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We study the dynamical generation of entanglement as a signature of chaos in a system of period-
ically kicked coupled-tops, where chaos and entanglement arise from the same physical mechanism.
The long-time averaged entanglement as a function of the position of an initially localized wave
packet very closely correlates with the classical phase space surface of section – it is nearly uniform
in the chaotic sea, and reproduces the detailed structure of the regular islands. The uniform value
in the chaotic sea is explained by the random state conjecture. As classically chaotic dynamics take
localized distributions in phase space to random distributions, quantized versions take localized co-
herent states to pseudo-random states in Hilbert space. Such random states are highly entangled,
with an average value near that of the maximally entangled state. For a map with global chaos,
we derive that value based on new analytic results for the typical entanglement in a subspace de-
fined by the symmetries of the system. For a mixed phase space, we use the Percival conjecture
to identify a “chaotic subspace” of the Hilbert space. The typical entanglement, averaged over the
unitarily invariant Haar measure in this subspace, agrees with the long-time averaged entanglement
for initial states in the chaotic sea. In all cases the dynamically generated entanglement is predicted
by a unitary ensemble of random states, even though the system is time-reversal invariant, and the
Floquet operator is a member of the circular orthogonal ensemble.

I. INTRODUCTION

The connections between complexity, nonlinear dy-
namics, ergodicity, and entropy production, have long
been at the heart of the foundations of statistical physics.
A central goal of “quantum chaos” has been to extend
this foundation to the quantum world. Classic works
on the subject including level statistics [1], properties
of Wigner functions [2], and quantum scars in ergodic
phase spaces [3] have tended to focus on the properties
of wave mechanics, e.g. the dynamics of single particle
billards [4] (also seen in the properties of classical waves,
e.g. microwave cavities [5]). More recently, the tensor
product structure of quantum mechanics, essential for
understanding systems with multiple degrees of freedom,
has come to the fore. In that context, one is naturally
led to consider how the dynamical generation of entangle-
ment between quantum subsystems is connected with the
chaotic dynamics of coupled classical degrees of freedom.
Such studies address fundamental issues of complexity in
quantum systems and are potentially applicable in quan-
tum information processing, where entanglement is con-
sidered to be an essential resource. The goal of this ar-
ticle is to revisit this problem and establish a unifying
theory that allows us to make quantitative predictions
and gives qualitative understanding of the connection be-
tween chaos and entanglement.

The connection between chaos in the classical descrip-
tion of Hamiltonian dynamics and entanglement in the
quantum description has been the subject of extensive
study over the last decade. The original motivation of
Zurek and Paz was to address the quantum-to-classical
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transition [6]. By conjecturing that chaotic systems deco-
here exponentially fast through their entanglement with
the environment, they hoped to resolve a paradox in
which a macroscopic system would exhibit the effects
of quantum coherence on a time scale logarithmic in ~.
Work quickly following this turned to studies of the cou-
pling of just two degrees of freedom, rather than system-
environment coupling, as entanglement is most easily
quantified for bipartite systems [7]. Considering two cou-
pled kicked tops (a standard paradigm of quantum chaos
[8]) Miller and Sarkar [9] correlated the rate of generation
of entanglement with the Lyapunov exponents associated
with the mean positions of quantum wavepackets local-
ized in phase space.

In related research, Bandyopadhyay and Lakshmi-
narayan [10, 11] explored the amount of entanglement
that is associated with coupled kicked tops, with partic-
ular emphasis on the entanglement of the Floquet eigen-
states [12]. The entanglement of these eigenstates satu-
rated to a value below the maximum possible value in a
way that depended only on the Hilbert space dimension,
not the chaoticity parameter. The same was was true
of the dynamically generated entanglement. This work
gave the first indication that the entanglement generated
by the coupled tops was statistical in nature, and related
to the theory of random states in Hilbert space. Using
random matrix theory [8, 13] they were able to deter-
mine the statistics of the Schmidt coefficients of a ran-
dom bipartite pure state, and thus were able to predict
the saturation value of the entanglement for the Floquet
eigenstates.

The relationship between the entanglement in the
eigenstates and the dynamically generated entanglement
is subtle [14]; we’ll return to this point later. Ghose and
Sanders have shown that there are signatures of chaos
in the dynamically generated entanglement in a single
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kicked top when the large angular momentum is thought
of as a collection of symmetrically coupled qubits [15, 16].
They used the Floquet spectrum to explain the initial rise
time and power spectrum in the entanglement history.
Dynamical generation of entanglement by chaotic maps,
and its relation to random unitary matrices was also ex-
plored by Scott and Caves [17] as a way of comparing
different quantizations of the Baker’s map, and by Vi-
ola and coworkers as a means of quantifying complexity
in quantum systems and its relationship to generalized
entanglement [18].

While many of the elements connecting chaos and en-
tanglement have been explored with a variety of suc-
cessful numerical and approximate analytic predictions,
there has been no unifying theory, and in some cases, the
key relations have been obscured. The most extensive
studies, discussed above, consider coupled systems which
are separately chaotic (kicked tops) rather than being
chaotic due their coupling. This can muddy the waters.
For example, it was shown that the strength of chaos
did not enhance the production rate of entanglement for
weakly chaotic coupled tops [19], while Bandyopadhyay
and Lakshminarayan [10, 11] showed that the relation-
ship between entanglement and the chaoticity parameter
varied with the coupling strength between the tops.

As we seek to connect chaos and entanglement, it is
most natural to consider systems in which they arise from
the same mechanism – their physical coupling. More-
over, by considering a system that is chaotic only when
the two parts are coupled, the classical phase space de-
scribes the global system rather than a subsystem, and
there is no ambiguity about the nature of the dynam-
ics. The distinction between weak and strong coupling
cannot be made independent of strong and weak chaos,
thereby sharpening our focus on the key relationships.

