1 Highlights

- 21. Global extinction strain rate (a_g) decreases with increase in porous burner3diameter (D).
- Plug flow condition is valid for oxidizer inlet distance > 2 times the largest
 porous burner diameter.
- 6 3. CO/H₂ mixtures diluted with N₂ yield 1.6–2.25 times higher a_g in com-7 parison to CO/H₂ mixtures diluted with CO₂.
- 8 4. Overall reaction rate (ω_o) is used to explain variation in a_g values with
- ⁹ compositions.

¹⁰ Effect of burner diameter and diluents on the extinction ¹¹ strain rate of syngas-air non-premixed Tsuji-type flames

S M Ali^{a,*}, S Varunkumar^b

¹³ ^aDepartment of Aerospace Engineering, Indian Institute of Technology Madras, Chennai -600 036

17 Abstract

12

The present study focuses on the experimental determination of the global ex-18 tinction strain rate (a_g) for different syngas-air combinations using the Tsuji 19 type configuration. To study the effect of porous burner diameter (D), a_g values 20 were obtained for four values of D at atmospheric pressure. The experimentally 21 obtained a_g for a given fuel-oxidizer combination decreases with an increase in 22 burner diameter (D). This trend is consistent with the limited data available 23 in the literature for hydrocarbon fuels. Other geometric and flow-field effects 24 namely, (1) plug flow, (2) flow-field blocking by the burner, and (3) heat loss 25 by the flame to sidewalls that can affect a_q were also experimentally quantified. 26 The results from this study show that the plug flow boundary condition is al-27 ways satisfied for oxidizer inlet distance > 2 times the largest porous burner 28 diameter. Burner diameter less than 1/4 times side wall length (as is the case 29 for all burners used in this study) does not significantly modify the flow. Hence, 30 these two flow-field modifications do not affect a_q . However, heat loss from the 31 flame to the ambient through the side walls can cause a 4-9 % decrease in a_q . 32 Experiments showed that, CO/H₂ mixtures diluted with N₂ yield 1.6–2.25 times 33 higher a_g in comparison to CO/H₂ mixtures diluted with CO₂. Increasing H₂ 34 from 1 to 5 % leads to 2.5–3.8 times increase in a_g , compared to 5 to 10 % 35 increase in H_2 which leads to only 1.3–1.7 times increase in a_g for 70 % of N_2 36 (v/v) in fuel mixture. Global extinction strain rate (a_q) increases by 1.5–2.4 37 times with 10 % increase in CO for fuel mixtures consisting of H₂ (1 and 5 38

¹⁵ ^bDepartment of Mechanical Engineering, Indian Institute of Technology Madras, Chennai -600 036

^{*}Corresponding author Preprint sabmitted to International Journal of Hydrogen Energy January 16, 2020 Email address: smughees.ali@gmail.com (S M Ali)

³⁹ % by v/v), CO₂ (50, 60 and 70 % by v/v) and N₂ (50, 60, 70 and 80 % by ⁴⁰ v/v). The change in overall reactivity (ω_o) due to different diluents is used to ⁴¹ quantitatively explain the variation of a_g for different fuel compositions. These ⁴² effects are also qualitatively explained using OH radical concentration change ⁴³ with H₂ % in the fuel mixtures.

44 Keywords: Tsuji-type configuration; syngas-air non-premixed flames; global 45 extinction strain rate (a_g) ; burner geometry effect; diluents effect

46 **1. Introduction**

Gasification, a widely used thermo-chemical route for conversion of biomass and coal yields fuel gases rich in carbon monoxide and hydrogen (called syngas or producer gas). The composition of the syngas produced from gasification is highly variable. It strongly depends on the oxidizer composition used for gasification, which is generally a mixture of $O_2/N_2/CO_2/steam$; fuel composition also affects the syngas composition, though not as strongly as oxidizer composition. ([1-3]).

