2008). Similar principles may apply

to negative feedback or incoherent feedforward loops (Alon,

2007): restrictive PoV is helpful when feedback control is desired

for maintaining expression homeostasis, while permissive PoV

can result in greater expression fluctuations and thus a more

phenotypically diverse cell population. In circuits involving posi-

tive feedback, the extent of PoV along the feedback could poten-

tially be tuned to give rise to heterogeneous cell subsets with

distinct phenotypes to ‘‘implement’’ the bet-hedging strategy

discussed above.
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Large-scale transcriptomic studies have highlighted differ-

ences in gene-gene correlation across disease states or sub-

types using bulk materials obtained from tissues or cells

(Barabasi et al., 2011; de la Fuente, 2010). The biological inter-

pretation of these differences can be challenging, as they can

reflect myriad types of variation across the sample groups,

such as differences in cellular composition of the tissue and

genetic background of human subjects. By contrast, our

approach of assessing single cells from a single donor exposed

to multiple environments helps to remove many of the potentially

confounding factors and enhances our ability to generate mech-

anistic hypotheses, particularly at the intracellular level. For

example, our results provide an intriguing hypothesis for how

an environment-dependent, cytokine-mediated elevation in the

rate of protein phosphorylation (or lower rate of dephosphoryla-

tion) can serve as an ‘‘amplifier’’ of transcript variation, which

ultimately leads to more robust PoV to downstream target genes

detected as elevated scGGCs in the IL-10 condition compared

with CNT.

Our simulations of a circuit involving a gene (X) driving the tran-

scription of another gene (Y) confirmed our intuition that even

such a simple regulatory cascade can generate a range of PoV

behavior, as different parameter combinations yielded correla-

tions of different strengths, including many combinations that re-

sulted in low or no correlation between the transcripts of X and Y

despite their direct topological connection in the network. Incor-

porating the experimentally observed fold change in nuclear

pATF2 levels between IL-10 and CNT conditions into our simula-

tion confirmed that elevating the value of this parameter alone

can increase scGGCs/PoV. The consistency between our

simulations and experiments was robust across a range of

parameter configurations and different ways of modeling the

interaction between genes X and Y. However, while parameters

were varied within physiologically relevant ranges estimated

from the literature, some tested parameters or parameter combi-

nations may not be realizable by cells in vivo, and our knowledge

of which parameter combinations are biologically relevant re-

mains rudimentary. In addition, while the source of variation in

our model is the intrinsic stochasticity of molecular processes,

considering other factors extrinsic to the X-Y system such as

fluctuations in ribosome concentration may lead to alternate

explanations of scGGC/dscGGC. Furthermore, the parameter

space of even such a simple regulatory cascade is very large

(exponential in the number of parameters), so we were not

able to exhaustively test all possible model scenarios. Nonethe-

less, the results of our simulations under a diverse range

of parameter combinations are broadly consistent with the

environment-dependent PoV observed experimentally in human

macrophages.

The biological consequence of selectively transmitting varia-

tion in ATF2 expression to the ATF2 extended module genes

observed in the IL-10 condition remains an interesting open

question. IL-10 has been postulated to play a protective role in

atherosclerosis (Han and Boisvert, 2015), a chronic inflammatory

disease driven by the accumulation of cholesterol-laden macro-

phages in the artery wall (Moore et al., 2013). Many genes that

correlated with ATF2 under IL-10 stimulation have also been

implicated in aspects of atherogenesis or lipid uptake, and we

found metabolic disease- or phenotype-associated genetic var-

iants within the active enhancers of some of these ATF2

extended module genes, which also tended to be differentially

expressed in atherosclerosis plaque macrophages. While addi-

tional work will be required to explore the function of correlated

single-cell expression among these genes in disease, it is

tempting to speculate that it may play a role in the IL-10 medi-

ated responses of macrophages in atherosclerosis. Since the

correlations we describe arise from cell-to-cell variation and

not necessarily changes in the average level of the genes as

described above, traditional average level assessment of gene

expression after small interfering RNA knockdown would not

be a direct test of the model of PoV suggested by our data.

Loss- or gain-of-function experiments coupled with single-cell

analysis would also be technically difficult to interpret in this

system due to large differences in transfection rates among indi-

vidual cells in the population. Further complicating the interpre-

tation of such experiments is the timing of perturbing ATF2 by

knockdown or overexpression. Our current data suggest that

the increased PoV in the IL-10 condition can be attributed to a

higher level of phosphorylated, nuclear ATF2 without overt in-

creases in ATF2 mRNA levels. Technically it would be chal-

lenging to specifically alter ATF2 levels or ATF2 phosphorylation

concomitant with IL-10 stimulation. While it is practically more

feasible to alter ATF2 levels before IL-10 stimulation, compensa-

tion mechanisms and broader consequences of altering ATF2

levels (i.e., beyond potentially affecting the module we exam-

ined) would render the results difficult to interpret in the context

of the current work, which is to assess the PoV behavior con-

cerning the specific set of genes we uncovered. New experi-

mental techniques that disrupt PoV independent of changing

average mRNA expression will be required to fully probe the

function of environment-dependent dscGGCs.

IL-10 is thought to exert anti-inflammatory effects on macro-

phages through IL-10R-Janus Kinase (JAK)1-STAT3-mediated

transcription regulation (Hutchins et al., 2013a). To the best of

our knowledge, IL-10R-mediated ATF2 phosphorylation as

described here has not been reported previously; however, a

study utilizing STAT3 ChIP-seq in IL-10-activated macrophages

suggested possible co-binding of STAT3 and AP-1 family

members to DNA, and STAT3-mediated regulation of FOS

expression (Hutchins et al., 2013b). While the mechanism

whereby IL-10R activation leads to increased ATF2 phosphory-

lation in macrophages remains unknown, our results highlight

how examining condition-specific PoV can help uncover poten-

tially novel biology.

Our study has revealed that environment-dependent tuning

of PoV may be a widespread mechanism that cells and cell pop-

ulations harness in order to adapt to diverse environments. With

the rapid increases in the quantity and quality of single-cell data,

the functional impact of such adaptations is poised to be unrav-

eled in diverse experimental systems and functional contexts.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Human TruStain FcX (Fc receptro blocking solution) Biolegend Cat# 422302

Rabbit monoclonal Phospho-ATF-2 (Thr71) (11G2) Rabbit

mAb (PE Conjugate)

Cell Signaling

Technology

Cat# 13850

Mouse monoclonal Alexa Fluor 488 Anti-Stat3 (pY705)

Clone 4/P-STAT3

BD Biosciences Cat# 557814; RRID: AB_647098

Rat monoclonal LEAF purified anti-human IL-10R

clone 3F9

Biolegend Cat# 308806; RRID: AB_314738

Mouse monoclonal FITC anti-human CD36, clone 5-271 Biolegend Cat# 336204; RRID: AB_1575025

Mouse monoclonal PE anti-human CD163, clone GHI/61 Biolegend Cat# 333606; RRID: AB_1134002

Mouse monoclonal PerCP anti-CD16, clone 3G8 Biolegend Cat# 302030; RRID: AB_940380

Mouse monoclonal PE-Cy7 anti-CD197, clone G043H7 Biolegend Cat# 353226; RRID: AB_11126145

Mouse Monoclonal APC-Cy7 anti-CD206, clone 15-2 Biolegend Cat# 321120; RRID: AB_2144930

Rat monoclonal Alexa Fluor 700 anti-CD195, clone

HEK/1/85a

Biolegend Cat# 313713; RRID: AB_528761

Rat monoclonal Alexa Fluor 647 anti-CD192, clone

TG5/CCR2

Biolegend Cat# 160604

Mouse monoclonal Pacific Orange anti-CD14,

clone T€uK4

ThermoFisher

Scientific

Cat# MHCD1430; RRID: AB_10392384

Rabbit polyclonal IgG anti-human ATF-2 (C-19) Santa Cruz

Biotechnology

Cat# sc-187 (discontinued); RRID: AB_630885

Rabbit polyclonal to Histone H3 (acetyl K27) -

ChIP Grade

Abcam Cat# ab4729; RRID: AB_2118291

Chemicals, Peptides, and Recombinant Proteins

X-vivo 15 culture media, phenol red and gentamycin free Lonza Cat# 04-744Q

Recombinant Human M-CSF Peprotech Cat# 300-25

Recombinant Human M-CSF R&D Systems Cat# 216-MC

Recombinant Human IFN-g Peprotech Cat# 300-02

Recombinant Human TNF-a Peprotech Cat# 300-01A

Recombinant Human IL-4 Peprotech Cat# 200-04

Recombinant Human IL-10 Peprotech Cat# 200-10

disuccinimidyl glutarate Pierce Cat# 20593

Live/dead fixable violet stain ThermoFisher

Scientific

Cat# L34964

Critical Commercial Assays

Dynabeads Untouched Human Monocytes negative

isolation kit

ThermoFisher

Scientific

Cat# 11350D

CellsDirect One-Step qRT-PCR Kit ThermoFisher

Scientific

Cat# 11753500

ChIP-IT High Sensitivity (HS) Kit Active Motif Cat# 53040

NEBNext ChIP-seq library prep kit New England

Biolabs

Cat# E6200

TruSeq Stranded Total RNA Library Prep Kit High

Throughput

Illumina Cat# RS-122-2203

TruSeq PE Cluster Kit v3 - cBot - HS Illumina Cat# PE-401-3001

TruSeq SBS Kit v3 - HS (200-cycles) Illumina Cat# FC-401-3001

TruSeq SR Cluster Kit v3 - cBot - HS Illumina Cat# GD-401-3001

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, John S.