To address these issues, we consider a model system
of kicked coupled-tops, rather then coupled kicked-tops,
described in detail in Sec. II. This system is motivated
by its connection to possible experimental realizations,
our ability to easily visualize the classical phases space,
and to analyze the Floquet map. We use this system
as the forum to explore the basic thesis of this paper.
Chaos arises in classical dynamics because of insufficient
symmetry (integrals of motion) for a given number of
degrees of freedom. In the quantum analog, insufficient
symmetry leads to the random matrix conjecture – sys-
tems with global classical chaos have eigenvectors and
eigenvalues that are statistically predicted by ensembles
of random matrices [8, 20]. Moreover, whereas global
chaos leads to ergodic dynamics and the generation of
“random” coarse-grained distributions on phase space, a
large body of numerical studies indicate that the quan-
tum chaotic map is ergodic in the sense that it generates
a state with many properties that are statistically pre-
dicted by a random state in Hilbert space, picked accord-
ing to appropriate Haar measure [17]. The dynamically
generated entanglement is then that of a random state
(by this measure) in the relevant Hilbert state. These

predictions can be extended to mixed phase spaces with
regular islands immersed in a chaotic sea. With the help
of Percival’s conjecture [21] that divides eigenstates into
chaotic and regular classes, ergodicity on the chaotic sea
leads to random states in a chaotic subspace and a com-
mensurate typical entanglement. Whereas in the globally
chaotic case we can derive analytic results, for the mixed
phase spaces we are relegated to numerical predictions,
which nonetheless verify the ergodic conjecture, connect-
ing entanglement generation in chaotic dynamics to the
creation of pseudo-random states in Hilbert space.

The remainder of this paper is organized as follows. In
Sec. II we introduce our model of kicked coupled-tops,
studying the classical and quantum features. Section III,
the heart of paper, studies the entanglement in our sys-
tem. We perform numerical calculations of the entangle-
ment of the system’s eigenstates, the long-time averaged
entanglement generated by the Floquet map, and its re-
lationship to the classical phase space. We then explain
these results in terms of the properties of random states
in Hilbert space. Reviewing the essential ideas, we derive
new analytic expressions for the typical entanglement of
a random state when we are restricted to a subspace of
the full tensor product space. This is of relevance here
given the symmetries of the system. We also pay par-
ticular attention to the subtle distinctions between the
eigenstates of random matrices and the random states
generated from initially localized wavepackets. In doing
so we clarify previous works and make accurate predic-
tions, especially for global chaos, but also extended to
a more general mixed phase space scenario. Our results
are discussed and summarized in Sec. IV.

II. KICKED COUPLED-TOPS

A. Quantum and classical descriptions

We consider a bipartite system composed of two spins,
I and J, isotropically coupled in a Heisenberg interaction,
and subject to periodic kicks that act only on spin J.
Choosing the direction of the kicks to be about the z-
axis, the system evolves according to the Hamiltonian,

H = AI · J +

∞
∑

n=−∞

δ(t− nτ)BJz. (1)

Here A gives the strength of the isotropic coupling, B
the strength of the kicking, and τ is the kicking period.
Such a Hamiltonian describes the hyperfine interaction
between nuclear spin I and total electron angular mo-
mentum J, with a magnetic field that has negligible effect
on the nucleus. While this realization cannot reach deep
into the semiclassical regime, for large atoms, with heavy
nuclei and a large number of electrons in the valance shell,
one can explore nontrival mesoscopic regimes. The true
semiclassical limit can potentially be attained in an atom-
photon system where I is the collective spin of an atomic
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FIG. 1: The dynamics of the kicked coupled tops can be
viewed as an alternating sequence of rotations. The two spins
I and J precess around the total angular momentum F by an
angle α|F|, and the spin J is kicked around the space-fixed
z-axis by β.

ensemble coupled to the Stokes vector J of a quantized
electromagnetic field [22]. We will not consider here the
feasibility of experimental realizations, instead focusing
on the foundational theory.

Choosing the external field to act in delta kicks allows
us to express the Floquet map (transformation after one
period) in a simple form of sequential rotations,

Uτ = e−iαI·Je−iβJz ≡ e−iαF 2/2e−iβJz , (2)

where α and β are related to A and B in terms of the
kicking period, ~, etc. In the second form, we have ex-
pressed the rotation in terms of the total angular momen-
tum F = I + J and neglected irrelevant overall phases.
We can thus interpret the dynamics as alternating a ro-
tation of J about a space fixed z-axis by angle β, followed
by a procession of I and J about F by an angle α|F|, as
shown in Fig (1). Such a simple transformation nonethe-
less leads to complex dynamics, including chaos in the
classical limit as discussed below. From the quantum
perspective, since the two rotations don’t commute, there
are insufficient symmetries to specify Floquet eigenstates
by a complete set of commuting operators; the system is
not integrable. Note, however, that the system is invari-
ant under an overall rotation around the z-axis, so Fz is
a conserved quantity (F 2 is not conserved).

We treat the classical limit of quantum mechanical spin
in the familiar way [8]. Each of our spins has three com-
ponents, but a fixed magnitude, and thus their orienta-
tions can be specified by two variables. The z-component
of a spin and the angle φ, denoting its orientation in the
x − y plane, are canonically conjugate, and thus each
spin constitutes one canonical degree of freedom. The
classical dynamical map has the same physical action as
described above in the quantum context – rotation of
J by angle β followed by precession of I and J about
F by angle α|F|. Here, the rotations are implemented
by 3 × 3 SO(3) matrices. The two spins, plus time-
dependent Hamiltonian imply a five dimensional phase
space. Since Fz is conserved, the dynamics is restricted

to a four-dimensional hypersurface. As there are no ad-
ditional constraints, the dynamics are not integrable and
can exhibit chaos.

To visualize the dynamics, we rewrite our system in
terms of a new set of variables, (Fz, φ̄ ≡ φI + φJ) and
(δFz ≡ Iz − Jz, δφ ≡ φI − φJ),

Jz =
Fz − δFz

2
, (3a)

I · J = IzJz + IJ (sinφI sinφJ + cosφI cosφJ)

=

(

Fz + δFz

2

) (

Fz − δFz

2

)

+ IJ cos(δφ). (3b)

Because Fz is a conserved quantity, φ̄ does not appear
in our Hamiltonian. It is a cyclic coordinate, and thus
we can ignore it without losing any information about
the further evolution of the remaining variables. Neither
do we require φ̄ to determine the Lyapunov exponent of
a chaotic system. Thus, we need only consider the two
difference variables, (δFz, δφ), and time, taking us from
a four to a three dimensional hypersurface. This allows
us to visualize our system using a Poincaré surface of
section as a stroboscopic plot. We restrict our attention
here to Fz = 0 as this also leads to the largest subspace
in the associated quantum problem.