Syngas utilization devices vary a lot in terms of applications. For instance, 54 gas-turbines used in IGCC ([4, 5]), reciprocating engines used for decentralized 55 power generation ([6-8]), gasifier based improved biomass stoves ([9, 10]) etc. 56 Therefore, extensive data on the behavior of premixed and non-premixed syngas 57 flames, covering a range of CO/H₂ ratios and different inert species are essential 58 for the development of syngas based combustion devices. For the determination 59 of syngas premixed flame characteristics, a significant number of computational 60 and experimental studies were performed in the past ([11-21]). Yepes and Amell 61 [22], Bouvet et al. [23] and Varghese et al. [18] have experimentally obtained 62 laminar flame speed for wide range of syngas compositions using Bunsen burner 63 configuration and heated divergent channel method respectively. The 1D nu-64 merical computations performed by Yepes and Amell [22] and Varghese et al. 65 [18] using the available kinetic mechanisms showed reasonably accurate pre-66 dictions for laminar flame speeds. Unlike the case for non-premixed flames, 67

these studies predict premixed flame characteristics are under reasonable accu-68 racy. For instance, Bilger [24] has calculated global kinetic parameters using 69 Tsuji [25] data for methane-air non-premixed flames. He has concluded that 70 the conditions for the non-premixed flames are different from those in plug flow 71 and well-stirred reactor, and therefore, rate parameters calculated from these 72 reactors should not be used for non-premixed flames. Results from CFD sim-73 ulations of the Sandia-ETH Zurich turbulent syngas jet diffusion flames ([26])74 using eight kinetic mechanisms (three simplified and five detailed) reported by 75 Marzouk and Huckaby [27] show that, none of the mechanism is capable of 76 predicting the temperature and species concentration profiles accurately. So, 77 for accurately predicting the temperature and species concentration profiles in 78 syngas non-premixed flames, the syngas kinetic mechanism must be optimized 79 using non-premixed syngas flame data. Extinction strain rate (a) is used to 80 characterize non-premixed flames. The focus of the current work is to charac-81 terize syngas non-premixed flames for various fuel-oxidizer compositions using 82 the extinction strain rate (a). 83

Extinction strain rate (a) is defined as the component of the velocity gradient 84 normal to the flame surface at extinction. Similar to laminar flame speed (S_L) 85 for the premixed flames, extinction strain rate (a) is an important characteristic 86 of non-premixed flames. Two types of measurements are commonly used to 87 characterize flame extinction, (1) the local extinction strain rate (a_l) , and (2) 88 the global extinction strain rate (a_q) . The local extinction strain rate (a_l) is 89 defined as the maximum velocity gradient normal to the flame surface just 90 upstream of the thermal layer on the oxidizer side ([28]). The global extinction 91 strain rate (a_q) is defined as the strain rate on the oxidizer side close to the 92 stagnation plane, assuming self-similarity and zero radial gradients of all scalar 93 variables along the axis of symmetry ([29]). 94

To experimentally obtain the a_g and a_l , two counterflow configurations namely, (1) opposed jet flow and (2) Tsuji-type are commonly used. Based on nozzle geometry, the opposed jet counterflow configuration can be further divided into straight and contour nozzle type configurations. The other con⁹⁹ figuration used to obtain a_g and a_l is the Tsuji type burner, in which flame ¹⁰⁰ extinction is achieved near the stagnation point of oxidizer flow past a porous ¹⁰¹ cylinder issuing fuel (see Fig. 1).