Tsang (john.tsang@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Peripheral Blood Monocyte Isolation

Peripheral blood leukapheresis samples from de-identified, screened, healthy donors were obtained for generic research via aseptic

technique under the NIH Clinical Center IRB-approved protocol 99-CC-0168 from the NIH Dept. of Transfusion Medicine (see Table

S6 for donor information). Mononuclear cells were isolated using Ficoll-Paque PLUS (low endotoxin) gradient centrifugation (GE

Healthcare Life Sciences). Monocytes were isolated from mononuclear cells using the Dynabeads Untouched Human Monocytes

negative isolation kit (Life Technologies), which utilizes biotinylated monoclonal antibodies towards CD3, CD7, CD16a, CD16b,

CD19, CD56, CD123, and CD235a, with streptavidin linkedmagnetic beads for depletion of non-monocyte cells. Isolatedmonocytes

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

NextSeq 500/550 High Output Kit v1 Illumina Cat# FC-404-1005 (discontinued)

Deposited Data

Sequencing and qPCR data This study GEO: GSE81444

Human reference genome sequences and gene/

transcript annotations (UCSC hg19 assembly)

Illumina iGenomes

(originally UCSC)

http://support.illumina.com/sequencing/sequencing_

software/igenome.html

Experimental Models: Organisms/Strains

Please see Table S6 for human cell donor information

Oligonucleotides

Please see Table S7 for oligonucleotides used

in this study

Software and Algorithms

R https://www.r-project.org/

Zero-inflated factor analysis (ZIFA) Pierson and Yau, 2015 https://github.com/epierson9/ZIFA

cutadapt Martin, 2011 https://cutadapt.readthedocs.io

Bowtie2 version 2.2.2 Langmead and

Salzberg, 2012

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Tophat2 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/index.shtml

HOMER (findPeaks) Heinz et al., 2010 http://homer.salk.edu/homer/

FANTOM5 (bidirectional enhancer calling) Andersson et al., 2014;

Takahashi et al., 2012

https://github.com/anderssonrobin/enhancers

bedtools (merge) Quinlan and Hall, 2010 http://bedtools.readthedocs.io

PWMEnrich Stojnic and Diez, 2015 http://bioconductor.org/packages/PWMEnrich/

htseq-count Anders et al., 2015 http://www-huber.embl.de/HTSeq/doc/count.html

featureCounts v1.4.5-p1 Liao et al., 2014 http://subread.sourceforge.net/

DESeq2 Love et al., 2014 http://bioconductor.org/packages/DESeq2/

QVARKS Narayanan et al., 2016 https://trackhub.niaid.nih.gov/upload/qvarks/

OMiCC Shah et al., 2016 https://omicc.niaid.nih.gov

Fluidigm qPCR analysis software Fluidigm https://www.fluidigm.com/software

Leica Application Suite X Leica Microsystems http://www.leica-microsystems.com/products/

microscope-software/software-for-life-science-

research/las-x-powerful-and-flexible/

Imaris 8 Bitplane http://www.bitplane.com/newrelease

FlowJo 9.9.3 FlowJo LLC https://www.flowjo.com/solutions/flowjo/downloads

Other

CAGE bidirectional enhancer locations, H3K27ac

peaks/intensities

This study UCSC Track Hub: http://genome.ucsc.edu/cgi-bin/

hgTracks?db=hg19&hubUrl=https://trackhub.niaid.nih.

gov/upload/macseq/hub.txt
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were frozen in 10% DMSO (Sigma), 40% Human AB serum (Gemini Biosciences) and 50% X-vivo 15 media (Lonza) by the following

procedure: isolatedmonocytes obtained using the Dynabeads isolation kit were resuspended at 20million/mL in 4�CX-vivo 15media

(Phenol red and gentamycin free), and an equal volume of filtered, 4�C20%DMSO/80%HumanAB serumwas added dropwisewhile

mixing the cell suspension. Cells were immediately transferred to cryovials and frozen in a Nalgene Mr. Frosty cell freezing container

(Thermo Scientific) in a -80 freezer for 24 hours, followed by transfer to liquid nitrogen storage. Donor information is given in Table S6.

METHOD DETAILS

Human Monocyte-Derived Macrophage Differentiation and Stimulation

Frozen monocyte vials were quickly thawed in a 37�C water bath and resuspended in X-vivo 15 media (phenol red and gentamycin

free) that had been pre-equilibrated in a 37�C, 5%CO2 incubator. Cells were plated on tissue-culture treated 6-well dishes (Corning)

at 1 million cells/mL in 2 mL per well. Humanmacrophage-colony stimulating factor (M-CSF, Peprotech or R&D systems) was added

to the media at a concentration of 100 ng/mL. On day 3 and day 6 of differentiation, all culture media was removed from the dish and

replaced by fresh, 37�C, 5% CO2 incubator equilibrated X-vivo 15 containing 100 ng/mL M-CSF. Fresh media on day 6 was also

supplemented with 100 ng/mL Interferon (IFN)g and 100 ng/mL Tumor necrosis factor a (IFN+TNF treated cells), 100 ng/mL Inter-

leukin 4 (IL-4 treated cells), 10 ng/mL IL-10 (IL-10 treated cells) (cytokines from Peprotech), or M-CSF alone (Control). Cells were har-

vested for analysis 24 hours after treatment by scraping in cold media.

Surface Marker Staining and Fluorescence-Activated Cell Sorting

Harvested macrophages were incubated on ice in PBS containing 5% human AB serum for 15 minutes, followed by staining for

30 minutes on ice, in the same buffer, with the following antibody cocktail: FITC anti-CD36, clone 5-271 (Biolegend); PE anti-

CD163, clone GHI/61 (Biolegend); PerCP anti-CD16, clone 3G8 (Biolegend); PE-Cy7 anti-CD197, clone G043H7 (Biolegend);

APC-Cy7 anti-CD206, clone 15-2 (Biolegend); Alexa Fluor 700 anti-CD195, clone HEK/1/85a (Biolegend); Alexa Fluor 647 anti-

CD192, clone TG5/CCR2 (Biolegend); Pacific Orange anti-CD14, clone T€uK4 (Life Technologies). Following staining, cells were

washed once with ice cold PBS, and resuspended in ice cold PBS containing a 1 in 1000 dilution of Pacific Blue Fixable Live/

Dead stain (Life Technologies), which is a fluorescent dye reactive with cellular amines. When the cell membrane becomes perme-

able, the dye gains access to intracellular amines and hence the fluorescence of the cell increases. For sorting, cells were gated upon

Forward scatter (FSC)-width versus side scatter (SSC)-area for doublet discrimination, followed by gating on Pacific blue low (mem-

brane intact) cells (versus FSC-area). A 100 mm nozzle was used at 20 PSI pressure and a drop drive frequency of 34.5 kHz. Sorting

was performed on a FACSAriaII (Becton Dickinson) and FACSDiva version 6.1.3 software using Single cell precision mode with

default parameters (Yield mask = 0, Purity mask = 32, Phase mask = 16). Sorting was done using index mode to retain information

on fluorescence measurements of protein marker expression for each sorted cell. Sort alignment was checked immediately before

sorting, by sorting beads onto a covered PCR plate and confirming that the droplets land in the center of several different wells across

the plate. Cells were deposited into individual wells of a low-profile 96 well PCR plate (Bio-rad) containing 2.5 uL CellsDirect 2x

ReactionMix (Life Technologies), 0.05 uL Ambion SUPERase-In RNAse inhibitor (Life technologies), and 1 uLRNAse-freewater. Cells

from different treatment groups were sorted into alternating wells across the plate, to avoid positional or ‘‘edge’’ effects across the

plate (Figure 2A). Each plate contained a ‘‘no template’’ control well, and a seven point dilution of a pooled RNA sample derived from a

combination of RNA isolated from non-treated, IFNg, lipopolysaccharide (LPS), IFNg + LPS, or IL-4 -treatedmacrophages, as a refer-

ence positive control. Control RNA was isolated using the miRNeasy mini kit (Qiagen). All wells except the positive control wells also

contained ERCC RNA reference standards (Life Technologies) spiked in at 1/50,000 final dilution from the stock ERCC mixture.

