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We study the effect of shear on the structure of plumes near the hot surface in turbulent Rayleigh Benard

convection (RBC) and turbulent mixed convection for the range of near surface Rayleigh numbers 5.75 × 107 ≤

Raw ≤ 6.03 × 108 and shear Reynolds numbers 8.02 × 102 ≤ Re ≤ 15 × 103 for a Prandtl number range of

5.24 ≥ Pr ≥ 0.7 in water and air. Plumes are visualised by particle scattering in mixed convection in air while

they are extracted from the PIV fields in RBC in water. The planforms of plume structure show that shear aligns

the line plumes and increases their mean spacing λ. An increase in Raw decreases the mean plume spacing while

the resulting increase in Re in RBC, due to the increase of larger large scale flow strength, counteracts this effect.

Further, the plumes are seen more spaced and smeared in air compared to that in water due to the lower Pr. We

show that these complex dependences of the plume spacing on Raw, Re and Pr in RBC and mixed convection

can be described by a common scaling law of λ on the shear parameter S = Re3/Raw and Pr.

I. INTRODUCTION

In turbulent Rayleigh Benard convection (RBC), line

plumes are the predominant coherent structures that originate

in the diffusive regions near the hot surface. These line plumes

form, merge and rise, resulting in a complex network of lines

on the hot surface, which essentially act as channels trans-

porting heat from the diffusive regions near the plate to the

fully turbulent bulk. Since the majority of the heat from the

hot plate is transported by these coherent structures [1], un-

derstanding the scaling of their geometry is essential in un-

derstanding the phenomenology of flux scaling in turbulent

convection.

These lines plumes are the outcome of the gravitational in-

stability of the local natural convection boundary layers [2]

that form on the hot surface; the spacings between them are

then indicative of the length at which these local boundary

layers become unstable. In the absence of predominant shear,

these spacings are distributed lognormally at any instant [3, 4],

with the mean plume spacing in the absence of shear, scaling

as

λ0 = C1Prn1 Zw, (1)

as given by Puthenveettil et al. [5]. Here,

Zw =

(

να

gβ∆Tw

)1/3

=
H

Ra
1/3
w

(2)
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is a length scale near the plate [6, 7], with the subscript 0

indicating the no-shear values hereinafter. The near surface

Rayleigh number Raw = gβ∆TwH3/να, with ν being the kine-

matic viscosity, α the thermal diffusivity, β the coefficient of

thermal expansion, ∆Tw the temperature drop between the hot

plate and the bulk and H, the layer height. The Prandtl num-

ber Pr = ν/α, C1 = 47.5 and n1 = 0.1. The relation (1) also

implies that

Ra
1/3

λ0
= C1Prn1 , (3)

where Raλ0
= gβ∆Twλ

3
0
/να is the Rayleigh number based on

λ0. Since the total length of plumes Lp over an area A of the

hot plate is Lp = A/λ0, Puthenveettil et al. [5] show that (1)

and (2) also imply that

Lp

A/H
=

Ra
1/3
w

C1Prn1
. (4)

The same scaling, without Pr dependence, has also been ob-

tained by [8], who connected it empirically to the volume av-

eraged Kolmogorov length.

At higher Raw, these line plumes organise themselves to

create a large scale flow, which then change the flux scaling

from the classical Nu ∼ Ra1/3 scaling law, where Nu is the

Nusselt number and the Rayleigh number Ra = 2Raw. This

anomalous flux scaling is expected to be due to the modifica-

tion of the boundary layers by the shear due to the large scale

flow. The nature of this modification is still not clear, with the

popular theory of Grossman and Lohse[9] assuming that the

boundary layers become Blasius boundary layers due to the

shear of the large scale flow, which however has not been ob-

served [10, 11]. Similar modification of boundary layers due
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to shear is expected in mixed convection (MC) where the shear

is provided by an externally imposed horizontal mean flow.

Studies abound on the heat flux scaling in mixed convection,

where an empirical summation of the power law scalings in

the limiting cases of forced convection and free convection are

often used [12–15]. Since the heat flux is mostly transported

by plumes, these changes in the flux scaling with shear in RBC

and MC, whose phenomenology is still not clear, could also

be expected to alter the structure of the line plumes on the hot

surface with shear.

Quantitative knowledge about such changes to the plume

structure with shear, in terms of the changes in the spacings

between the line plumes, is however limited. Various visu-

alisations in RBC [3, 16] and MC, [13, 15, 17, 18] show

that shear aligns the line plumes along the shear direction.