The classical equations of motion depend on the ratio
|I|/|J|. We focus here on equal spin magnitudes and fix
Fz = 0. Thus, without loss of generality, since the SO(3)
rotation matrices of classical dynamics are independent
of spin magnitude, we take the spin vectors to be unit
vectors. The basic structure of the phase space can be
understood as follows. When the coupling is removed,
our system has fixed points at the northern and southern
“poles”. As the chaoticity parameter is turned up, chaos
first forms around the unstable “north pole” while regular
behavior persists around the stable “south pole”. Further
fixed points appear in the usual manner as bifurcations
occur with increase of the chaoticity parameter. Figure
(2) shows three different regimes of classical dynamics.
With the parameters α = 1/2, β = π/2 (Fig. (2a), the
dynamics are highly regular, with negligible stochastic
motion. When α = 3/2, β = π/2 (Fig. (2b), we see a
mixed space with chaotic and regular regions of compa-
rable size. The parameters α = 6, β = π/2 (Fig. (2c),
give a completely chaotic phase space.

We want to choose our quantum Hamiltonian so that
we will recover our classical dynamics in the large spin
limit. We would like to be able to vary the size of our
spins, but we will keep the pair equal to each other in
magnitude, I = J . Since the SU(2) rotation matrices
depend on the spin magnitude, we must scale the Flo-
quet operator. By substituting α → α̃ = α/J we obtain
the same Heisenberg equations of motion as the classical
equations for equal magnitude spins.
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FIG. 2: Poincaré surface of section for the coupled kicked
tops, with Fz = 0 (a) Regular phase motion: α = 1/2, β =
π/2, (b) Mixed phase space: α = 3/2, β = π/2, (c) Global
chaos: α = 6, β = π/2.

B. Quantum chaology

In order to understand the dynamical generation of
entanglement, we need to establish some basic under-
standing of the eigenstates of the system and their re-
lationship to the classical dynamics. As our system is
time periodic, the states of interest are the eigenstates of
the Floquet operator, Eq. (2). It is useful to consider
both the coupled and uncoupled representations of angu-

lar momentum connected by the usual Clebsch-Gordan
expansion,

|F,MF 〉 =
∑

mI ,mJ

〈F,MF |I,mI ;J,mJ〉|I,mI〉|J,mJ〉 (4)

Conservation of Fz implies that the operator is block di-
agonal for all states defined by quantum number MF .
The largest block, MF = 0, has dimension 2J + 1 as F
varies from 0 to 2J . Using the uncoupled representa-
tion, denoting the product state by the single quantum
number mJ = −mI , the matrix,

〈m′
J |Uτ |mJ〉 =

∑

F

e−i(α
F (F+1)

2J
+βmJ) (5)

〈F, 0|I,−m′
J ;J,m′

J〉〈F, 0|I,−mJ ;J,mJ〉

can then be diagonalized to yield the Floquet eigenstates
and eigenphases,

|k〉 =
∑

mJ

c(k)
mJ

|I,−mJ〉|J,mJ〉; Uτ |k〉 = e−iφk |k〉. (6)

A central result of quantum chaos is the connection
with the theory of random matrices [8]. In the limit
of large Hilbert space dimensions (small ~), for param-
eters such that the classical description of the dynamics
shows global chaos, the eigenstates and eigenvalues of the
quantum dynamics have the statistical properties of an
ensemble of random matrices. The appropriate ensemble
depends on the properties of the quantum system un-
der time-reversal [8]. We thus seek to determine whether
there exists an anti-unitary (time reversal) operator T
that has the following action on the Floquet operator,

TUτT
−1 = U†

τ = eiβJzeiα̃I·J. (7)

Analogous to the case of the single kicked top, we con-
sider the generalized time reversal operation,

T = eiβJzK, (8)

where K is complex conjugation in the uncoupled prod-
uct representation. Since both Iy and Jy change sign un-
der conjugation, while the x and z components do not,

KJzK = Jz; KI · JK = I · J. (9)

It then follows that

TUτT
−1 =

(

eiβJzK
) (

e−iα̃I·Je−iβJz

) (

Ke−iβJz

)

(10)

= eiβJz

(

eiα̃I·JeiβJz

)

e−iβJz

= eiβJzeiα̃I·J = U†
τ ,

so the dynamics are time-reversal invariant. Moreover,
T 2 = 1, so there is no Kramer’s degeneracy. Given these
facts, for parameters in which the classical dynamics are
globally chaotic, we expect the Floquet operator to have
the statistical properties of a random matrix chosen from
the circular orthogonal ensemble (COE).
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To further correlate the Floquet eigenstates with the
classical phase space in the case of regular and mixed dy-
namics, it is useful to employ a Husimi representation. A
spin coherent state has a minimum quantum uncertainty
and is specified by polar orientation angles θ and φ on the
sphere. In terms of the standard basis, a spin coherent
state for a single spin is [23]

|µ〉 =
∑

m

µJ−m

(1 + |µ|2)J

√

(2J)!

(J −m)!(J +m)!
|J,m〉, (11)

where µ = tan(θ/2)eiφ. For our system, because the
subspaces in which the eigenstates live are not described
by an irreducible representation of angular momentum,
there are no such minimum uncertainty states for the
difference angles. Nonetheless, we obtain a useful set of
states by projecting the product of spin coherent states
associated with the two subsystems onto the subspace
with a fixed value of Fz (here Fz = 0). The result of the
projection is

P̂0|µI〉|µJ〉 =
∑

m

(

µI

µJ

)m
(2J)!

(J −m)!(J +m)!
|m〉I |−m〉J .