Because cell lysis occurs immediately after sorting into the PCR buffer and the PCR plates are not amenable to microscopy, sorted

cells cannot be visualized in the samewells used for qPCR analysis; instead, single cell deposition was confirmed by sortingHoescht-

stained macrophages into 96 well culture plates containing 50 uL of X-vivo 15media using the same sorting parameters as used dur-

ing sorting into the PCR plates and observed under epifluorescence microscopy. Although single cells can be difficult to visualize in

the large volume of the culture plate, individual cells could be found in a fraction of the wells, and no evidence of doublets was found.

Cell deposition in wells of the PCR plate had a high success rate, with only 1-2% of wells on the PCR plates negative for amplification

by qPCR. After sorting, plates were sealed with foil film (Bio-rad) and centrifuged at 2000x G for 3 minutes and frozen at -80�C.

Fluidigm Gene Target Selection

To select the 96 genes to be measured by qPCR using primer/probe assays (Life Technologies or IDT) that might be informative of

cellular heterogeneity and responses, several approaches were used: 1) literature based, selecting for genes relevant tomacrophage

activation responses; 2) selecting for the most variable genes across a compendium of human macrophage-related microarray ex-

periments deposited in the Gene Expression Omnibus; 3) a selection of module-representative genes from gene expression modules

derived frommicroarray mRNA expression measurements across diverse human immune cell types, from (Novershtern et al., 2011);

4) transcription factor ‘‘cascades’’, containing genes with known regulatory relationships (see also Figure 2B). Genes from core

cellular or metabolic processes were also selected, including lipid and cholesterol biosynthesis and processing. Genes in common

across more than one of these selection sources were chosen whenever possible. qPCR assays targeting these genes were tested

with iterative rounds of quality control to check for assay linearity and sensitivity to detect expression at the single cell level. Assays
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failing quality control were replaced with new assays targeting the same gene or with assays targeting different genes identified from

the selection strategies but not tested in earlier rounds. See Table S7 for a list of primer/probe assays used in this study.

Specific Target Amplification (STA) and qPCR

Sort plates containing single/ten cell sample RNAwere thawed, and 1.35 uL of STAmix (1.25 uL of a pool of 96 Taqman assays at 0.2x

concentration, and 0.1 uL Superscript III/Platinum Taq mix (CellsDirect kit, Life Technologies)) were added to each well. Plates were

then sealed with clear film (Bio-rad) and centrifuged at 2000x G for 3 minutes and STA was run on a CFX Connect thermal cycler (Bio-

rad) with the following cycling parameters: 50�C for 15 mins, 95�C for 2 minutes, then 18 cycles of 95�C for 15 seconds and 60�C for

4 minutes. Plates were then placed on ice and cold 10mM Tris pH 8.0, 0.1 mM EDTA buffer was added to each well at 20 uL per well.

Samples were then analyzed by qPCR on the Fluidigm Biomark instrument using 96.96 chips according to manufacturer’s instruc-

tions (Fluidigm). Briefly, 2.25 uL per well of each amplified, diluted single cell sample was mixed with 2.5 uL Ssofast 2X Probes

Supermix (Bio-rad) that had 0.5X ROX reference dye added (from the CellsDirect Kit, Life Technologies), and 0.25 uL sample loading

reagent (Fluidigm). Taqman assays (20x concentration) were combined 1:1 with Assay loading reagent (Fluidigm). Sample and assay

mixes were then added to the wells of the 96.96 chip for gene expression measurement. The normal speed cycling gene expression

protocol was used, with 40 cycles of amplification. Data were exported from FluidigmReal-time PCRAnalysis software version 3.1.3,

using Linear (Derivative) Baseline method, a global threshold of 0.01, and a 0.65 quality threshold, parameters which were found to

exclude non-specific amplification and reduce plate-plate variation. Three Fluidigm qPCR experiments were performed: the discov-

ery experiment referred to as Exp.1 or Jul9, and two validation experiments (Exp. 2 (Jul23) and Exp. 3 (Dec. 13)).

Phospho-Flow and Immunofluorescence Staining

For the intracellular staining of phosphorylated ATF2 and STAT3 for flow cytometry analysis (phospho-flow), macrophages were

cultured and treated as above, and fixed at the indicated time points using formaldehyde added directly to the culture media to a

final concentration of 1.6%. After 10 minutes of incubation in fixative, cells were harvested by scraping and washed once by centri-

fugation (300 x G, 5 minutes) and resuspension with PBS with 1% fetal calf serum and 2 mM EDTA (hereafter referred to as staining

buffer). Cells were resuspended in 100% ice cold methanol and incubated at -20�C overnight. After adding an 2x volume of staining

buffer and centrifugation, cells were then resuspended in staining buffer containing Human Trustain FcX (Biolegend) to block non-

specific antibody binding, and stained for 1hr at room temperature using anti-phosphorylated Thr71 ATF2 (Cell Signaling Technology,

clone 11G2) and anti-phosphorylated Tyr 705 STAT3 (BD Biosciences, clone 4/P-STAT3). Following 2 washes in staining buffer, cells

were analyzed on a BD LSR Fortessa (BD Biosciences). For some experiments, cells were pre-blocked for 1 hour with anti-IL10R

antibody (Biolegend, clone 3F9, low-endotoxin azide-free) at 30 mg/mL. Total ATF2 protein was stained in fixed and permeabilzed

cells (FoxP3 staining kit, eBioscience) using a rabbit polyclonal antibody (ab131484, Abcam), followed by staining with a fluorescently

labeled secondary prior to flow cytometry analysis.

For analysis via confocal imaging, cell plated on coverglass chamber slides (Nunc Lab-Tek, Thermo Scientific) were fixed in form-

aldehyde as above, washed in PBS three times, then permeabilized in 100% methanol for 10 minutes at -20�C, with 2 further PBS

rinses. Following blocking as above, cells were stained with the same PE-conjugated anti-pATF2 and the nuclei were stained with

DAPI. Following washing in PBS, the cells were imaged in PBS using a confocal microscope equipped with Leica HyD PMT detectors

(Leica Microsystems). pATF2 staining in the nucleus was quantified in the 3D stack images using Imaris (Bitplane Software).

To examine the relationship between ATF2 and STAT3 phosphorylation as measured by phospho-flow staining (Figure S4D) and

account for the possibility that cell size differences may drive spurious correlation between pATF2 and pSTAT3 signals, we fit the

following linear model in R notation: pSTAT3 � FSC + SSC + pATF2, and correct the pSTAT3 signal of each cell by subtracting

the cell size surrogate values (FSC and SSC area), multiplied by their estimated model coefficients. The resulting pSTAT3 residuals

were used to compare the median size-corrected pSTAT3 signal of high and low pATF2 expressing fractions of cells; a non-zero dif-

ference for the treated cells indicates a correlation between pSTAT3 and pATF2 levels. To test this correlation statistically, an inter-

action model was fitted using the R ‘‘lm’’ function (R notation: pSTAT3� pATF2 + Condition + pATF2:Condition + FSC + SSC, where

condition is CNT (baseline), IL-10 2 hr, or IL-10 24 hr), then the slope and p value of the interaction term pATF2:Condition was

checked.

H3K27ac and ATF2 Chromatin Immunoprecipitation

To examine enhancer-associated H3K27 histone acetylation in IL-10 vs. CNT, 10 million macrophages per sample were cultured in

10 cm culture dishes, treated with or without IL-10 (10 ng/mL) for 24 hours. Following treatment incubation, plates were rinsed once

with room temperature PBS, and fixed using 1% formaldehyde for 10 minutes on an orbital shaking platform set to slowly mix the

fluid. The fixation reaction was then quenched by adding glycine to a final concentration of 0.15M and incubating a further 5 minutes.