Figure 1: Schematic of Tsuji-type configuration

This counterflow configuration is known as the Tsuji type burner as it was extensively used by Tsuji and co-workers to perform flame extinction experiments on gaseous fuels starting from 1960 till 1985 (see refs. [25, 30, 31]). For this configuration, global extinction strain rate (a_g) is given by Eqn. 1.

$$a_g = \frac{4u_{ox}}{D} \tag{1}$$

where, u_{ox} is the free stream oxidizer velocity at extinction and D is the diameter 106 of the porous burner issuing fuel. The following assumptions are used in deriving 107 Eqn. 1 - (1) potential flow, (2) change in the location of the stagnation plane due 108 to blowing at extinction is minimal, (3) flow field modification at the oxidizer 109 side of stagnation plane due to flame is neglected, and (4) flame surface is close 110 to stagnation plane ([31]). In both configurations, flame extinction is achieved 111 by increasing the total mass flow rate. The location of the flame is determined 112 by the stoichiometry and jet momentum ratio in the axial direction. 113

In the past decade, a significant number of computational and a few experimental studies are performed for syngas non-premixed flames in opposed jet configurations. The focus of these studies are primarily in three different areas namely, (1) determination of NO_x emission characteristics ([32–38]), (2) effect of diluent like CO₂, H₂O and N₂ on flame structure ([39–42]) and (3) determination of extinction strain rate (a) for wide range of syngas compositions ([33, 43–46]).

Park and co-workers ([39, 40, 42]) have computationally studied the effect of 121 radiation, preferential diffusion and reactivity of diluent on non-premixed flame 122 structure for different syngas compositions. For the cases without and with 123 radiation, Park et al. [39] have found a difference of more than 100 K in flame 124 temperatures at low strain rate ($\leq 10 \text{ s}^{-1}$). However, this difference reduces 125 to less than 30 K at high strain rate value ($\geq 100 \text{ s}^{-1}$). In 1D computations, 126 Park et al. [40] have modified the diffusivity of H_2 to be equal to the diffusivity 127 of N_2 and studied its effect on flame temperature and overall reactivity. As 128 N_2 is less diffusive in comparison to H_2 , they have termed it as suppression 129 of H₂ diffusivity. Their study on the effect of H₂ diffusivity on syngas non-130 premixed flame structure showed that, suppression of H₂ diffusivity should not 131 only be considered as the physical change ([40]). The higher diffusivity of H_2 132 also kinetically modifies the syngas non-premixed flame structure. Park et al. 133 [42] have shown that, CO_2 cannot be considered as completely inert and CO_2 134 mole fraction is reduced by reverse CO hydroxyl path oxidation (CO₂ + H \leftrightarrow 135 CO + OH). Fu et al. [47] have studied the effect of preferential diffusion and 136 flame stretch on the structure of premixed Bunsen syngas flames. They have 137 found out that, for high H_2 % in fuel the flame structure is affected by flame 138 curvature and preferential diffusion. 139

Hsin and co-workers have computationally studied the effect of composition, pressure and dilution on the structure of syngas non-premixed flames ([41, 43, 45]). Shih and Hsu [41] have shown, among the four effects of diluent (inert, diffusion, chemical and radiation), the inert effect is dominant in reducing flame temperature. Flame temperature decreases with an increase in

volumetric diluent percentage and as expected based on the specific heat val-145 ues, the maximum decrease in a_g was observed for CO₂, followed by H₂O and 146 N₂. Shih and Hsu [43] results show that, at low strain rate ($\leq 10 \text{ s}^{-1}$), H₂ 147 is consumed before CO but the flame cannot be distinguished as two separate 148 flames. Shih et al. [45] have also found out for very low strain rate (1 s^{-1}) , 149 only 0.002 % of H₂ is required for stable CO/H₂ flame. This study also shows 150 that flame cannot exist for an equimolar mixture of CO/H_2 for O_2 less than 151 4.7 % by volume in oxidizer stream at any strain rate value. Their observation 152 of reduction in flame temperature by radiation at low strain rate is consistent 153 with that of Yang and Shih [37]. Also, their observation about the chemical and 154 inert effect of diluent is found to be consistent with Park et al. [42] and Sahu 155 and Ravikrishna [33]. Important to note that, all these studies conducted by 156 Park's ([39, 40, 42]) and Shin's ([41, 43, 45]) group on the effect of diluents on 157 syngas non-premixed flames are for low to moderate global strain rate 10–100 158 s^{-1} . In these studies, the effect of diluents on extinction was not investigated. 159