In both these cases, it is however not known whether shear

changes the spacings between these coherent structures, and

if it changes, how much that change will be from that given

by (1) for the case of no predominant shear. No knowledge

of the scaling of spacings with ∆Tw and shear velocity Ush,

or on the corresponding dimensionless parameters Ra and the

shear Reynolds numbers Re = UshH/ν is available. Since

these coherent structures carry most of the heat from the hot

surface[1], such a knowledge about changes in the nature of

the plume structure with shear could be crucial in understand-

ing the shear engendered, anomalous, heat flux scaling in tur-

bulent convection. Such a knowledge could also lead to ways

to improve the heat transfer from surfaces by manipulating

these structures. Further, the geometry, organisation and dy-

namics of these coherent structures are of interest in the over-

all phenomenology of turbulent RBC and MC, like the impor-

tance of coherent near wall vortices in shear turbulence[19].

In addition, the knowledge about the spacing and length of

these line plumes could also lead to effective wall functions

for modelling of turbulent RBC and MC, as has been done in

shear turbulence [20, 21].

In the present study, we study the effect of shear on the

spacing between the coherent line plumes on the hot sur-

face in steady turbulent Rayleigh Benard convection in water

(Pr = 5 − 6) as well as in steady turbulent mixed convec-

tion in air (Pr = 0.7). We also include the spacings measured

from the planforms of Gilpin et al. [17] for mixed convection

experiments in water (Pr = 10.1) and from the mixed convec-

tion simulations of Pirozzoli et al.[15] at Pr = 1 to conduct

the analysis over a two decade range of Rayleigh numbers,

5.0×107 ≤ Raw ≤ 2.17×109. The shear in our experiments is

imposed externally in air, while in water, it is internally gen-

erated due to the large scale flow to create about two orders of

shear Reynolds numbers, 802 ≤ Re ≤ 15000. We show that

shear aligns the line plumes in the direction of the shear, with

a mean spacing that increases with shear at the same Raw. An

increase in Raw decrease the spacing at the same shear, with

the spacings being a function of Pr also. This complex de-

pendence of the spacing of line plumes on Raw, Re and Pr is

then shown for a given fluid to only depend on a shear param-

eter S = U3
sh
α/gβ∆Twν

2, which reflects the relative strength

of shear with respect to buoyancy and dissipative effects.

II. EXPERIMENTS

A. Setup and procedure

1. Mixed convection experiments with air

(a)

(b)

FIG. 1. (a),Schematic of the setup for steady mixed convection ex-

periments in air at Pr = 0.7; (b), Line plumes marked with short

linear segments in the planform obtained at Raw = 1.55 × 108 and

external flow rate Q = 1736 lpm.

The schematic of the convection cell that had an area of

cross section 2.5m × 0.5m, used for steady state temperature

driven convection experiments in air at Pr = 0.7 with an

imposed external flow, is shown in figure 1(a). The top and

bottom aluminium plates were separated by four transparent

polycarbonate side walls of height H = 0.5m. The bottom

aluminium plate was maintained at a constant temperature us-

ing a temperature controlled water circulating system while

the top plate was air cooled by fans so that a constant mean

temperature difference ∆T between the plates could be main-

tained. A flow of air was externally imposed through an inlet

of height 25 mm at the top of one of the side walls and an out-

let of height 15 mm at the bottom on the same side wall that

extended over the entire length of the convection cell. The ex-

ternal flow was allowed to settle for nearly 60 minutes before

taking the measurements.

∆T was determined from spatial and temporal averaging

of the plate temperatures recorded at 25 locations in each

plate using PT100 resistance thermometers. The tempera-

tures of the incoming and the outgoing air were measured

using PT100 temperature sensors placed equidistantly over
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TABLE I. Experimental parameters, dimensionless numbers and the plume spacings in the present study. ×, MC experiments by Gilpin et

al. [22]; ✳, MC simulations by Pirozoli et al. [15].

Symbol Type Fluid Pr ∆Tw H Q Ush λ Raw Re
◦C mm lpm mm/s mm ×108 ×103

� MC Air 0.7 4.41 500 1087 290 49.3 0.575 9.577

1167 311 56.2 0.575 10.28

1249 333 64.9 0.575 10.997

� MC Air 0.7 7.95 500 1267 338 44.84 1.01 11.068

1399 373 48.18 1.01 12.214

1436 383 55.03 1.01 12.542

^ MC Air 0.7 9.88 500 1417 398 41.78 1.24 12.333

1500 400 46.1 1.24 13.051

1601 427 51.84 1.24 13.932

△ MC Air 0.7 12.56 500 1537 410 40.11 1.55 13.283

1676 447 43.33 1.55 14.482

1736 463 47.93 1.55 15.0

� RBC Water 5.24 2.59 120 5.2 15.5 1.09 0.802

5.4 15.6 1.09 0.832

6.1 15.6 1.09 0.94

� RBC Water 5.18 3.27 150 8.8 15.4 2.79 1.717

9.4 16.7 2.79 1.834

10.0 15.8 2.79 1.951

� RBC Water 5.09 4.58 175 10.8 17.2 6.03 2.49

12.3 15.1 6.03 2.836

13.4 16.3 6.03 3.09

× MC Water 10.1 11.5 457 29 23.84 21.7 9.573

✳ MC Simulations 1 5 855 261 131.3 0.5 10

the entire length of the cell. The maximum possible error

in temperature measurement was 0.25◦C. External circulation

flow rates ranging from Q = 1087 to 1736 lpm, at differ-

ent ∆T maintained between the conducting plates, were used.