Plates were then rinsed 1x with ice-cold PBS containing protease inhibitors and cells were harvested from the plates by scraping.

Cells were centrifuged in 15 mL conical tubes 5 minutes at 300 x G at 4�C. Immunoprecipitation was carried out as following the

method of Blecher-Gonen (Blecher-Gonen et al., 2013), with the following modifications: sonication was performed using a Covaris

S2 instrument in 1 mL tubes, 20 million cells per tube, intensity 5, duty cycle 20%, 200 cycles per burst for 6 minutes; 75 ml Protein G

microbeads (Invitrogen) and 3 ug of H3K27ac antibody (Abcam ab 4729) were used. Illumina sequencing libraries were prepared us-

ing the NEBNext ChIP-seq library prep kit (NEB) and sequenced on a Illumina HiSeq 2000 (see Table S6 for sequencing information).
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To detect ATF2 chromatin binding to specific regions via ChIP-seq and qPCR, we fixed the cells as above, except cells were incu-

bated with 2 mM disuccinimidyl glutarate (Pierce Cat # 20593) in PBS for 20 minutes prior to formaldehyde fixation, and nuclei were

isolated as in the protocol given by (Blecher-Gonen et al., 2013). 200uL of chromatin was then placed in 0.65mL eppendorf tubes and

sonicated using the Bioruptor Pico (Diagenode) on High for 16 cycles of 30 seconds on and 30 seconds off. Immunoprecipitation was

performed using an anti-ATF2 c-terminus antibody (sc-187, Santa Cruz Biotechnology) and the High sensitivity ChIP kit (ActiveMotif).

ChIP-seq libraries were prepared as was done for H3K27ac libraries above, or detection of specific target regions was performed

using qPCR on the Biomark HD (Fluidigm) using Fluidigm’s protocol for Evagreen assays with 21 cycles of preamplification (1x con-

centration of each primer; ABI Taqman Preampmaster mix (Life Technologies)) prior to Fluidigm qPCR. Assays used for ChIP-qPCR

were from IDT. Please see Table S7 for list of primers used in this study.

RNA-Seq and Cap-Analysis of Gene Expression (CAGE) Library Preparation

RNA-seq data were utilized from an independent study of bulk-level macrophage activation (our unpublished data). 18 hrs post-treat-

ment, cells were harvested from IL-10 and CNT macrophages cultured in 48 well dishes by the direct addition of Trizol to the cells

after media removal, and RNA-seq was isolated using Zymo Direct-zol spin columns. RNA-seq libraries were prepared using the

Illumina Truseq Ribo-Zero kit with 100-500 ng total starting RNA.

CAGE libraries were made following the method of Takahashi et al. (Takahashi et al., 2012). Briefly, 1-5 ug of RNA is reverse

transcribed, followed by chemical biotinylation of the 50 cap. Following selection of capped RNA:cDNA hybrids, linkers are ligated

that allow second strand cDNA synthesis and provides a recognition site (in conjunction with the site included in the RT primer)

for the EcoP15I restriction enzyme, which is used to cleave the fragments 27 nucleotide downstreamof the recognition site. Following

further processing, these 27 nucleotide ‘‘CAGE tags’’ are then sequenced, and represent the 50 ends of the RNA, including

enhancer RNAs.

Stochastic Modeling and Simulations of a Transcriptional Cascade

We simulated a stochastic model of a transcription network that consists of two genes connected by a single edge X/ Y (Fig-

ure S1A). In this model, the promoters of both genes undergo stochastic transitions between the ‘‘ON’’ state in which transcription

can occur and the ‘‘OFF’’ state in which transcription is not possible. The model incorporates the basic biochemistry of transcription

and degradation, including parameters such as the rate of mRNA degradation and translation. Similar models have been previously

used to study stochasticity in gene expression (Kaern et al., 2005; Mariani et al., 2010; Raj et al., 2006). In addition, provided that the

promoter of gene Y is in the ‘‘ON’’ state, the transcription of gene Y is regulated by the protein product of gene X.We also considered

augmented versions of this model to capture the activation of protein X via post-translational modification (phosphorylation) and sub-

sequent nuclear translocation (Figure 5B). We calculated the Spearman correlation coefficient between the mRNA copies of X and Y

at a fixed time point for each of the parameter configurations we simulated.

In detail, the dynamics of the X system is specified by the following reaction scheme:

gX#

kXon

kX
off

g�
X (1)

g�
X/

kXm
g�
X +mX ; (2)

mX/

kXp
mX +pX ; (3)

mX/
dXm
f ; (4)

pX/

dXp
f : (5)

Here, gX ; g
�
X ; mX ; pX refer to the inactive and active gene (i.e., whether transcription can be initiated or not), the mRNA and the

gene product, respectively. Furthermore, kXon; k
X
off denote the promoter activation and inactivation rate (only in the ‘‘ON’’ state can

transcription occur), whereas kXm; k
X
p are the rates of transcription and translation, respectively, and dXm; d

X
p are the corresponding

rates of mRNA and protein degradation, respectively.

Similar to geneX, geneY can also switch stochastically between theONandOFF states. In addition, however, provided that gene Y

is in its active state, its expression is regulated by the protein product of X, i.e. the protein pX acts as an activator of gene Y by binding

to the Y promoter. Neither auto-regulation nor feedback was assumed. The transcription rate of Y is described by a Hill function:

kYm
pn
X

pn
X +K

n
; (6)
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where kYm; K; n denote the maximal transcription rate, the activation coefficient (set to 133.333 in all simulations), and the Hill coef-

ficient (set to 1 in all simulations), respectively. Everything taken together, the Y system is described by the reaction scheme:

gY#

kYon

kY
off

g�
Y ; (7)

g�
Y /

kYm
pn
X

pn
X
+Kn

g�
Y +mY ; (8)

mY/
dYm
f (9)

The choice of the two-gene network model parameter values was based on experimentally estimated rate constants as well as

mRNA and protein half-lives previously reported in the literature (see Table S1) (Dölken et al., 2008; Jovanovic et al., 2015; Mariani

et al., 2010; Rabani et al., 2011; Raj et al., 2006; Schwanh€ausser et al., 2011). However, absolute values of rates and half-lives are

typically difficult to quantify. For example, considerably discordant values, for instance, for mRNA half-lives have been obtained

(Rabani et al., 2011; Schwanh€ausser et al., 2011). It is generally not clear whether the observed discrepancies reflect genuine bio-

logical differences among the cell lines used or they were a result of differences in and/or due to limitations of experimental protocols,

data analysis methods, and computational models. Furthermore, the measured parameter values were obtained from cell popula-

tions and thus single cell measurements could differ (Rabani et al., 2011; Schwanh€ausser et al., 2011). In this context, it is worth

noting that different absolute values have been reported for the same cell line (Dölken et al., 2008; Schwanh€ausser et al., 2011).

We conducted simulations using Gillespie’s Direct method (Gillespie, 1977, 1992) implemented in C++ across the full range of

parameter configurations as follows: We divided each parameter range into 10 grids with equal intervals in original scales

ðkxon; k
x
off ; k

y
on; k

y
off Þ or logarithmic scales ðkxm; d

x
m; k

x
p; d

x
p; k

y
m; d

y
mÞ. Of 1010 possible parameter combinations, we sampled 105 param-

eter configurations by randomly selecting a single value out of 10 possible values for each parameter. The number 105 was

determined based on practical run time considerations on a high-performance computation cluster. By sampling a large number

of parameter combinations, we can explore the phase space of correlations between X and Y mRNAs comprehensively.

For each randomly selected parameter configuration, we ran 500 realizations (or cells) starting frommx =my = px = py = 0, and with

both gene X and gene Y in off states. Then snapshots of the system at 72 hours were taken. We applied one filtering procedure based

on biological relevance right before conducting the simulation. By assessing the asymptotic behaviors of the ODEs describing the

system deterministically, we can obtain stationary mean copy numbers for mRNAs and proteins. If these estimated values exceed

biologically meaningful ranges (for mRNA 1000 copies, for protein 2 million copies), we do not simulate that parameter combination.

We then generated the histogram of Spearman correlation strengths for the remaining parameter combinations.