Sahu and Ravikrishna [48] have performed extinction strain rate study for 160 both premixed and non-premixed syngas flames using contour nozzle type op-161 posed jet configuration. They have shown that, global extinction strain rate 162 (a_q) decreases with an increase in nozzles separation distance (L), while the 163 local extinction strain rate (a_l) does not significantly vary with L. Hence, Sahu 164 and Ravikrishna [48] have used a_l for comparison of experiments with 1D com-165 putations. Prediction of a_q from 1D computations assumes plug flow boundary 166 condition, i.e., zero velocity gradient (du/dx) in the axial direction at fuel and 167 oxidizer nozzles exit. However, Kee et al. [49] have concluded that, plug flow 168 assumption is not always valid and for predicting flame extinction accurately, 169 realistic boundary conditions are to be employed. The experimental data of 170 Sahu and Ravikrishna [48] shows a significant value for du/dx (15–40 % of a_l) 171 at the fuel and oxidizer nozzles exit. 172

In Table 1, relevant results from earlier studies on opposed jet non-premixed syngas flames along with the available geometric parameters are compiled. For non-premixed syngas flames, data show that, out of five, three kinetic mech-

anisms namely, Li et al. [50], GRI Mech 3.0 ([51]) and Frassoldati et al. [20] 176 can predict local extinction strain rate (a_l) for low H₂/CO ratio, but all these 177 kinetic models fail to predict a_l for high H_2/CO ratio. The maximum difference 178 in a_l values from experiments and 1D computations is found to as high as 25 179 % ([48]). Study performed by Som et al. [38] using three kinetics mechanisms 180 (GRI Mech 3.0, Davis et al. [52] and Mueller et al. [53]) for non-premixed and 181 partially premixed flames has shown that the kinetic model proposed by Davis 182 et al. [52] to be most accurate. For premixed flames Sahu and Ravikrishna [48] 183 have shown that, kinetic models of Davis et al. [52] and Frassoldati et al. [20] 184 predicts a_l under 10 % accuracy for all H_2/CO composition used. The data show 185 that the predicted a_l values for the premixed syngas flames are more accurate 186 in comparison to non-premixed syngas flames. As most of these kinetic mecha-187 nisms are optimized using the premixed flame characteristics, it is possible that 188 these kinetic mechanisms predict a_l values more accurately for premixed flame 189 in comparison to non-premixed flames. Bilger [24] has developed the global 190 kinetic mechanism for CH₄ oxidation by analyzing the methane non-premixed 191 data obtained using the Tsuji configuration. He has found out a significant 192 difference in the kinetic parameters calculated using non-premixed Tsuji config-193 uration from that of the well-stirred (Dryer and Glassman [54]) and plug flow 194 reactor (Williams et al. [55]). Bilger [24] has concluded that the conditions for 195 a non-premixed flames are different from those in plug flow and well-stirred re-196 actor and therefore, rate parameters calculated from these reactors should not 197 be used for non-premixed flames. 198