(12)
Classically, in projecting on to the surface of section with
Fz = 0, we take θI + θJ = π. Fixing this value in the
quantum state one finds

µI

µJ
= ei(φI−φS)

[

1 + sin
(

θI−θS

2

)

1 − sin
(

θI−θS

2

)

]

. (13)

The projected coherent state thus depends only on the
difference of the angle variables, and allows us to con-
sider localized quantum states correlated with the classi-
cal phase space of interest. After normalizing, we arrive
at an over-complete basis of states for the FZ = 0 sub-
space, parameterized by δθ and δφ . The Husimi distri-
bution of a state |ψ〉 in this space,

Q(δθ, δφ) ≡ |〈δθ, δφ|ψ〉|2 (14)

then provides a visualization in phase space.
In order to explore the semiclassical limit, we choose

I = J = 150, corresponding to a d = 301 dimensional
Hilbert space in the Fz = 0 subspace, or an “effective
~” of ~eff = 1/301. Figure 3 shows the Husimi plots
of a few of the eigenstates for α/J = 3/2, β = π/2, for
which the classical phase space is mixed (Fig. 2b). These
plots exhibit the features expected according to Perci-
val’s conjecture. The states roughly divide into regular
and irregular sets, with regular eigenstates concentrated
on invariant tori around stable fixed points, resembling
harmonic oscillator eigenstates, and irregular “chaotic”
states randomly distributed within the chaotic sea.

Though Percival’s conjecture is largely born out in nu-
merical analyses, it is not strictly true (especially in the
finite ~ limit), nor is there a strict procedure for filtering
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FIG. 3: Husimi distributions of Floquet eigenstates asso-
ciated with the parameters of a mixed phase space (Fig.
2b). (a,b,c) Regular eigenstates around different fixed points.
(d,e,f) Chaotic eigenstates, delocalized in the chaotic sea.
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FIG. 4: Scatter plot of 〈Jz〉 vs. Husmi Entropy, SQ, for the
Floquet eigenstates associated with the mixed phase space
(Fig. (2b)). Boxed regions (a), (b), and (c) correspond to
regular states centered around fixed points. States in region
(d) are considered “chaotic eigenstates”.

the regular from chaotic eigenstates except for very spe-
cial systems [24]. We can, nonetheless, create an approx-
imate filter. A useful measure for distinguishing states is
the Shannon entropy of the Husimi distribution,

SQ = −
∫

dµQ(δφ, δθ) logQ(δφ, δθ), (15)

where dµ is the measure on the phase space of differ-
ence angles on the sphere. To calculate this entropy,
we coarse-grain the phase space so that the integral is
transformed to a sum. We expect the states delocalized
in the chaotic sea to have large entropy by this mea-
sure, while those states well-localized around fixed points
have low entropy. This leaves some ambiguous situations,
since highly excited states on regular tori also have high
“Husimi entropy”. To improve the filter, we follow a pro-
cedure suggested by Korsch and coworkers [25], which
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correlated the properties of the eigenstates to the classi-
cal phases space in order to distinguish the regular and
irregular states for a nonlinear rotor. In Fig. 4 we plot
the values of SQ and 〈Jz〉. The latter quantity correlates
to the mean value of δθ in the semiclassical limit. We
see four distinct features in this plot. Two lines of states
with near constant 〈Jz〉 but increasing SQ, boxed in Figs.
(4a,b), correspond to the series of states localized around
fixed points with increasing excitation (Figs 3a,b). The
line of states with near constant SQ and increasing val-
ues of 〈Jz〉 , boxed in Fig. 4c, correspond to the series
of states localized around the stable “south pole” (Fig.
3c). Finally, the cluster of states with high values of both
SQ and 〈Jz〉, boxed in Fig. 4d, correspond to the states
delocalized in the chaotic sea that are concentrated near
the original unstable fixed point at the “north pole” of
the regular dynamics. There is no clean division between
this cluster and states clearly localized on invariant tori.
A qualitative examination, denoted in Fig 4, nonetheless
gives us an indication of the chaotic subspace for these
mixed dynamics. Such an identification is useful for giv-
ing quantitative prediction of the dynamically generated
entanglement, as we discuss in the next section.

III. ENTANGLEMENT

A. Calculating Entanglement

We consider only pure states of the bipartite system.
Entanglement is then uniquely determined by the coeffi-
cients in the Schmidt decomposition of the joint state of
the system,

|Ψ〉IJ =
∑

i

√

λi|ui〉I |vi〉J , (16)

where λi are the eigenvalues of the reduced density ma-
trix of either subsystem, and the Schmidt basis vectors
{|ui〉I , |vi〉J} are their respective eigenvectors. The en-
tanglement E is the Shannon entropy of the Schmidt co-
efficients,

E = −
∑

i

λi log(λi). (17)

Determination of the Schmidt decomposition is typically
a nontrivial task, requiring partial trace and diagonal-
ization of the reduced density operator. The Schmidt
basis will generally depend on the state |Ψ〉IJ . For the
system at hand, we have a unique situation – within a
subspace with a fixed value of Fz, the uncoupled basis of
angular momentum is the Schmidt basis, independent of

the state, as seen, e.g., Eq. (6). Thus, for states within
such subspaces, the entanglement is easily calculated as
the Shannon entropy of the probability distribution of
the state when expanded in the standard product basis.
This not only simplifies calculations, but connects entan-
glement with the entropy of random states with respect
to a fixed basis [27].

(b)
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FIG. 5: Entanglement of the Floquet eigenstates. (a) Map
corresponding to a mixed phase space: α = 3/2, β = π/2.
(b) Map corresponding to global chaos: α = 6, β = π/2. The
solid line gives the value expected from random matrix theory,
Eq. (24).

Throughout this section, we consider the Fz = 0 sub-
space, and take I = J = 150, corresponding to a Hilbert
space of dimension d = 301. The maximum possible en-
tanglement in this case is Emax = log d ≈ 5.71.

B. Numerical Solutions

The entanglement of the Floquet eigenstates is easily
calculated based on the discussion above. Since the eigen-
states reside in a subspace with fixed Fz, the uncoupled
representation of angular momentum is the Schmidt ba-
sis, and the entanglement in a given eigenstate |k〉 is the
Shannon entropy of the probability distribution of the

expansion λ
(k)
mJ

= |c(k)
mJ

|2 from Eq. (6). Figure 5 shows
a list plot of this entanglement for a mixed phase space
(as shown in Fig. (2b)) and acompletely chaotic space
(as shown in Fig. (2c)). In the latter case, the entan-
glement values are clustered around the value expected
from random matrix theory, discussed below.