The modeling and simulation scheme described thus far was used in Figure S1 to confirm our conceptual intuitions about how

different biochemical parameters related to expression of and interaction between X and Y influence the correlation strength between

their mRNA transcripts across simulated cells.We also augmented thismodel (Figure 5) to capture the activation of a protein via post-

translational modification (phosphorylation) and subsequent nuclear translocation as in the case of ATF2, by adding the following

activation/deactivation and related reactions for protein X, and making only the activated form APX instead of pX affect the transcrip-

tion of gene Y through the Hill’s function (by replacing the pX in reaction scheme (6) or (8) by APX in reaction (12)).

pX#

kXpon

kX
poff

APX (10)

APX/

dXp
f (11)

g�
Y /

kYm
APn

X
APn

X
+Kn

g�
Y +mY (12)

We explored the parameter space of this augmented model under two schemes, with stochastic simulations performed and cor-

relation strength between mRNAs X and Y calculated for each parameter configuration thus explored.

d In a random-scan scheme (Figure S5D), we started with the randomly selected configurations described above that also

exhibited high correlation in the original model (the 622 configurations with scGGC > 0.7 in Figure S1C). For each such

configuration, we used the rate constant values defined by the configuration, and set the new parameters kXpoff at

0.0001 events/hr/molecule, and kXpon at 1 events/hr/molecule for the High-APX simulated environment and a value less than

1 for the Medium(Med)-APX simulated environment that is chosen so as to target a 1.74 fold increase of average APX in

High-APX relative to Med-APX environment (similar to experimental observations). Since the steady-state dynamics of our

models are difficult to characterize exactly using deterministic ODE asymptotics, this targeted 1.74 fold increase was actually

e6 Cell Systems 4, 379–392.e1–e12, April 26, 2017



realized in our simulations for only a subset of the 622 high-correlation parameter configurations, and the remaining configu-

rations were ignored for further analysis. Specifically, 430, 421 or 435 parameter configurations realized an average APX fold

increase of 1.74 ± 10% among simulated cells at 72 hours in High-APX relative to Med-APX environment for the 0%, 50% or

100% boxplots shown in Figure S5D, respectively.

d In a targeted-scan scheme (Figure 5), we performed a more targeted search of the parameter space by choosing different

values of kYon and kYoff from a grid of 10 x 10 data points within their range (to assess if the role of Y enhancer/promoter acces-

sibility in influencing correlations is consistent with our experimental results), while keeping the remaining rate constants fixed

at values shown in Figure 5C (to achieve a high continuous-type correlation between X and Y mRNAs). Spearman correlation

values were calculated for the different parameter configurations at a fixed ‘‘snapshot’’ time point of 504 hours, instead of

72 hours as before to reflect changes in steady-state behavior of the newmodels. Again each explored configuration was simu-

lated under both High-APX andMed-APX conditions as in the random-scan scheme using kXpoff value of 0.0001 events/hr/mole-

cule and kXpon values of 1 or 0.5367 events/hr/molecule respectively so as to achieve the same fold change of 1.74 in average

APX level between the two conditions.

We also tried alternate setups of this augmented model (Figure S5) to capture settings where the activated form of protein X not

only influences the transcription of gene Y through Hill’s function as above, but also dynamically affects accessibility of the Y pro-

moter/enhancer. We modeled this by having kYon depend partly on the level of activated protein APX through the same Hill’s function

(APn
X=ðAP

n
X + KnÞ abbreviated below by the functionHill(APX)), with the relative contribution of APX vs. other general chromatin regu-

lation factors in influencing kYon set using an extra parameter frac ranging from 0 to 1.

kYonðalternateÞ = kYonðspecifiedÞ � ð1� fracÞ +
kYonðspecifiedÞ

HillðaverageAPXÞ
� frac � HillðAPXÞ

The APX-influence fraction (frac) of 0% on kYon corresponds to the augmented model described above where kYon is held constant

across the whole simulation. For non-zero APX-influence fractions of 50% or 100% for instance, the scaling of the second term by

Hill(averageAPX) maintains the average fraction of simulated cells with accessible Y promoter/enhancer to be the same across

different values of frac (to an approximate extent since we approximate average(Hill(APX)) by Hill(averageAPX)). In other words,

the scaling helps maintain the average kYonðalternateÞ rate at the same value of kYonðspecifiedÞ across different values of frac, and makes it

easy to compare and visualize results from thesemodels. Note that in these discussions, averagemeans the average across all simu-

lated cells in the fixed steady-state or snapshot time point (which allows for instance the approximation of averageAPX using deter-

ministic ODE asymptotics and other assumptions as
kXon

kXon + k
X
off

kXm
dXm

kXp

dXp

kXpon

kXpon + kX
poff

+ dXp
; this expression is also used to determine the kXpon

value for the High-APX and Med-APX environments given specific values of all other parameters).

QUANTIFICATION AND STATISTICAL ANALYSIS

Please note that statistical tests used are listedwith the corresponding p values in the text and figure legends. Unless otherwise spec-

ified, boxplots in figures show the median as a line inside the box and the first and third quartiles as the lower and upper box edges

(hinges), with whiskers extending from the hinge to the last point within 1.5x the inter-quartile range of the hinge and outlier points

indicating data beyond the whiskers.

Single and Ten-Cell qPCR Expression Data Preprocessing, Quality Assessment and Filtering

We convert gene expression data exported from Fluidigm Real-time PCR Analysis software from Ct (Cycle threshold) units to the

more convenient Et=40-Ct units, as in previous studies (McDavid et al., 2013). Under standard qPCR assumptions, the Et value of

a gene measured in a sample is directly proportional to the logarithm of the mRNA abundance of the gene in the sample, after sub-

tracting a constant term corresponding to the Et of a minimum detectable quantity of the gene’s mRNA (McDavid et al., 2013). The

standard curves based on a dilution-series experiment support this proportional relationship for gene assays in our panel (the stan-

dard curves for all but four of the 96 gene assays in our panel exhibit R2 at least 0.8 and slope at least -3.32, with -3.32 corresponding

to qPCR efficiency of 100%). Note that we discarded gene assays with poor standard curve behaviors in earlier rounds of gene panel

selection as described above. The dilution-series experiment was done using a standard mRNAmixture that was added to each sort

plate as described above. A total of seven dilutions were performed spanning more than a 10,000-fold range of medium to high

mRNA concentrations, and each dilution had eight technical replicates (spread one per plate across the eight Fluidigm qPCR plates

of our discovery experiment, except for one dilution which had only seven replicates due to an outlying measurement).

We assign samples where a gene is not detected an Et of –Infinity, and call them as non-detected samples or non-detects of the

gene (detects of the gene are the remaining samples). We exclude samples with fewer than 10% of all assayed genes detected from

downstream analysis, as they may reflect wells that did not have sorted cells. The number of such missing samples in a single

Fluidigm plate can be used as a quality metric – 10 of the total 16 plates in our discovery/validation experiments had nomissing sam-

ples and the rest had 3 or fewer missing samples per plate. Before performing any correlation analysis, we also removed outliers

among the detects of a gene within each treatment condition, in order to guard against technical noise and stochastic detects

at very low levels of expression. We chose these outliers for a gene in a condition as the detects whose across-plate normalized
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Et values as described next are 3 MAD (median absolute deviation) units away from the median (note that most outliers were below

the median, a pattern consistent with increased technical noise at very low levels of expression). Of all the four conditions, data from

two of them (CNT and IFN+TNF) were also used in the QVARKS manuscript for a different purpose (development and testing of a

Bayesianmethod for inferring cell-to-cell variation from simultaneous single/10-cell data; see (Narayanan et al., 2016) and description

of QVARKS below).

To visualize single and ten-cell qPCR data in reduced dimensions, zero-inflated factor analysis was used (Pierson and Yau, 2015).

For each gene pair shown in Figure 3A, the 2D ten-cell density is simulated for the gene pair using 1000 random 10-cell aggregates

computed from the single-cell data, and each gene’s simulated values are shifted separately by a single normalization factor to align

the average gene expression of the simulated and observed 10-cell data.

Normalization of Fluidigm Data at the Plate and Sample Levels

To profile a large number of cells, we uniformly distributed single cells and 10-cell pools from the different treatment groups across

multiple Fluidigm plates (e.g., 8 plates in the discovery experiment), all of which could not be run in one batch on the same day. To

track and correct potential batch/plate effects, we spiked-in ERCC transcripts (Jiang et al., 2011) to each sample, and normalized all

genemeasurements using the platemedian of the ERCC control mRNAwith the highest Et value (ERCC-0003). In detail, we shifted all

detected gene measurements in a plate by a plate-specific global factor, which is chosen such that the median ERCC-0003 level of

the shifted data across all (non-dilution-series) samples in the plate becomes the same across all plates. After removing plate effects

using this plate-level normalization, data from different plates are concatenated to obtain one single/10-cell dataset per experiment.