	Configuration	Experiments	1D computation
Fuel	$L(\mathrm{mm})/D(\mathrm{mm})$	a_g or a_l (s ⁻¹)	a_g or a_l (s ⁻¹)
(% by volume)	Contour Nozzle		BCs (Potential)
		Sahu and Ravikrishna [48]	
$35 {\rm CO}/05 {\rm H}_2/02 {\rm CH}_4/58 {\rm N}_2$	17/30	$1230{\pm}25$	-
	17/30	$619^{*}{\pm}25$	$500^*, 520^*, 608^*, 539^*, 681^*$
$32 {\rm CO}/08 {\rm H}_2/02 {\rm CH}_4/58 {\rm N}_2$	7/30	$2497{\pm}210$	-
	7.5/30	$2158 {\pm} 308$	-
	8/30	2141 ± 325	-
	12/30	$1928 {\pm} 277$	-
	-/-	$826^{*} \pm 33$	$687^{*}, 683^{*}, 794^{*}, 779^{*}, 911^{*}$
$29 {\rm CO}/11 {\rm H}_2/02 {\rm CH}_4/58 {\rm N}_2$	-/-	$966^{*}{\pm}38$	$966^{*}, 922^{*}, 1024^{*}, 1068^{*}, 1168^{*}$
$26{\rm CO}/14{\rm H}_2/02{\rm CH}_4/58{\rm N}_2$	10.5/30	2411 ± 39	-
$26{\rm CO}/14{\rm H}_2/02{\rm CH}_4/58{\rm N}_2$	-/-	$1149^{*} \pm 45$	$1235^*, 1201^*, 1284^*, 1357^*, 1460^*$
$23 {\rm CO}/17 {\rm H}_2/02 {\rm CH}_4/58 {\rm N}_2$	-/-	$1773^{*} \pm 70$	$1543^{*}, 1542^{*}, 1602^{*}, 1657^{*}, 1758^{*}$
$20{\rm CO}/20{\rm H}_2/02{\rm CH}_4/58{\rm N}_2$	-/-	$2300^* \pm 90$	$1842^{*}, 1944^{*}, 1954^{*}, 1964^{*}, 2091^{*}$
		Wang et al. [46]	
	Straight nozzle	Uniform	2D Computations
Syn1-60N2	10.2/10.2	$820{\pm}136$	643, <i>661</i> *
Syn1-65N2	10.2/10.2	647 ± 70	$408,413^{*}$
Syn1-70N2	10.2/10.2	461 ± 86	214,221*
		Parabolic	
Syn1-50N2	10.2/11.2	$860{\pm}63$	$777,735^{*}$
Syn1-55N2	10.2/11.2	645 ± 45	$537,581^{*}$
Syn1-60N2	10.2/11.2	460 ± 50	$322, 382^*$
Syn1-65N2	10.2/11.2	$311{\pm}50$	$158,224^*$
Syn1-70N2	10.2/11.2	179 ± 41	$95,109^*$
Syn2-60N2	10.2/11.2	$856 {\pm} 66$	$752,736^{*}$
Syn2-65N2	10.2/11.2	625 ± 50	$398,481^{*}$
Syn2-70N2	10.2/11.2	$365 {\pm} 45$	$180,235^{*}$
Syn2-75N2	10.2/11.2	$200{\pm}54$	80,89*

Table 1: Summary of the a_g and a_l for the two opposed jet configurations. Error value is estimated by symbol size if in case not provided. Extinction strain rate values in italics with "*" represents a_l , BCs:- Boundary conditions, var:- Variable

The two possible reasons for the difference in a_l values between experimental and 1D computations are uncertainties in determination/optimization of transport properties and kinetic parameters. Sahu and Ravikrishna [48] have stated that, "differences of 15 % and higher are observed in predictions of extinction strain rates by the various mechanisms despite the use of similar transport li²⁰⁴ braries." From this, Sahu and Ravikrishna [33] has concluded that improvement
²⁰⁵ in both kinetic parameter and transport properties are required for better pre²⁰⁶ diction of extinction of non-premixed flames.

Wang et al. [46] have obtained global extinction strain rate (a_q) experimen-207 tally and compared them with 2D axisymmetric computations for syngas non-208 premixed opposed jet flames. They have used two different types of boundary 209 conditions (parabolic and uniform) to obtain a_g and compared them with 2D 210 computations. Using 2D axisymmetric computations, they have shown that, the 211 difference in assumed and actual axial centerline velocity increases with an in-212 crease in global strain rate for parabolic inflow velocity. However, for uniform 213 inflow axial velocity, a constant difference of about 16 % between assumed and 214 actual centerline axial velocity is observed for three global strain rate values. 215 The computational data of Wang et al. [46] shows a constant difference of about 216 16~% between assumed and actual centerline axial velocity which is due to en-217 forcement of ideal uniform axial velocity profile at a distance of 5.1 mm from 218 the nozzle exit. Wang et al. [46] have concluded that, "it is very doubtful that 219 the matrix is capable of producing such a uniform flow profile in the actual 220 experiments, particularly for elevated flow conditions." Hence, for accurately 221 predicting a_q , idealized velocity profiles (parabolic or uniform) at the nozzles 222 exit can not be used. The analysis of Wang et al. [46] data from Table 1 shows 223 that, indeed 2D axisymmetric computations are able to predict the trends, but 224 under-predict a_q values for all the fuel-air compositions used. The maximum 225 difference in a_g values from experiment and 2D computation is found out to be 226 as high as 60 %. 227