Our main interest is to study the dynamically gener-
ated entanglement and its correlation with the classical
phase space. We wish to associate quantum states with
our classical initial conditions. The “most classical” state
of a quantum system is a coherent state, so it would be
natural to associate a point in our four-dimensional clas-
sical phase space with a product of spin coherent states.
These states, however, have support on several subspaces
with different values of Fz, and thus correspond to a
distribution of classical surfaces of sections. To avoid
this complication, we project our coherent states into
the MF = 0 subspace, and then renormalize them, as
described in Eq. (12). This gives us a pure state, which
though no longer separable, typically has a low entan-
glement and is localized around a point in the classical
phase space in the relevant difference angles.

The time-evolved state after n applications of the Flo-
quet operator to the projected coherent state is

|ψn(δθ, δφ)〉 = Un
τ |δθ, δφ〉 =

∑

k

ake
−inφk |k〉, (18)

expanded in the Floquet eigenstates, where ak =
〈k|δθ, δφ〉 is the initial spectral decomposition. The
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FIG. 6: Dynamically generated entanglement as a function
of the number of applications of the Floquet map. (a) Mixed
phase space (α = 3/2, β = π/2), regular initial condition:
|ψ0〉 = |I, I〉|J,−J〉. (b) Mixed phase space (α = 3/2, β =
π/2), regular initial condition: |ψ0〉 = |δθ = π/10, δφ =
53π/30〉. (c) Mixed phase space (α = 3/2, β = π/2), chaotic
initial condition: |ψ0〉 = |I,−I〉|J, J〉 (d) Globally chaotic
phase space (α = 6, β = π/2), chaotic initial condition:
|ψ0〉 = |δθ = π/2, δφ = π/3〉. The solid line gives the value
expected from random states in the Hilbert space, Eq. (27).

Schmidt coefficients are the expansion of this state in
the angular momentum product basis (the Schmidt ba-
sis) giving,

λ(n)
mJ

=

∣

∣

∣

∣

∣

∑

k

ake
−inφkc(k)

mJ

∣

∣

∣

∣

∣

2

. (19)

according to Eqs. (6, 19). The Shannon entropy of these
coefficients gives the dynamically evolved entanglement.
Figure 6 shows this quantum evolution for parameters
such that the classical evolution is described by a mixed
phase space. For a coherent state initial condition chosen
in the middle of a regular island (|ψ0〉 = |I, I〉|J,−J〉 =
|δθ = −π, δφ = 0〉), the entanglement rises slowly and
oscillates between high and low values. For an initial
condition in the chaotic sea (|ψ0〉 = |δθ = π/2, δφ =
π/3〉), the entanglement rapidly rises and saturates to a
near constant value, with small fluctuations about the
steady state.

In order to better explore how the entanglement evolu-
tion saturates to a particular value, we average over many
time steps to find a long-time average of entanglement.
We drop the first three hundred steps in order to remove
transient effects and insure that the dynamics settle into
a steady state, and then average over times steps 300-
320. By looking at a plot of this average, we can see how
it correlates with initial conditions, a procedure initially
carried out for the kicked top Hamiltonian by Wang et

al. [16]. Figure 8 shows remarkably strong correlation
between structures in the classical mixed phase space
and the long-time entanglement average plot. Chaotic
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FIG. 7: Long-time average entanglement as a function of
mean coordinate of the initial projected coherent state. (a)
Mixed phase space: α = 3/2, β = π/2 (b) Globally chaotic
phase space: α = 6, β = π/2)
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FIG. 8: Side-by-side comparison, showing dynamically gen-
erated entanglement as superb signature of classical chaos in
a mixed phase space (α = 3/2, β = π/2). (a) Classical phase
space, Poincaré section. (b) Long-time average entanglement
as a function of mean coordinate of the initial projected co-
herent state

initial conditions generally go to a higher average value
than regular initial conditions, with the smallest values of
entanglement generation near the classical fixed points.
Additionally, all initial conditions in the chaotic sea sat-
urate to nearly the same average entanglement.

For parameters corresponding to global chaos, we can
see that the surface plot is very flat (see Fig. 8a), with
all initial conditions converging to nearly the same long-
time entanglement average. For the parameters at hand,
averaging over all initial conditions, the dynamically gen-
erated entanglement is Ēdynam = 5.28, as compared to
the value Ēeigens = 4.97 found for the average entan-
glement of the eigenstates of the Floquet map. For the
mixed phase space, the value of long-time entanglement
is flat for initial conditions that correlate with the classi-
cal chaotic sea. To find the entanglement characteristic
of the chaotic initial conditions, we take a grid of co-
herent states across the phase space. Each point in the
grid is determined as “regular” or “chaotic” by the lo-
cal Lyapunov exponent of the classical dynamics. For
those states with positive Lyapunov exponent we evolve
according to the Floquet operator and calculate the long-
time entanglement average, as described above. Weight-
ing these values according to the measure on phase space
gives us an average entanglement of Ēdynam = 5.08 in the
chaotic sea, significantly lower than that for the globally
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chaotic phase space. Below, we interpret these results
with statistics of random states in Hilbert space and their
connection to quantum chaos.

C. Entanglement and random states in Hilbert

space

The numerical studies in Sec. III B reveal some empir-
ical facts. When the Floquet map corresponds to a fully
chaotic phase space, the entanglement of the eigenstates
are all nearly equal, with an average value independent
of the coupling strength and below the maximum pos-
sible entanglement for the bipartite system. Moreover,
the dynamically generated entanglement when starting
from a projected coherent state localized in a chaotic sea
saturates to a nearly constant value after a few appli-
cations of the Floquet map. In a mixed phase space,
the amount of entanglement increases as the size of the
chaotic sea increases. For a completely chaotic space,
the value no longer changes with coupling strength. This
saturation value is different from the entanglement seen
in the eigenstates. These facts leads us to conclude that
the value of entanglement generation for chaotic maps is
statistical in nature, as emphasized by Bandyopadhyay
and Lakshminarayan [10, 11], and Scott and Caves [17].
The predicted values follow from the theory of random
matrices and random states in Hilbert space, which we
briefly review.