For gene-gene correlation analyses across samples, we also did subsequent sample-level normalization by utilizing the variation of

control mRNA levels across samples within/across plates. This sample-to-sample variation in ERCC levels correlated with that of

highly expressed genes (Narayanan et al., 2016), suggesting well-to-well differences in the starting amount of mRNA or other

such technical factors were at play in addition to independent measurement errors. To correct for this potential technical variation,

we fitted a linear regression model (expressed in the notation of statistical environment R as ‘‘Gene-expression � Plate + ERCC-

0002-expression + ERCC-0003-expression + ERCC-0044-expression’’) separately in each condition, and took the fitted residuals

as the normalized log-expression of the gene (log-expression is simply referred to as expression in the text when it is clear from

the context). Note that this regression model, which allows plate effects to be different for different genes, is fitted to the plate-level

normalized data discussed above where the same plate effect was assumed for all genes.

Differences in size among cells are known as a strong ‘‘extrinsic’’ factor that can influence the mRNA abundance of many genes

and can thus be a key driver of scGGCs in a cell population (Battich et al., 2015; Eldar and Elowitz, 2010). To assess the effect of cell

size, we adjusted 10-cell expression data using flow-cytometric surrogate measures of cell size. This analysis indicated that gene-

gene correlations were highly concordant before and after cell-size adjustment of the 10-cell data (Figure S3C); thus, the significant

scGGCs we observed were unlikely to be driven by cell size differences. To account for cell-size differences, we simply add to the

regression model above the variables Forward Scatter Area (FSC-A) and Viability stain as surrogate measures of cell size (note that

sorted cells are from the viable gate only, but all cell surface proteins will be stained by the viability dye in live cells). The residuals from

this regression model is used in an analysis to compute the cell-size-corrected 10-cell based gene-gene correlations. Note that the

FSC-A value of a 10-cell sample is taken as the sumof the per-cell FSC-A values of the 10 cells in the sample obtained from the index-

sorted flow cytometry data. The Viability of a 10-cell sample is calculated similarly but after accounting for the logicle transform

(Moore and Parks, 2012)– specifically it is taken as the logicle transform of the sum of the untransformed (‘‘unlogicled’’) per-cell

Viability values of the 10 cells in the sample. For this analysis, the per-cell flow cytometry data in the form of raw fluorescence inten-

sities (FCS files) were imported into FlowJo (v9.6) for compensation, a procedure that corrects biases caused by spectral overlaps,

and the corrected intensities were exported so that we could transform them further using the statistical software R. We specifically

applied the logicle transformwith default parameters shown below to handle the large dynamic range of fluorescence intensities. This

transform is similar to the log transformation but better suited to the representation of flow cytometry data especially when the signal

is low (Moore and Parks, 2012).

logicleðXÞ=

8

>

>

>

>

>

>

>

>

>
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>

>

>

>
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>

>
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T � 10�ðM�WÞ
�

10X�W � p2 � 10�X�W
p +p2 � 1

�

; XRW

�T � 10�ðM�WÞ
�

10W�X � p2 � 10�W�X
p +p2 � 1

�

; X<W

where T = 262144, M = 4.5, W = 0.5, and p is the solution to the equation 2p (log p)/(p+1) = W.

Identifying Differentially Expressed (DE) Genes

DE genes are detected from single-cell data using the Wilcoxon test to increases robustness against non-detects in single-cell data,

and from ten-cell data using a linear model described below. Note that since individual single- or 10-cell samples come from a single

biological replicate (donor), the resulting DE p value and FDR estimates (Table S3A/B) can be over-optimistic – so we also used

RNA-seq data from multiple biological replicates (donors) to assess DE (Figures S3G and S5A). The linear regression model used

to detect DE genes from 10-cell data models each gene’s 10-cell measurement across all treatments against the predictor variables:

Treatment to model fold change in each treatment vs. CNT, ERCC expression to adjust for potential well effects, and Plate variable to
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adjust for potential plate effects. Non-detects are assumed to have zero expression (0 Et). In R notation, the linear model is ‘‘10-cell

expression of a given gene� Treatment + ERCC-0002-expression + ERCC-0003-expression + ERCC-0044-expression + Plate’’. We

extract the DE p values from the fitted model as the significance of the treatment coefficients (log fold change of treatment vs. CNT)

being different from zero, adjust them for multiple testing using the Benjamini-Hochberg procedure separately for the IL-10 vs. CNT,

IL-4 vs. CNT and IFN+TNF vs. CNT pairwise comparisons, and declare genes at adjusted P < 0.1 as DE hits. In addition, the same

process is repeated for the two validation experiments, and only genes that come up asDE hits in the discovery and the two validation

experiments in the same direction (up-regulation in all three experiments, or down-regulation in all three) are reported as final DE hits

in Table S3B.

Application of QVARKS to Integrate Single/10-Cell Gene Expression Data

QVARKS (Quantify VARiation from K- and Single- cells) is a model-based Bayesian approach we developed (Narayanan et al., 2016)

to combine information from single-cell and 10-cell data simultaneously to reliably infer the parameterized distribution of a gene’s

expression across individual cells. QVARKS model takes into account that a non-detected single/10-cell sample in a qPCR gene

assay could indicate either zero transcripts of the gene in the sample or non-zero transcripts that missed detection for technical rea-

sons – distinguishing these two scenarios is a key challenge in single-cell measurements and utilizing simultaneously obtained 10-cell

measurements with enhanced sensitivity can help address this challenge. We applied QVARKS separately to each gene-condition

combination using default MCMC (Markov Chain Monte Carlo) settings and default model assessment criteria (for deciding which

gene-condition combinations are successfully modeled). To generate the heatmaps of discrete (ON vs. OFF cells) or continuous (vari-

ance among ON cells) heterogeneity in Figures S2F and S2G, we excluded inferred parameters whose posterior distributions had

large variances (specifically posterior CV greater than 50% for any of the three single-cell gene expression distribution parameters:

namely 1) the fraction of ON vs. OFF cells, and 2) the mean and 3) variance among ON cells).

Computing Single- and Ten-Cell Gene-Gene Correlations (GGCs)

We used the Spearman correlation coefficient to quantify continuous correlation between two genes (a rank-based metric that helps

guard against outliers), and log odds ratio to measure discrete correlation (a contingency table-based metric that has a desirable

feature of not being skewed by the marginal distribution of the two variables, and computed using the R vcd package, which

adds 0.5 to all table entries as a smoothing factor if any table entry is empty). We first computed both types of correlations in

single-cell data, and then verified that both were significantly concordant with the continuous correlations found using the 10-cell

data. We corrected for multiple testing separately within each condition using the Benjamini-Hochberg FDR procedure, and retained

only correlations found at FDR 20% in each condition to assemble the gene-gene correlation network in Figure 3. To reduce the

burden of multiple testing, we only considered gene pairs with sufficient data. Specifically within each condition, we tested contin-

uous correlations only among genes with detection rates of at least 80% in 10-cell data and 50% in single-cell data, and discrete

correlations only among genes with Shannon entropy of at least 0.7 in single-cell data. As described above, the continuous corre-

lations were computed using the plate- and sample-level normalized data to exclude correlations driven by well-to-well variations

in spiked-in control mRNA levels, which likely reflect technical variation (Narayanan et al., 2016). Discovery and validation experi-

ments utilized independent cell culture, sorting, and Fluidigm gene-expression analysis of cells derived from a single donor, with ex-

periments one and two taking place two weeks apart, and experiment three taking place 5 months later.

Identifying Differentially Correlated dscGGC Hubs Using a Bootstrap Procedure

We use a bootstrap procedure to test whether a set of gene-gene correlations (reflecting the linkage of one ‘‘hub’’ gene to several

other ‘‘partner’’ or ‘‘module’’ genes) in one condition is significantly different in their correlation strengths when compared to another

condition. Note that a simple procedure that selects gene-gene links in one condition’s scGGC network that is absent in another con-

dition’s scGGC network (e.g., using Figure 3) could point to potential dscGGC hub genes, but a statistical test is required to assess

significance, thereby avoiding any misleading dscGGC signals that arise from the specific FDR cutoff used to reconstruct each con-

dition’s network (for instance, a strict FDR cutoff could exclude certain marginally correlated gene pairs from a network (Altman and

Bland, 1995)).