These flow rates correspond to the mean shear velocities of

air entering and leaving the convection cell over the range

0.29 m/s≤ Ush ≤ 0.463 m/s corresponding to a Reynolds num-

ber range of 9577 ≤ Re ≤ 15000. The range of Rayleigh num-

bers in these experiments, 5.75×107 < Raw < 1.55×108, was

obtained by changing ∆T over the values shown in Table I.

2. RBC experiments with water

Steady turbulent Rayleigh-Benard convection (RBC) ex-

periments in a water layer, confined between a hot copper

plate at the bottom and a water cooled glass plate at the

top, were carried out in a glass tank of cross-section 30 cm

× 30 cm, with insulated side walls, in the setup shown in

the figure 2. The bottom copper plate was maintained at a

constant heat flux by a heater plate assembly connected to a

variac. The heat flux was estimated from the measured tem-

perature drop across a glass plate in the plate assembly by T-

type thermocouples at three different locations. The tempera-

tures of the hot Cu plate (Th) and the cold glass plate (Tc) were

measured at two different locations by T-type thermocouples,

whose average was used to calculate the constant temperature

difference of ∆T = Th − Tc. The error in temperature mea-

surement was 0.02◦C. Experiments were conducted over the

range of Raw and Pr shown in table I, obtained by changing

the variac voltage, the layer height H and the water flow rate

over the cooling plate.

The velocity fields in x − y plane at a height hm, which

was less than the Prandtl-Blasius boundary layer thickness

(δpb) [23] and the natural convection boundary layer thick-

ness (δnc) [5], were obtained by stereo PIV. The flow was

seeded with poly-amide particles (mean diameter dp = 55 µm

and density ρp = 1.012 g cm−3) and illuminated by a 1mm

thick horizontal laser sheet from a Nd: YAG laser (Litron,

100 mJ/pulse); the particles followed the flow since the Stokes

number was less than 0.00415. The laser pulse separation was

chosen so that the particle displacement was not more than

FIG. 2. Schematic of the experimental setup for steady RBC in water
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TABLE II. Parameters for the PIV measurements in water. Physical properties were estimated at TB, the bulk fluid temperature.

Raw TB hm δpb δnc Ai ∆t DI overlap

spatial

resolution

(◦ C) (mm) (mm) (mm) (mm2) (s) (pix) % (mm)

1.09 × 108 31.42 1.5 11.1 2.2 83.08 × 71.94 0.0667 32 50 1.04

2.79 × 108 31.88 1.0 8.9 2.0 82.28 × 70.38 0.0667 32 50 1.03

6.03 × 108 32.60 1.3 7.5 1.8 84.10 × 73.86 0.0667 32 50 1.05

the one-fourth of the laser sheet thickness. Two Imager Pro

HS cameras (LaVision GmbH, 1024 × 1280 pixels), oriented

at 32.5◦ with the vertical, with depth of field more than the

laser sheet thickness, were used to capture the images at 15Hz

at the center of the hot plate. The imaging areas Ai, shown in

Table II, were chosen so that sufficient number of line plumes

were present in Ai. Refraction errors were reduced by viewing

the bottom plate through a water filled prism placed over the

top cold chamber, the errors due to this oblique imaging were

reduced by using a third order polynomial mapping function

obtained by imaging a calibration plate.

A multipass adaptive window stereo cross correlation

method (Davisr) was applied on images obtained this way,

after high pass filtering, to calculate the 2D-3C vector field.

The size of the interrogation window (DI) and the particle

concentration was chosen so that the displacement of particles

xp ≤ DI/4 and at least ten particles were present in an inter-

rogation window at any time. Spurious vectors were removed

by applying a median filter of 3pix × 3pix neighbourhood and

gaps were filled by interpolation. Other relevant parameters

of the PIV measurements are shown in table II, while two typ-

ical vector fields obtained at Raw = 1.09 × 108 and 6.03 × 108

are shown in figure 3. Uncertainty in the estimated velocity in

all the interrogation windows was calculated from the corre-

lation statistics using the methodology of Wieneke [24], using

Davisr. The maximum value of the mean uncertainty from

all the images at the lowest and the highest Ra was 0.298

mm/s and 0.364 m/s respectively. These mean uncertainties

are 4.9% and 3.4% of corresponding mean shear velocities at

the corresponding Ra.