The random matrix conjecture of quantum chaos states
that when the Hamiltonian (in an autonomous system)
or Floquet map (in a periodically driven system) clas-
sically generates global chaos, the quantum operators
have many of the statistical properties of a random ma-
trix drawn from an appropriate ensemble depending on
fundamental symmetries [8]. Systems with time-reversal
symmetry (and no Kramer’s degeneracy), invariant un-
der orthogonal transformations, are described by random
Hamiltonians picked from the Gaussian Orthogonal En-
semble of symmetric matrices (GOE) or Floquet maps
from the Circular Orthogonal Ensemble of orthogonal
matrices (COE). Without time-reversal symmetry, the
system is invariant only under general unitaries on the
complex Hilbert space; the Hamiltonians and Floquet
maps are random matrices chosen from the Gaussian Uni-
tary Ensemble (GUE) and Circular Unitary Ensemble
(CUE), respectively. This leads to the celebrated stud-
ies of level statistics for chaotic systems with different
symmetries [8].

Beyond the eigenvalues, the eigenvectors of these ran-
dom operators have well defined statistical properties
[26]. In fact, both the Gaussian and Circular ensembles
share the same eigenvector statistics. To see this, note
that since the random matrix ensembles are invariant un-
der a group of transformations (orthogonal or complex
unitary), the eigenvectors must uniformly distributed on
a vector space according to the Haar measure that is in-
variant under that group. The eigenvectors of random

matrices are thus random states in a real or complex
Hilbert space, picked according to the appropriate mea-
sure, as discussed by Wootters [27]. When discussing
random state ensembles, we drop the “G” and “C” de-
notations.

To construct a Haar measure for sampling random
states, we employ a parameterization equivalent to the
Hurwitz parameterization of random unitaries [28]. A
measure can be constructed by connecting the space of
unitaries with a manifold upon which there is a known ge-
ometric measure. A normalized state in an d-dimensional
complex Hilbert space can be visualized as a point on the
surface of a hypersphere in a 2d dimensional real space,
where for each of the d basis vectors in Hilbert space we
assign a pair of orthogonal directions that project out
the real and imaginary parts of the state’s probability
amplitude. The surface area of a differential patch on a
hypersphere is then the probability measure for picking
uniformly distributed random states. The coordinates of
a state, parameterized by angles on the hypersphere, and
the corresponding measure over the space are

c1,r = cos θ1, (20a)

c1,i = sin θ1 cos θ2, (20b)

cn,r = sin θ1 . . . sin θ2n−2 cos θ2n−1, (20c)

cn,i = sin θ1 . . . sin θ2n−1 cos θ2n, (20d)

cd,r = sin θ1 . . . sin θ2d−2 cos θ2d−1, (20e)

cd,i = sin θ1 . . . sin θ2d−1, (20f)

dλ = N sin2d−2 θ1 sin2d−3 θ2 . . . ,

sin θ2d−2dθ1dθ2 . . . dθ2d−1, (20g)

where cn,r, cn,i are the real and imaginary expansion co-
efficients in the nth basis state, dλ is the surface element,
and N is a normalization constant. The angles all range
from (0, π) except for the last angle which varies from
(0, 2π). This defines the measure for random states in
the unitary ensemble (UE).

For random states with probability that is invariant
under an orthogonal transformation, the expansion coef-
ficients can be chosen to be real. The probability measure
is then the area element on d dimensional hypersphere in
a real space, with each direction corresponding to a basis
vector of the Hilbert space . In this case the coordinates
of the state and measure over the space are

c1,r = cos θ1, (21a)

cn,r = sin θ1 . . . sin(θn−1) cos(θn), (21b)

cd,r = sin θ1 . . . sin(θd−1), (21c)

dλ = N sind−2 θ1 sind−3 θ2 . . . ,

sin θd−2dθ1dθ2 . . . dθ2d−1. (21d)

This defines the measure for random states in the orthog-
onal ensemble (OE).

With these measures in hand, we can calculate ex-
pected values of entanglement of random states in an
appropriate ensemble and compare them to the numer-
ically predicted results. For large d-dimensional spaces,
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the variance scales as 1/
√
d [27], so when the states in

question are well-described by the statistics above, we ex-
pect the expectation value to give good predictive power.
A well known example is the entanglement of a “typical
state” picked at random from a d1 ⊗ d2 tensor product
Hilbert space, with no other restrictions of symmetry.
The UE Haar measure average of the entanglement over
the whole space gives [17, 29, 30]

Ēd1⊗d2
=

d1d2
∑

k=d1+1

1

k
− d1 − 1

2d2
, d2 ≥ d1. (22)

For large dimensions, Ēd1⊗d2 ≈ log d1 − d1/(2d2), which
is close to the maximum possible value of entanglement,
but saturates slightly below. Typical pure states in an
unconstrained bipartite Hilbert space are highly entan-
gled [30]. For the case at hand, symmetries constrain
the accessible Hilbert space. We thus turn to study the
typical entanglement expected under these conditions.

1. Typical entanglement in a subspace

Our system has an additional symmetry, its rotational
invariance around the z-axis. This restricts our system
so that eigenstates and dynamics take place in subspaces
with fixed values of Fz. Calculation of entanglement
within a subspace is generally a nontrivial task as there
is no simple expression for the entanglement in terms of
variables that we can average over the Haar measure. In
our case, there is a happy accident – the uncoupled basis
of angular momentum, |J,mJ〉⊗|I,MF −mJ〉, is also the
Schmidt basis for all states in the subspace. This implies
that we can take the fixed Schmidt vectors as the direc-
tions that define the space on a hypersphere, and thereby
employ the same parameterization of the Haar measures
as in Eqs. (20,21), where now d is the dimension of the
subspace. Note, this would not in general be possible for
an arbitrary subspace because the entanglement is not
a simple function of the expansion coefficients in a fixed
basis.