The other simplified geometry used to study non-premixed flames is Tsujitype configuration. This configuration has an advantage over opposed-jet counterflow configuration in terms of flow field modification by the flame near the oxidizer inlet. In Tsuji-type configuration, if the oxidizer boundary is placed sufficiently far from the burner, it will not interact with flame. One of the objectives of the current work is to determine this minimum distance between the oxidizer boundary and the porous cylinder burner. Tsuji and co-workers ([25, 30, 31]) have obtained a_g values experimentally for CH₄ and C₃H₈, but to the best of our knowledge, we have not come across any study on determination of a_g for different CO/H₂ compositions.

In the current study, a_g values are experimentally obtained using Tsuji type 238 configuration for a range of syngas compositions with N_2 and CO_2 as diluents. 239 The composition range covered in this study is - CO from 10 to 49 % (v/v), H₂ 240 from 1 to 10 % (v/v), N_2 dilution of 20 to 50 % (v/v) and CO_2 dilution of 30-50 241 % (v/v). The choice of the composition range investigated here is based on 242 the following considerations- (1) very high to low CO/H₂ ratios (49–1) diluted 243 with CO_2 and N_2 , (2) syngas compositions obtained using $O_2/N_2/CO_2$ /steam 244 as oxidizer for biomass gasification ([1, 2, 9, 10, 56]) (3) few compositions were 245 chosen from the study of Wang et al. [46] to compare the a_g values obtained 246 from Tsuji burner with opposed jet configuration. 247

248 2. Experimental Methodology

A schematic of the counterflow Tsuji type burner setup used in the current work is shown in Fig. 2. The burner is designed according to the dimensions proposed by Tsuji and Yamaoka [30]; an additional flow-straightener is used just after the convergent nozzle for ensuring uniform laminar flow. The details of the design are explained below.

Figure 2: Schematic of the experimental setup

The counterflow setup consists of five parts, namely, the combustion cham-254 ber, porous cylinder, flow straighteners, convergent nozzle and the settling cham-255 ber. The combustion chamber (12 cm \times 25 cm \times 3 cm) ($l \times h \times w$) was fixed 256 with quartz windows (10 cm \times 10 cm) along its length for flame visualization. 257 The sides of the combustion chamber consist of two slots $(10 \text{ cm} \times 2.5 \text{ cm})$ which 258 were generally closed but can be open when required. The porous cylinder was 259 fixed inside the combustion chamber with a holding mechanism such that the 260 distance of the porous cylinder burner from the bottom of the combustion cham-261 ber can be varied. Fuel was discharged only from the porous area of the burner 262 that is $\pi/3$ degrees on either side of the stagnation point. The sidewall openings 263 in the combustion chamber were covered with a wire mesh and the porous cylin-264 der burner was kept at a distance of 12 cm from the bottom of the combustion 265 chamber (oxidizer inlet) unless otherwise mentioned. Four porous cylinders of 266 length 3 cm and diameters 10.6 mm, 15.6 mm, 22.8 mm and 30.8 mm were used 267