B. Detection of plumes

In mixed convection experiments with air, the planforms

of plume structures near the plate were made visible when a

horizontal light sheet from a 532 nm Nd-Yag laser was scat-

tered by the smoke particles injected into the external air flow

circuit. The laser sheet was 2mm thick with its centreline at

hm = 4mm above the bottom hot plate. Since the plumes have

relatively lesser number of smoke particles, possibly since the

smoke particles have to get into the plumes through entrain-

ment from the bulk or into the boundary layers, they scatter

less light and hence appear as dark lines in a bright back-

ground. Figure 1(b) shows the planform of plume structure

visualised in this way above the bottom horizontal plate at

Raw = 1.55 × 108. The thick darker lines in the image are

the top view of the line plumes. The convection cell had a

closed opaque top, the top views of the plume structures near

(a)

(b)

FIG. 3. Dimensionless horizontal divergence fields, overlaid over

the horizontal velocity vector fields, in a horizontal plane at a height

hm from the hot surface in RBC in water. (a), Raw = 1.09 × 108,

Re = 832 and hm = 1.5 mm; (b), Raw = 6.03 × 108, Re = 2490

and hm = 1.3 mm. Plumes are the colour regions. Shear dominant

areas are shown by the red polygon. Lp is measured by adding up the

length of the black lines in the plume regions.
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the bottom plate were hence captured through the side walls

by a CCD camera at 10fps. The perspective errors caused by

this inclined camera axis were removed using a horizontal cal-

ibration plate in the plane of observation. Since all the plumes

in the laser path will appear darker, no plumes are likely to be

missed by this technique.

To detect plumes from the velocity fields obtained from PIV

in the steady RBC experiments with water, we use the hori-

zontal divergence criterion proposed by Vipin and Puthenveet-

til [25]. From the instantaneous horizontal divergence fields

calculated from the horizontal velocity fields in a plane at

height hm, the criterion identifies regions with negative values

as plumes. A 3pix × 3pix smoothing mean filter was applied

to the vector field to reduce the noise while calculating diver-

gence. Figure 3 shows the horizontal divergence fields, over-

laid over the horizontal vector fields at two Raw; the coloured,

line type regions show the plumes. We notice two types of

regions in figures 3(a) and 3(b), (i) regions with smaller mag-

nitudes of velocities where the line plumes are oriented in no

particular direction and (ii) regions with larger magnitudes of

velocities where the line plumes are aligned in the direction

of these larger velocity vectors. To study the effect of shear

on plume spacings, we estimate the plume spacings only in

the regions where the plumes are aligned, and that have larger

magnitudes of horizontal velocity. We estimate the average

magnitude of horizontal velocity in such regions, shown by

the red polygons in figure 3, and use this as the mean shear

velocity Ush.

We also measure the plume spacings from Gilpin et al.[17]

and Pirozzoli et al.[15]. The plumes in Gilpin et al.[17]

were visualised by the Phenolphathalene based electrochem-

ical technique [26]. The technique causes colour changes to

the dye only close to the hot surface, the dye with a different

colour than the bulk near the hot plate then gets drawn into the

plumes thereby making them visible. In the case of Pirozzoli

et al. [15] plumes are identified as the regions with positive

temperature fluctuations (T ′) from their given T ′ fields in a

horizontal plane close to the hot surface ( what height)?.

C. Measurement of plume spacing

Once the plumes are detected as described above, the mean

plume spacing λ at each Raw and Re were estimated from the

images by measuring the total plume length Lp in an area A

and then using,

λ = A/Lp, (5)

given by [5]. The plume lengths were measured from images

similar to that in figure 3 and 4 by using a program that covers

the plume lines with short linear segments on mouse clicks

over the plume lines, which then calculates the total length

of these lines. Figure 1(b) shows a planform in air at Raw =

1.55 × 108 and 1736 lpm external flow, with the line plumes

covered with such short linear segments, the sum of whose

lengths give an estimate of Lp. Similarly, figure 3 shows two

plan forms in water at Raw = 1.09× 108and 6.03× 108, where

the plumes are covered by line segments.

A possible error of 1.5% in λ was estimated from multiple

measurements from the same planform in air. Similarly, for

planforms in water, a 3% error in λ was estimated by measur-

ing the maximum and minimum possible values of Lp from

planforms. To estimate the error in the estimate of λ from

Pirozzoli et al.[15], we estimate Lp from subregions in their

figure 4(d) by marking segments in the red regions alone that

show the highest values of T ′, and then in the red and yellow

regions which show slightly lower values of T ′. This process

is repeated for different subregions to get a range of Lp, the

error in λ is estimated from this range; the maximum possible

error in λ was 2.9%. Error in the estimate of λ from Gilpin

et al[17] was obtained by making multiple measurements of

Lp from different subregions of the planform given in their

figure 4(c) to give a maximum possible error of 4.3%. These

values of errors in λ, or the errors derived using these values,

are shown in the subsequent plots as the vertical error bars.

III. ANALYSIS OF MEAN PLUME SPACINGS

A. Qualitative analysis

Figure 4 shows the planforms in mixed convection in air at

Raw = 1.55 × 108 at Re of 13283, 14482 and 15000. The di-

rection of external shear is from top to bottom in these figures.