To derive an aggregate strength of the change in a set of hub-gene correlations between two conditions (hub dscGGC effect size),

we estimate the strength of the change in the correlation of each hub-gene pair (hub-gene dscGGCeffect size) and take themedian of

the resulting values across the entire set of hub-gene correlations. The hub-gene dscGGC effect size is based on the sampling dis-

tribution of the Fisher z-transformation F(r) of a Spearman correlation coefficient r (Fieller et al., 1957), and is calculated as

ðFðr1Þ � Fðr2ÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:06

n1 � 3
+

1:06

n2 � 3

r

(where r1 and r2 are the sample Spearman correlation coefficients of the hub-gene pair computed

using samples of size n1 and n2 respectively in the two conditions being compared). The bootstrap procedure involves obtaining 1000

resampled datasets within one condition (with replacement and with the same size as original data), computing the correlation co-

efficients in each of the resampled dataset, and comparing these correlations in each resampled dataset against the observed cor-

relations in the same condition to derive the hub dscGGC effect size values that arises from chance alone due to sampling noise. The

distribution of the resulting resampled values of the hub dscGGC effect size can then be used to compute the dscGGC hub p value as

the one-sided empirical p value (given by the fraction of resampled hub dscGGC effect size values larger than the observed hub
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dscGGC effect size when comparing the two conditions). Note that this method could yield two p values, depending on which one of

the two conditions is resampled. We performed both and reported the larger of the two p values.

To increase statistical power, we choose only certain partner genes for each hub to perform the above test and consider only hubs

with at least 3 such partner genes. For each gene considered as a hub in a one-sided ‘‘condition 1 vs. condition 2’’ (e.g., IL-10 vs.

CNT) comparison, we specifically choose its partners as those genes correlated to the hub in condition 1 at FDR 40% but not in con-

dition 2 at the same FDR cutoff. We tried FDR cutoffs of 10%, 20%, 30% and 40%, and size cutoffs (minimum number of partner

genes) of 3, 4, 5 and 6, and used strength of replication of the hub dscGGC signals identified in the discovery experiment in the first

validation experiment to finalize the FDR cutoff of 40% and a size cutoff of 3. The resulting set of hub dscGGC signals replicated

significantly in the final unseen validation experiment for the IL-10 vs. CNT comparison alone (see Figure S3D), and seven significant

dscGGC hubs were found in this IL-10 vs. CNT comparison among all tested hubs (FDR 10% in the discovery experiment followed by

replication in the two validation experiments at P < 0.1; see Table S4, where a few dscGGC hits found in other pairwise condition

comparisons besides the IL-10 vs. CNT comparison are also reported for completeness). Note that this pattern of replication of

dscGGC signals occurred in the IL-10 vs. CNT comparison, but not the other comparisons, and this observation is consistent

with the strong replication of scGGC signals observed separately in the IL-10 and CNT conditions (see Table S2).

To obtain the negative control genes discussed in the main text (as a background control for assessing the ATF2 module and

extended module genes), we select all genes on the Fluidigm panel that are not part of the 30-gene ATF2 extended module and that

have no correlations to ATF2 in the IL-10 condition (i.e., we exclude genes with absolute ATF2-gene correlation coefficient > 0.1 in

the discovery experiment, or genes correlated to ATF2 in both validation experiments at P < 0.2). To serve as a better-matched back-

ground for theATF2 extendedmodule genes, the negative control set also focuses only on geneswith detection rates of at least 50% in

both IL-10 andCNT (similar to the filter used before for deriving the scGGC networks, which removes genes with low a priori chance of

being detected as correlated in IL-10 or CNT).

Analysis of RNA-Seq Data

Tophat2 was used to map reads to perform a splicing-aware mapping (Kim et al., 2013). Mapping rate was more than 70% for all

samples (see Table S6). Feature-counts tool (Liao et al., 2014) was used to quantitate the mapped reads within exons of a gene

(according to UCSC hg19 gene/transcript annotations available through the Illumina iGenomes collection). DESeq2was used for per-

forming paired differential expression analysis of the IL-10 vs. CNT comparison (pairing is within each donor) (Table S6).

Mapping, Peak Calling and Differential Activity Analysis of the H3K27ac Sequencing Data

We sequenced H3K27ac ChIP (as well as paired genomic ‘‘input’’; see above) samples from two donors in IL-10 as well as CNT con-

ditions. Sequencing reads were mapped to the human genome (UCSC hg19 assembly) with the Bowtie2 aligner (version 2.2.2,

default options) (Langmead and Salzberg, 2012). We used reference sequences, annotations and aligner indexes available through

the Illumina iGenomes collection. Mapping rate was more than 90% for all samples but one (see Table S6).

H3K27ac peaks (regions of the genome enriched for H3K27ac signal) were called with HOMER (Heinz et al., 2010) using options

similar to a previous study on macrophage/monocyte epigenetics (Pham et al., 2012). Specifically, for each ChIP/input sample pair,

we used HOMER findPeaks method to find all broad peaks (1000bp (base pair) regions separated by at least 2500bp) enriched for

H3K27ac signals at FDR 10%. The enrichment was derived from the number of uniquely mapped reads falling within the peak in the

ChIP sample, relative to the paired input sample, using a fold enrichment cutoff of 2 and Poisson p value cutoff of 10�4 (note that

peaks were only required to be enriched relative to the input sample, and not the local surrounding genomic background due to

the ‘‘-L 0’’ option that we set). The approximate IP efficiency of each ChIP sample (fraction of reads mapping to peaks found in

the ChIP sample) was good (at least 20%, as recommended by HOMER), and the peaks found in our CNT samples overlapped

well with an independent set of previously published peaks found in untreated macrophage samples (Pham et al., 2012) (specifically,

at least 62% of our CNT sample peaks overlapped with the independent peaks, and at least 79% of the peaks found in Pham et al.

overlapped with our peaks). The union of peaks found across all ChIP-input sample pairs were taken and the overlapping peaks

merged (using bedtools merge (Quinlan and Hall, 2010)) to derive a total set of 67,631 non-overlapping H3K27ac peaks, referred

to as merged H3K27ac peaks or simply H3K27ac peaks in the text when the context is clear. H3K27ac is known to be an activating

mark at promoters and enhancers, and our set of H3K27ac peaks could be found near genes both proximally (less than 1kb from a

gene’s TSS (transcription start site) in promoter region) and distally (in putative enhancer regions).

To quantitate changes in promoter/enhancer activity (i.e., H3K27c level) at the merged H3K27ac peaks between the IL-10 vs. CNT

conditions, we performed a paired differential activity analysis (i.e., comparing the IL-10 vs. CNT pair for each donor) using the

DESeq2 method (Love et al., 2014). Specifically, a matrix of H3K27 activities indicating the number of mapped reads (with mapping

quality score at least 10) of each ChIP sample falling within each H3K27ac peak was calculated using the htseq-count tool

(Anders et al., 2015), and analyzed using DESeq2 using default options and the design formula (in R’s notation: ‘‘H3K7ac activity

of peak � donor + condition’’).

Peaks within 1Mbp of a gene body (i.e., TSS-1Mbp to transcription end site +1Mbp) are referred to as the gene’s peaks, and this

operational definition is used to collect the union of peaks near a set of genes (e.g. set of ATF2 extended module genes or set of

negative control genes). By using the AP1 motif enrichment analysis described next, we found that 315 of 2140 peaks near ATF2

extendedmodule genes and 159 of 1406 peaks near negative control genes were predicted to bear AP1 binding sites (after excluding

the 134 ambiguous peaks near a ATF2 extended module gene as well as a negative control gene). H3K27ac peak sequences were
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scanned for enrichment of ATF2 (specifically AP1)motif using the PWMEnrich R package (Stojnic andDiez, 2015) with default options

that employ a log-normal threshold-free approach to identify motif scores enrichment relative to genomic background (with log-

normal distribution estimated from per-site affinity scores of a genomic background that is composed from 2kb human promoters

in hg19 assembly split into 500bp regions). A p value cutoff of 0.05 was used to call H3K27ac peaks that bear AP1 motifs (and cor-

responded to an FDR of�36%) – we did not correct for multiple testing here as we weremore interested in the aggregate behavior of

the whole set of motif-bearing peaks and not any specific motif-bearing peak. Using the output of all these analyses, we finally

conduct the main test for which we used the H3K27ac data, viz., checking if there is increased enhancer activity in the IL-10 over

CNT condition at AP1-motif-bearing H3K27ac peaks near ATF2 extended module genes, compared to negative control genes.