For a state in a fixed Fz subspace, expanded in the
uncoupled basis, |Ψ〉 =

∑

cmJ
|mJ〉|−mJ〉, the entangle-

ment is

E = −
∑

mJ

|cmJ
|2 log

(

|cmJ
|2

)

. (23)

For random states in the subspace picked according to
the orthogonally invariant Haar measure, the coefficients
are taken to be real and distributed on the hypersphere
according to Eq. (21). The contribution of each term in
the expression for the entanglement given above should
be equal, so we can shortcut by integrating only the first
term, and multiplying by the number of terms, d. We
normalize by an integral over the measure for that vari-

able. The result for the orthogonal ensemble is

ĒOE = d
−

∫

|cos θ1|2 log
(

|cos θ1|2
)

sind−2 θ1dθ1
∫

sind−2 θ1dθ1

= Hd/2 + log 4 − 2, (24)

where

HD = 1 + 1/2 + 1/3 + · · · + 1/D (25)

is the harmonic series.
For the states picked according to the unitarily invari-

ant Haar measure within this subspace, it is useful to first
simplify our parameterization by specifying the magni-
tudes of the expansion coefficients in terms of the angles
on the hypersphere, rather than the real and imaginary
parts of the expansion coefficients. Our new parameteri-
zation and the associated surface element are as follows:

|c1| = cos θ1 (26a)

|cm| = sin θ1 . . . sin θm−1 cos θm (26b)

|cd| = sin θ1 . . . sin θd−1 (26c)

dλ = N sin2d−3 θ1 sin2d−5 θ2 . . .

sin θd−1 cos θ1 . . . cos θd−1dθ1dθ2...dθ2d−1, (26d)

where θm now ranges from (0, π/2). Since the entangle-
ment for a state in the subspace depends only on the the
magnitudes {|cm|}, Eq. (23) can be expressed in terms
of this parameterization of the manifold. Performing the
average, the typical entanglement for a state picked for
the UE, restricted to a Fz subspace, is

ĒUE = d
−

∫

|cos θ1|2 log
(

|cos θ1|2
)

sin2d−3 θ1 cos θ1dθ1
∫

sin2d−3 θ1 cos θ1dθ1

= Hd − 1. (27)

These averages hold regardless of dimension of the space,
though the variance of the distribution rapidly narrows
as d increases.

In the limit of large dimensional spaces,

ĒOE → log d− 2 + log 2 + γ, (28a)

ĒUE → log d− 1 + γ, (28b)

where γ ≈ 0.577 is Euler’s constant. These entanglement
values are equal to the entropy of a random state in a real
or complex Hilbert space with respect to a fixed basis, as
discussed by Wootters [27] and Zyczkowski [31]. This
is not surprising since the Schmidt basis for our system
is fixed when the state is confined to a subspace with
fixed Fz. Generally, this is not true, and the entropy of
the squared expansion coefficients with respect to a basis
is not equal to the typical entanglement. For example,
for the full tensor product space, for large dimensional
Hilbert spaces with d1 = d2, Ēd1⊗d2

→ log d1 − 1/2,
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which differs from the Wooters/Zyczkowski entropy, Eq.
(28), taking d = d2

1.
As an aside, we can repeat our calculations for the lin-

ear entropy, an entanglement monotone. The linear en-
tropy is determined by the purity of the reduced density
operator of one subsystem,

SL(ρ) = 1− Tr(ρ2
red) = 1−

∑

m

λ2
m = 1−

∑

m

|cm|4 (29)

where λm = |cm|2 are the Schmidt coefficients for a state
in the subspace. We repeat our integrals over the appro-
priate manifolds and find

S̄L,OE = 1 − 3

d+ 2
, S̄L,UE = 1 − 2

d+ 1
, (30)

the same results found by Brown and Viola by different
methods [32].

2. Typical entanglement prediction for the kicked

coupled-tops

With the results of Sec. III C 1 in hand, we can com-
pare the predictions of the typical entanglement of ran-
dom states to the entanglement found numerically in Sec.
III B. Since the system is time reversal invariant with-
out Kramer’s degeneracy as shown in Sec. II B, under
the random matrix conjecture of quantum chaos, we ex-
pect the eigenstates of the Floquet operator for globally
chaotic classical dynamics to be random states chosen
from the OE. The eigenstates are restricted to a subspace
with fixed value of Fz, so Eq. (24) applies. We consider
the Fz = 0 subspace with dimension d = 2J+1. For spin
J = 150, one finds ĒOE = 4.98, in excellent agreement
with the mean entanglement of the eigenstates for the
globally chaotic case, Ēeigens = 4.97.

Next we consider the dynamically generated entangle-
ment, starting from a spin coherent product state pro-
jected into the Fz = 0 subpace. The key conjecture, seen
numerically in prior studies, is that chaotic maps acting
on a fiducial state generate states with the statistics of
random states in Hilbert space, chosen according to the
appropriate ensemble. However, contrary to prior claims
[10], though the Floquet operator is a member of the
COE, the dynamically generated state is not random ac-
cording to the OE. To see this, first note that since the
Floquet operator is a member of the COE, we know the
eigenstates are time-reversal invariant, T |k〉 = |k〉. How-
ever, according to Eq. (8), time reversal acting on the
dynamically evolved state gives

T |ψn(δθ, δφ)〉 =
∑

k

a∗ke
+inφk |k〉 6= |ψn(δθ, δφ)〉. (31)

Thus, the dynamically evolved state is not an eigen-
state of the time reversal operator. This is true even
when the initial state itself is a time-reversal eigenstate
(e.g., the coherent state at the pole, |ψ(0)〉 = |I,mI =

−mJ〉|J,−mJ〉), in which case T |ψn〉 = |ψ−n〉. Thus the
appropriate ensemble here is the UE, and we expect the
dynamically generated entanglement to be predicted by
random states with these statistics. This is indeed born
out in the numerics. For the globally chaotic map, we
evolve and average to find the steady state value, as dis-
cussed in Sec. III B. The long-time entanglement average
is almost independent of the initial coherent state, pro-
jected in the Fz = 0 subspace. For these initial condition
Eq. (27) predicts ĒUE = 5.28 in good agreement with
the long-time average value of 5.28.