The planforms show that with increase in shear the plumes are

distributed more uniformly, with the plumes becoming more

aligned in the direction of shear. It also appears that the mean

plume spacing increases in figure 4(c) compared to that in fig-

ure 4(a). Similar increased uniformity of spacing, increased

alignment in shear direction and larger mean plume spacing

with increasing shear were also observed in the planforms in

air at the other Raw shown in table I. Since the spacing be-

tween the plumes is directly proportional to the distance over

which the boundary layer between the plumes develop, before

becoming unstable, it is hence clear that shear changes the

stability of the local boundary layers between the plumes in

turbulent convection. Figure 5 shows the planforms of plume

structure at approximately the same Re of 10997 and 11068

but at different Ra of 5.75× 107 and 1.01× 108. It is clear that

the density of plumes increases with increase in Ra resulting

in smaller plume spacing with increase in Ra.

The plume structure at the centre of the bottom hot plate in

steady RBC in water at Raw = 1.09 × 108 and 6.03 × 108 is

shown in Figure 3. Unlike in the case of mixed convection

planforms in figures 4(a) to 4(c), where the effect of shear

is seen to approximately align the plumes over the whole of

the planform, here we notice that there are regions that show

alignment of plumes, which are marked by the red polygon,

while there are also regions in which the plumes are oriented

randomly. The aligned plumes occur in regions with higher

horizontal velocity magnitudes, as could be noticed by the

larger velocity vectors in these regions in figures 3(a) and 3(b).

As seen in table I, Re based on the average shear velocity Ush

in these regions are an order lower than the corresponding Re

in figures 4(a) to 4(c). The shear is lower in the case of RBC

experiments in water since shear is created by the self gener-
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(a)

(b)

(c)

FIG. 4. Planforms of plume structure in mixed convection in air at

Raw = 1.55 × 108. (a), Re = 13.28 × 103; (b), Re = 14.48 × 103 and ;

(c), Re = 15 × 103. Flow is from top to bottom.

ated large scale flow at a higher Pr than in air, where the shear

is externally forced. Such a lower shear in water experiments

could be the reason for the splitting of the planforms into shear

dominant and shear free regions in figure 3. In corroboration

with this observation, we also observe that the extent of re-

gions with aligned plumes increases with increase in Raw in

these RBC experiments, since the large scale flow strength

increases with increase in Raw. Since the planforms in fig-

ure 3 are over an area of 53 cm2 while that in figure 4 are over

an area of 6250 cm2 the density of plumes are much more at

the same Raw in water compared to that in air; increase in Pr

hence seems to decrease the mean plume spacing. Unlike seen

in the case of planforms in air in figure 4, in the planforms in

water in figure 3, an increase of plume spacing in the shear

dominant regions, compared to that in the low shear regions,

or an increase in plume density with increase in Raw, are not

(a)

(b)

FIG. 5. Planforms of plume structure at approximately the same Re

at two different Raw in MC in air; (a), Re = 9.58 × 103 at Raw =

5.75× 107; (b), Re = 9.6× 103 at Raw = 1.55× 108. Flow is from top

to bottom.

clearly seen.

B. Quantitative analysis of plume spacings

Figure(6) shows the variation of the mean plume spacing

λ as a function of the shear velocity Ush at different Raw in

water and air. The hollow symbols show the variation of λ in

air while the filled symbols show it in water. The same type of

symbols indicates the same Raw. The solid line in the figure

shows λ0 for the no shear case at Pr = 0.7, evaluated using (1)

at Raw = 1.55×108, i.e. at the same Raw as △. The dashed line

shows λ0 at Pr = 5.09 and Raw = 6.03 × 108, corresponding

to �. The figure also shows the values of λ measured from

Gilpin et al. [17] at Pr = 10.1 and from Pirozzoli et al. [15] at

Pr = 1. The error bars show the error in λ at some of the Ush,

estimated as discussed in II C.

The most noticeable feature of the figure is that the values

of λ in air are about 4 to 5 times that in water, eventhough both

are at around the same order of Raw, possibly because of the

higher shear in air, which are about an order larger than that

in water. Compared to the values in the no shear case, shown

by the solid and the dashed lines in figure 6, shear increases

the plume spacing to higher values; this increase from the no-

shear values being lower in the lower Pr case. The low Pr data

shows that at any Raw, shown by any of the hollow symbols in

figure 6, shear increases λ. Further, the curves of each hollow
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FIG. 6. (a)Variation of the mean plume spacing with the shear velocity. Hollow symbols indicate MC experiments in air at Pr = 0.7 for the

following Raw. �, Raw = 5.75 × 107; �, Raw = 1.01 × 108................ Filled symbols indicate RBC experiments in water for the following Raw

and Pr. �, Raw = 1.09 × 108, Pr = 5.24; �,..................; ×, MC experiments by Gilpin et al.[17] in water at Pr = 10.1 and Raw = 2.17 × 109;