Mapping, Bidirectional Enhancer Finding, and Differential Activity Analysis of the CAGE Sequencing Data

We sequenced CAGE samples from three donors in IL-10 and CNT conditions (technical duplicate of one of the donors was done

additionally). Sequencing reads were mapped with Bowtie2 as for the H3K27ac data, but with an additional step that trims the

expected CAGE 30 linker sequence inside the reads (more than 90% of all reads have the linker sequence in the expected position

28+/-1 mostly, and more rarely, at other positions, with a minimum overlap of 9 bases as computed and trimmed using the cutadapt

adapter-trimming tool (Martin, 2011)). Mapping rate wasmore than 70% for all samples (see Table S6) andmore than�84% (11%) of

themapped reads fall within the TSS+/-1Kb sense (antisense) region respectively. These quality metrics (%of readswith CAGE linker

sequence, mapping rate, and percentage within TSS) were reasonable for all samples but one (S16 CNT replicate A) and this outlying

sample was discarded from further analysis.

We adopted the FANTOM5 methodology (Andersson et al., 2014; Takahashi et al., 2012) to detect bidirectionally transcribed

enhancer regions (or referred simply as bidirectional enhancers) using pooled data from all samples. We detected 2866 bidirectional

enhancers that were also distal from any gene exon/TSS (derived using an exon/TSS-mask file provided by FANTOM5), and prom-

isingly 60% of these enhancers overlap with our H3K27ac peaks. We estimated the eRNA levels in these bidirectional enhancers in

each sample, also using FANTOM5 tools, and then added up the eRNA levels in the two Illumina HiSeq runs in which each CAGE

sample was sequenced before subjecting the resulting data available for 3 donors in IL-10 and CNT conditions to paired differential

activity analysis using DESeq2, similarly as before for the H3K27ac data. Assigning enhancer regions to nearby regions and analyzing

motif enrichments was also done in the same fashion as for H3K27ac peaks. At a motif enrichment p value cutoff of 0.05 (which cor-

responded to an FDR of �29%), we found that 18 of 125 bidirectional enhancer regions near ATF2 extended module genes genes

and 13 of 57 regions near negative control genes were predicted to bear AP1 binding sites (after excluding 3 ambiguous regions near

a ATF2 extended module gene as well as a negative control gene).

A caveat with bidirectional eRNAs is that they are expressed at quite low levels in general (Andersson et al., 2014) and so they tend

to suffer more from technical noise than H3K27ac data. So we performed additional sensitivity analysis of CAGE data, and found that

the main test for which we used the CAGE data (i.e., ‘‘increased enhancer activity in the IL-10 over CNT condition at AP1-motif-

bearing bidirectional enhancers near ATF2 extended module genes, compared to negative control genes’’) is largely robust in a

‘‘leave-one-donor-out’’ analysis. TheWilcoxon test p value of 0.04854 for this test using all three donors reported in the text changed

to 0.03728, 0.1762 and 0.009854 when leaving out donor with identifier S15, S16 and S12 respectively. Note that in this leave-one-

donor-out analysis, only the fold changes are updated based on the subset of patients, but the bidirectional enhancer regions were

identified using FANTOM5 paper method applied on all three donors.

Selection of Putative ATF2 Binding Sites and Random Control Regions for ChIP-qPCR Validation Analysis

A pilot ATF2 ChIP-seq data generated in the IL-10 vs CNT conditions and additional criteria described below were used to manually

select putative ATF2 binding sites for further qPCR validation. In detail, we had three ChIP-seq samples in the IL-10 condition of the

pilot experiment and we chose the sample that yielded the most number of ChIP-seq peaks overlapping the H3K27ac peaks for

further analysis. Data analysis of ChIP-seq sequencing data were the same as that for H3K27ac data, except for lowering the

peak size parameter of HOMER (from 1000bp used in H3K27ac to 200bp in ChIP-seq data to findmore focused regions of TF binding

sites). ChIP-seq peaks selected for ChIP-qPCR validation were extended by 200bp on either side to get a 600bp sequence, which

was then used for PCR primer design.

A total of 14 ChIP-seq peaks weremanually selected for further ChIP-PCR validation guided by these criteria: i) ChIP-seq peak is

co-localized within or overlapping a H3K27ac peak near any of the ATF2 extendedmodule genes, ii) H3K7ac peaks with upregulated

H3K27ac activity in IL-10 relative to CNT were preferred, iii) H3K27ac peaks that were unambiguously assignable to the nearby ATF2

extendedmodule gene (i.e., no or few other genes in between) were preferred, and iv) H3K27ac peaks with better enrichment p value

for the AP1 motif as calculated by PWMEnrich R package (Stojnic and Diez, 2015) were preferred.

A total of 4 random control regions were selected as random 600bp regions from the genome that are not within 1000bp of any

ChIP-seq or H3K27ac peak.

To calculate ChIP ‘‘percent of input’’ values, theCt values of diluted input DNA run alongside theChIP DNA (adjusted for the dilution

factor) were converted using the formula 100*2(Adjusted Input Ct – IP sample Ct). We statistically compared ATF2 binding enrichment after

accounting for the effect of different donors or ChIP-qPCR regions. Specifically, for the random vs. target region comparison within

each condition shown in Figure 4A, we fitted the linear model: percent input � Donor + RegionType (with RegionType being one of

‘‘random’’ or ‘‘target’’ regions to indicate whether the region is a randombackground or putative ATF2 target region, respectively) and

then test if RegionType has a significant effect on the percent input to obtain the reported p values, by comparing to a model lacking
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the variable of interest (RegionType) using R’s ‘‘anova’’ function. To compare random or target regions between conditions shown in

Figure 4A, we fitted the linear model: percent input � Donor + Condition + RegionID (with RegionID indicating the label of the ChIP-

qPCR region; a set of 4 random (background) and 14 putative ATF2-target regions were measured) separately for random and target

regions, and test for a Condition effect in each case. For the comparison shown in Figure 4B, the mean log percent input for the

random regions for each sample was subtracted from the log percent input from the target regions to yield the log fold enrichment

of the target region over the random regions. The log fold enrichment was then compared as above, using the models log fold

enrichment � Donor + Condition + TargetRegionID (with TargetRegionID indicating the label of the ChIP-qPCR target region) and

testing for a Condition effect. Having a Donor or RegionID/TargetRegionID in the above linear models allows us to have different

baseline (CNT) levels for each donor or region, respectively, when computing an IL-10 vs. CNT change to mimic a paired analysis.

Analysis Involving Disease GWAS SNP Catalog, Ingenuity, and External Microarray Data

The Genome Wide Association Studies (GWAS) catalog of disease-associated SNPs was downloaded from https://www.ebi.ac.uk/

gwas/ on August 2015, and restricted to SNPs associated with metabolic disease related traits (manually curated by us) where

macrophage involvement has been suggested (Biswas andMantovani, 2012). For instance, we focused on lipid traits such as choles-

terol (LDL/HDL), triglycerides, and diabetes-associated traits. Those disease SNPs falling within H3K27ac peaks near the ATF2

extended module genes are reported in Table S5 (after excluding a peak that was near both an ATF2 extended module gene and

a negative control gene).

To examine the expression pattern of ATF2 extended module genes in in vivo atherosclerosis plaque-associated macrophages,

two separate datasets were analyzed using OMiCC (available at https://omicc.niaid.nih.gov, (Shah et al., 2016)). Data from Gene

Expression Omnibus (GEO), accession number GEO: GSE7074, was used to compare gene expression in macrophages residing

in atherosclerotic plaques to splenic macrophages. Data from GEO: GSE23303 was used to compare gene expression in macro-

phages residing in atherosclerotic plaques to plaque associated smooth muscle cells. For each study, differential expression com-

parisons were run in OMiCC using the default parameters. The resulting differential expression data were loaded in R and subsets of

genes (the negative control set described above aswell as the ATF2module and extendedmodule sets) were compared using t tests.

For Ingenuity Pathway Analysis, the list of the ATF2 extended module genes was uploaded to Ingenuity Pathway Analysis software

version 27216297 (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity), and ‘‘Core Analysis’’ was carried out with the default

settings. A networkwas generated showing links between the ATF2 extendedmodule genes and selected lipidmetabolism pathways

within the ‘‘Diseases and Functions’’ analysis output (Figure S4F).

DATA AND SOFTWARE AVAILABILITY

All sequencing and qPCR data are available in NCBI GEO under the accession number GEO: GSE81444, and the CAGE bidirectional

enhancer locations, and the H3K27ac peaks/intensities available as UCSC Track Hubs (http://genome.ucsc.edu/cgi-bin/hgTracks?

db=hg19&hubUrl=https://trackhub.niaid.nih.gov/upload/macseq/hub.txt).
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