In the case of a mixed phase space, we saw that the
long-time entanglement average was almost constant for
initial states localized in the chaotic sea. Clearly, this
value of entanglement is a statistical property of Hilbert
space. Just as the quantum dynamics lead to a ran-
dom state in the entire Fz = 0 subspace when the classi-
cal dynamics are globally chaotic, for a classically mixed
phase space, based on Percival’s conjecture, the quan-
tum dynamics generate a random state in the chaotic

subspace. The structure of the chaotic sea cannot be de-
scribed by a simple symmetry, so we cannot determine
the entanglement of a typical state analytically. How-
ever, we can filter the eigenstates to determine which
are in the chaotic subspace, as discussed in Sec. II B,
and sample randomly from a unitarily invariant measure
over this subspace in order to find the typical entangle-
ment value. In this case there is no simple expression
for the entanglement as a function of the states, so we
cannot analytically take the average over the appropriate
measure as before. Instead, we generate a large number
of random states in the chaotic subspace, and find their
entanglements. We do this by picking the real and imag-
inary parts of the expansion coefficients with respect to
the chaotic eigenstates according to a Gaussian distribu-
tion. After normalizing, the entanglement is calculated
for this state, and the process is repeated 100 times. The
results are averaged to find an estimate of the average
entanglement of a random state in the chaotic sea. We
find that the average entanglement of a random state in
the chaotic subspace picked according to the UE distri-
bution is 5.13, in good agreement with the numerically
determined value of Ēdynam = 5.08 found in Sec. III B.
Part of this discrepancy is likely due to the greater de-
gree of variation of entanglement across the chaotic sea
in the mixed phase space compared to the relatively flat
completely chaotic phase space. In addition our filter for
determining the members of the chaotic subspace was
somewhat crude with an ambiguous “grey zone”. We
would expect this to improve deeper in the semiclassical
regime, where Percival’s conjecture applies better.

IV. DISCUSSION AND SUMMARY

Classical chaotic dynamics lead to ergodic mixing in
phase space. Quantum analogs of ergodicity have long
been considered, including “spectral chaos” [33] and in-
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crease in entropy associated with the wave function when
expanded in a fixed (non-stationary-state) basis [34]. Re-
cent numerical studies indicate that quantum dynamics
generated by nonintegrable Hamiltonians are ergodic in
the sense that they generate pseudo-random states in a
Hilbert space, chosen according to a Haar measure that is
dictated by the symmetries of the system [17, 35]. Such
a result is not new, having its roots in the random ma-
trix theory conjecture of quantum chaos [20] – the typical
Hamiltonian of a nonintegrable system has the statisti-
cal properties of random matrices of an ensemble picked
according to the symmetries of the system under time re-
versal. The classic works on the subject, however, focus
on the properties of the stationary states and spectra –
Berry’s “quantum chaology” [36]. Dynamical ergodicity
in quantum mechanics has been harder to pin down and
is still a subject of some controversy.

The existence of quantum dynamical ergodicity has
implications for the dynamical generation of entangle-
ment. It is well known that for large dimensional bipar-
tite Hilbert spaces, a random state is highly entangled
with almost the maximum entanglement allowed by the
dimension [30]. As the large dimensional limit is equiv-
alent to the ~ → 0 semiclassical limit, and to the degree
that the quantum analogs of chaotic Hamiltonians gener-
ate random states, one expects near maximal dynamical
generation of entanglement in quantum chaos, to a value
that is predicted by the statistics at hand. This is not to
say that regular dynamics (quantum analogs of integrable
motion) cannot lead to highly entangled states. Indeed,
such behavior is seen, and has been previously noted in
[14]. Regular dynamics, however, show oscillatory behav-
ior, including in the generation of entanglement. Chaotic
dynamics, by contrast, lead to quasi-steady state behav-
ior, and typically lead to higher values of time-averaged
entanglement than regular motion. Taken together, these
facts imply that the long-time average entanglement in
a bipartite system should be a strong signature of clas-
sical chaos, closely associated with ergodicity in the two
dynamical descriptions.

We have studied the relationship between entangle-
ment and chaos for a system of isotropically coupled tops,
in which one of the tops receives a periodic kick around
a fixed axis. In contrast to most previous studies, here
the chaos and entanglement arise from the same coupling
mechanism. This allows us to remove ambiguities that
have been discussed regarding the effect of coupling be-
tween the subsystems vs. the chaoticity in the individual
subsystems. Moreover, the rotational symmetry of the
system allows us to easily calculate and interpret the en-
tanglement because the Schmidt basis, within a subspace
defined by a fixed value of the conserved angular momen-
tum, is independent of the joint state of the system. This
unique property connects entanglement in our system to
the entropy of the probability distribution of a random
state with respect to a fixed basis.

The results reported here give further confirmation to
the fact that chaotic systems take quantum initial con-

ditions to pseudo-random quantum states, and that the
high long-time entanglement average of states undergo-
ing quantum chaotic dynamics is just that of a typical
state in the Hilbert space. We see the confirmation of
this picture in the excellent agreement between the prop-
erties of ensembles of quantum states and the numerical
results for the eigenvector statistics and long-time entan-
glement average for the completely chaotic system. This
approach was also found to be highly flexible, applying
to subspaces and mixed phase spaces.

For parameters with global chaos, independent of the
initial condition, the dynamically generated entangle-
ment is well-predicted by a random state of the appro-
priate Haar-averaged unitary ensemble. This value is
distinct from the expected value of entanglement in the
orthogonal ensemble that describes the Floquet eigen-
states for this time-reversal invariant system. Dynamical
evolution changes the measure over which we must aver-
age, even though the Floquet operator itself is a member
of the COE, and even when the initial state itself is an
eigenstate of time reversal. We are able to derive exact
analytic results for these expected values when the state
is restricted to a subspace dictated by the symmetries.

For a mixed phase space, numerical plots of the long-
time entanglement average entanglement exhibit beauti-
ful correlation with the regular islands and the chaotic
sea. Within the chaotic sea, the entanglement is fairly
uniform, with a value characteristic of the ergodic mixing.
We show this by appealing to Percival’s conjecture. In
the semiclassical limit, the Hilbert space approximately
decomposes into subspaces spanned by the eigenstates
that condense on the regular islands and those that are
spread through the chaotic sea. We determine the chaotic
subspace by filtering the Floquet eigenstates according to
their entropy in phase space and by the expected values
of observables associated with the regular islands. Given
an identification of the chaotic subspace, we performed a
Haar measure average of the expected entanglement and
found reasonable agreement with the dynamically gen-
erated value for states initially localized in the chaotic
sea. There is still some deviation between our predictions
and the numerical results, but we believe that the basic
reasoning behind this method is sound. For systems in
which symmetry more cleanly separates the chaotic and
regular subspaces [24], we expect that the Haar measure
average over the unitary group will give a very accurate
prediction of the entanglement generation in the chaotic
sea for mixed phase spaces.
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