✳, MC simulations by Pirozzoli et al. [15] at Pr = 1 and Raw = 5 × 107; , λ0 given by (1) for Raw = 6.03 × 108and Pr = 5.09; , λ0

given by (1) for Raw = 1.55 × 108and Pr = 0.7. The inset shows the variation of the dimensionless plume spacing with Reynolds number;

,Ra
1/3

λ0
Pr−n1 = 47.5 (3). (Pl.complete)

symbol move down with increase in Raw, implying that an in-

crease in Raw at around similar shear reduces λ strongly at low

Pr. Similar trends are also shown by the higher Pr data, but

the increase of λ with shear seems to be much smaller here,

possibly since the values of shear itself are small. Further, the

increase of shear in these RBC experiments is accompanied

by an increase of Raw also, since the large scale flow strength

scales as Ra
4/9
w [4], which, as we saw above, has the effect of

reducing the spacings. The decrease of λwith Raw, seen in the

low Pr case cannot be seen for water, possibly since this de-

crease is offset by the increase in λ due to shear. The spacing

in Pirozzoli et al. [15], at similar Ush as that in air, seems to be

disproportionately higher than those in air, since Raw is only

slightly lower and Pr slightly higher in this case compared

to air. In the case of Gilpin et al.[17], Raw is an order larger

than those in water, which should have reduced λ compared to

those in water. The observed contrary behaviour could be due

to the increase of Ush, and possibly Pr.

The above trends can be seen better in the variation of

λ/(ZwPrn1 ) = Ra
1/3

λ
/Prn1 , the dimensionless plume spacing

with the dimensionless shear velocity, Re, shown in the inset

in figure 6. The error bars in the figure show the estimated

error in Ra
1/3

λ
Pr−n1 , calculated using the errors in ∆Tw and λ.

For the case of no shear, as per (1), Ra
1/3

λ0
/Prn1 = 47.5, which

is shown as the solid line in the inset. Since the vertical offset

of the water data from the solid line is much more than that in

the case of air, even when the shear velocity is much smaller in

water, the effect of shear to increase λ over its no shear value

λ0 is seen to be much more in water compared to that in air.

An increase in Pr seems to reduce the increase in λ with shear

since the data of Gilpin et al. [17], which at Pr = 10.1 is at a

much higher Re than our water data, does not show as much

increase of λ over the corresponding no shear values. On the

contrary, the data of Pirozzoli et al. [15], which is at almost

the same Raw and Re as our air data, but at slightly higher

Pr, shows an increase of λ compared to that in water. The

increase of Ra
1/3

λ
with Re at any Pr seems to have the same

trend at all Raw, even though this dependence does not seem

to be any simple power law. The decrease in λ with Raw at the

same shear, observed in the main figure, is also seen in the in-

set figure, where the values of Ra
1/3

λ
move down with increase

in Raw, more prominently for air, than in water. Clearly, the

variation of λ with shear shows quite a complex dependence

on Re,Raw and Pr; we now present a scaling analysis which

account for this non-trivial dependence.
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C. Scaling of mean plume spacing with shear

1. Stability condition

Castaing et al [27] showed that in the presence of shear, the

gravitational instability of natural convection boundary layers

gets modified to result in a critical boundary layer thickness,

given by

Rabl
c = A + BRec

bl2, (6)

where Rabl
c = gβ∆Twδ

3/να is the critical Rayleigh number

based on the critical thermal boundary layer thickness δ at

which the boundary layer becomes unstable, Rec
bl = Ushδ/ν

is the critical Reynolds number based on δ with A(Pr) and

B(Pr) being unknown functions of Prandtl number. We define

δ̃ = δ/Zw and a shear parameter

S =
U3

sh
α

gβ∆Twν2
=

1

Rash

=
Re3

Raw

=

(

Zw

Zsh

)3

, (7)

which indicates the relative strength of shear with respect to

buoyancy and dissipative effects, where the Rayleigh number

based on the viscous-shear length Zsh,

Rash =
gβ∆TwZ3

sh

να
, with Zsh =

ν

Ush

. (8)

Equation (6) can now be rewritten in terms of δ̃ and S as

BS 2/3δ̃2 − δ̃ + A = 0. (9)

Solving (9), we obtain

δ

λ
=

(

A

Raλ

)1/3

+
B

3

(

S 2

Raλ

)1/3

+
B2

9A1/3

(

S 4

Raλ

)1/3

+ O(S 2)terms. (10)

We now assume that

δ/λ = CPrn (11)

for small shear. This assumption implies that δ and λ have the

same functional dependence on Raw and Re so that their ratio

becomes only a function of Pr. Such is the case for plume

spacings with no shear, as has been shown by [5], where both

λ and δ scale as CiZwPrni , with different values of Ci and ni

for λ and δ, so that their ratio scale as CPrn. We expect the

same to occur in the presence of small shear; as we show later,

this assumption accounts for the variation of λ in the present

range of shear. Using (11) in (10) and neglecting terms with

power of S greater than one, which is again valid for small

shear, we obtain,

(

A

Raλ

)1/3

+
B

3

(

S 2

Raλ

)1/3

= CPrn. (12)

For S → 0, i.e with no shear, λ → λ0 and Raλ → Raλ0
, for

which, (12) should tend to the corresponding no-shear rela-

tion (3),which implies that

A = C3Pr3nRaλ0
. (13)

2. Scaling of excess plume spacings with shear.

Substituting (13) in (12), and rearranging, we obtain the

difference of the plume spacing in the presence of shear from

its no-shear value, λ∗ = λ − λ0, normalised by the viscous-

shear length Zsh (8), to scale as

λ∗

Zsh

=
S

D
, (14)

where D(Pr) = 3CPrn/B. Figure 7 shows the variation of

Dλ∗/Zsh with S in our experiments in air and water as well as

for those measured from [17] and [15]. The error bars show

the estimated error in Dλ∗/Zsh and in S at some of the values

of S , calculated from the possible errors in ∆Tw, λ and Ush

discussed in § II. The complex dependence of λ on Raw, Re

and Pr, seen in figure 6, now collapse on to a common, simple,

linear dependence of Dλ∗/Zsh on S , in agreement with (14),

when we use the variation

D = 52.7Pr−2.8, (15)

for Pr < 5, and

D = 0.004Pr3 (16)

for Pr > 5 shown in the inset. The decreasing and the increas-

ing strong power law dependences of λ∗ on Pr, for Pr < 5 and

Pr > 5 repectively, could be because the thermal and velocity

boundary layers cross over at Pr ∼ 1.

The relation (14) can also be rewritten as

λ∗

H
=

1

D

Re2

Raw

, (17)

showing that λ∗ scales as Re2 and as 1/Raw. Analogous to (3)

for the case of no shear, (14) can also be rewritten in terms of

Rayleigh and Reynolds numbers based on λ∗ as

Raλ∗

Re2
λ∗

=
1

D
. (18)

3. Scaling of ratio of plume spacings.

The ratio of plume spacing with shear to that without shear

λ/λ0 can be obtained from (14) to scale as

λ

λ0

= 1 + ES 2/3 (19)

where,

E(Pr) =
1

DC1Prn1
. (20)

Figure 8 shows the variation of (λ/λ0 − 1)/E with the shear

parameter S , using the values of E calculated using (15) and

(16). The solid line shows the variation predicted by (19) with

the error bars at some of the S showing the estimated errors

in (λ/λ0 − 1)/E and S , calculated from the possible errors in
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FIG. 7. Variation of λ∗, the difference of the mean plume spacing with shear (λ) from the corresponding no-shear values (λ0), normalised by

the viscous-shear length Zsh (8), with the dimensionless shear parameter S (7); The symbols are as per figure 6 and table I; , (14). The

inset shows the variation of the prefactor D in (14) with Pr; , (15); , (16).

∆Tw, λ and Ush. The figure shows that the ratios of plume

spacings with and without shear over the range of Raw, Re

and Pr in our study obey the relation (19). Using (7), (15) and

(16) in (19), we obtain

λ

λ0

= 1 + 4 × 10−4Pr2.7

(

Re

Ra
1/3
w

)2

, for Pr < 5 (21)

and

λ

λ0

= 1 + 5.36Pr−3.1

(

Re

Ra
1/3
w

)2

, for Pr > 5. (22)

Expressions (21) and (22) show that the ratio of plume spac-

ings λ/λ0 at all Pr scale as (Re/Ra
1/3
w )2, but the spacings in-

crease with Pr for Pr < 5 while they decrease with Pr for

Pr > 5, presumably due to the cross over of the thermal and

velocity boundary layers at Pr ∼ 1.

4. Scaling of length of plumes with shear

Since Lp = A/λ from (5), the above relations for λ also

result in expressions for the total length of plumes on the sur-

face in the presence of shear, analogous to the relations for the

plume lengths Lp0
in the absence of shear, given by Puthen-

veettil et al.[5]. The left hand side of (14), after dividing by

λ, can be rewritten as L∗p/Lp0
, where L∗p = Lp0

− Lp is the re-

duction in plume length with shear from the no shear values.

Using (19) to replace the λ on the right hand side, results that

FIG. 8. Variation of the ratio of mean plume spacing with shear

with the corresponding no-shear values with the dimensionless shear

parameter S (7). The symbols are as per figure 6 and table I; ,

(19).

the ratio of the reduction in plume length with shear to the

plume length in the absence of shear,

L∗p

Lp0

=
ES 2/3

1 + ES 2/3
. (23)
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Similarly, since λ/λ0 = Lp0
/Lp in (19), the ratio of plume

lengths with shear to that without shear

Lp

Lp0

=
1

1 + ES 2/3
. (24)

5. Upper limit of the present analysis

If we continue the above analysis without dropping the last

term of order S 4/3 in (10), we obtain

λ

λ0

= 1 + ES 2/3 + E2S 4/3. (25)

The present analysis is then valid when the last term in (25) is

small compared to the previous term, i.e. when

S <
1

E3/2
. (26)

Using the values of E from (20), with D given by (15) and (16)

we obtain the upper limits of the present analysis as S < 5.32×

105 for Pr = 0.7, S < 1.25 × 105 for Pr = 1, S < 183.24 for

Pr = 5.24 and S < 3.87 × 103 for Pr = 10.1. All these limits

are above the range of the present data for the corresponding

Pr.

IV. DISCUSSION AND CONCLUSIONS

The primary contribution of the present work is the scaling

of plume spacings (λ) on the hot surface in turbulent Rayleigh

Benard Convection (RBC) in the presence of internally gener-

ated shear, as well as in mixed convection (MC), where the

shear is externally supplied. The difference of λ with the

corresponding plume spacing in the absence of shear (λ0),

λ∗ = λ − λ0 is shown to scale as λ∗ = S Zsh/D (14), where

S = Re3/Raw is a dimensionless shear parameter that shows

the relative strength of shear with respect to buoyancy and dis-

sipative effects (7) and D a function of Pr (15), (16). Such a

scaling implies that λ∗ = Z3
w/Z

2
sh

D, a function of two length

scales near the plate, namely Zw, the buoyancy-dissipative

length scale (2) and Zsh, the viscous-shear length (8).

The above scaling also means that, analogous to the rela-

tion Ra
1/3

λ0
= 47.5Pr0.1 for plume spacing without shear (3),

the plume spacings in the presence of shear are given by

Raλ∗/Re2
λ∗
= 0.02Pr2.8 for Pr < 5 and by Raλ∗/Re2

λ∗
=

250Pr−3 for Pr > 5, (18), where the subscript λ∗ indicates

that the dimensionless numbers are based on λ∗. We expect

the positive and negative exponents of Pr in these relations for

Pr < 5 and Pr > 5 to occur because the thermal and veloc-

ity boundary layers cross over at Pr ∼ 1. The dimensionless

excess plume spacing in the presence of shear then scales as

λ∗/H ∼ Re2/(DRaw) (17). These relations, when written in

terms of the ratio of plume spacings in the presence of shear

with those with no-shear, imply that λ/λ0 ∼ Pr2.7(Re/Ra
1/3
w )2

for Pr < 5, (21) and as λ/λ0 ∼ Pr−3.1(Re/Ra
1/3
w )2 for

Pr > 5, (22). All of these relations for λ also give rise to

corresponding relations (23) and (24) for the length of plumes

Lp that form on hot surfaces in RBC and MC.

These scalings of the plume spacings with shear were ob-

tained by measuring the mean plume spacing from two types

of experiments, as well as from two earlier studies by Gilpin

et al [17] and Pirozzoli et al. [15]. Visualisations of the plume

structure on the hot plate in steady, turbulent, mixed convec-

tion in air, which was forced externally by a shear, gave λ at

Pr = 0.7. Plumes detected from PIV vector fields, using the

horizontal divergence criterion[25], from the shear dominant

regions in steady, turbulent, Rayleigh Benard convection in

water gave λ at 5.09 < Pr < 5.24. Measurements of λ from

these two experiments, along with those from [17] and [15],

together provided the variation of λ over one order of Raw and

Re over 0.7 < Pr < 10.1 to enable us to obtain the above scal-

ing of the plume spacings. These experiments showed that,

shear makes the line plumes aligned along the shear direction

with λ increasing with shear for a given fluid and Raw. Corre-

spondingly, for a given fluid at the same Re, an increase in Raw

reduced the spacing. In addition, the spacings also had a non-

monotonous dependence on Pr. These complex dependencies

of the plume spacings in turbulent convection with shear on

Raw, Re and Pr were succesfully captured by the above dis-

cussed scaling laws.

The above scaling laws, were obtained from the instability

condition given by Castaing et al. [27] for natural convection

boundary layers forced by shear, using the assumption that

the ratio of critical boundary layer thickness and the plume

spacing is only a function of Pr, after neglecting terms in the

stability condition that had a power of S greater than one. The

proposed scaling laws for the spacings are hence likely to hold

only for small shear, given by upper limits of S , for each Pr;

these limits were found to be S = 184 for Pr = 5.24 and

S = 5.31 × 105 for Pr = 0.7. At larger shear, forced convec-

tion effects would become predominant, with the flux scaling

showing the standard relations for forced convection[13]. The

evolution of the spacings beyond the present range of shear

towards the forced convection limit needs to be investigated.
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