for the experiments. The bottom section of the combustion chamber is attached 268 to a straight rectangular duct of 5 cm height. This duct is further attached to 269 flow straighteners of 5 cm height. These flow straighteners consist of a bundle 270 of metal tubes of diameter 0.25 mm and length 5 cm which maintain a laminar 271 flow at the duct exit. The lower section of these flow straighteners was attached 272 to a convergent rectangular nozzle connected to the settling chamber (25 cm \times 273 $25 \text{ cm} \times 25 \text{ cm}$). The settling chamber was also fixed with flow straighteners to 274 reduce local turbulence and maintain uniform laminar flow at the nozzle entry. 275 For metering and controlling the fuel and air supply, mass flow controllers 276 with an accuracy of 1 % of the full-scale reading was used. Fuel gases were 277 supplied from pressurized gas cylinders fixed with a two-stage pressure regulator. 278 An upstream pressure of 5 bar was maintained just before gas filters. Gas filters 279 of 5 μ m mesh size were fixed upstream of the MFCs to remove any particulate 280 impurity coming from the pressurized fuel gas cylinders. Carbon monoxide, 281 hydrogen, carbon dioxide, nitrogen with 99.9 % and methane with 99.5 % purity 282 levels were mixed in different proportions and used as fuel. Experiments were 283 conducted with methane (pure and diluted with N_2) and syngas (with different 284 CO/H_2 ratios) diluted with N_2 and CO_2 . The fuel compositions used in this 285 study are listed in Table 2. 286

Nomenclature	$CH_4 (\%)^*$	CO (%)	H_2 (%)	$\mathrm{CO}_2~(\%)$	$N_2 \ (\%)$
CH_4	100	0	0	0	0
$\rm CH_4{-}30N_2$	70	0	0	0	30
$\rm CH_4-50N_2$	50	0	0	0	50
CH_4-70N_2	30	0	0	0	70
$Syn1-55N_2$	0	22.5	11.25	11.25	55
$Syn1-65N_2$	0	17.5	8.75	8.75	65
$Syn2-60N_2$	0	15	15	10	60
$\rm Syn2–70N_2$	0	11.25	11.25	7.5	70
$\rm Syn{-}5H_280N_2$	0	15	5	0	80
$\rm Syn{-}10\rm H_280\rm N_2$	0	10	10	0	80
$\rm Syn{-}1\rm H_270\rm N_2$	0	29	1	0	70
$\rm Syn{-}5H_270N_2$	0	25	5	0	70
$\rm Syn{-}10\rm H_270\rm N_2$	0	20	10	0	70
$\rm Syn{-}1\rm H_260\rm N_2$	0	39	1	0	60
$Syn-1H_250N_2$	0	49	1	0	50
$Syn-5H_270CO_2$	0	25	5	0	70
$\rm Syn{-}10\rm H_270\rm CO_2$	0	20	10	0	70
$Syn-5H_260CO_2$	0	35	5	0	60
$\rm Syn-1H_260CO_2$	0	39	1	0	60
$Syn-1H_250CO_2$	0	49	1	0	50

Table 2: Nomenclature for $\rm CH_4/N_2$ and $\rm CO/H_2/N_2/CO_2$ blends used as fuel. *All % are in volumetric basis

Air is supplied to the combustion chamber from a compressor. Four inlets 287 at the bottom of the settling chamber are used for maintaining a uniform flow 288 distribution at the flow straighteners entry. CO oxidation takes place by two 289 pathways namely, (1) direct oxidation (CO + O \leftrightarrow CO₂, CO + O + M \leftrightarrow 290 $CO_2 + M$) and (2) hydroxyl oxidation (CO + OH \leftrightarrow CO₂ + H). For pure CO 291 flames, the hydroxyl oxidation pathway is very sensitive to moisture content 292 present in the oxidizer, hence accurate determination of moisture is required. 293 Moisture filter was used to remove water vapor from the air and a humidity 294 sensor was used to measure water vapor content. It was found that water vapor 295 volume fraction does not exceed 1 %. Temperature of fuel gas issuing out of the 296

²⁹⁷ porous cylinder is measured using a K-type thermocouple (0.25 mm bead size). ²⁹⁸ This was required to quantify the effect of fuel heating due to the flame (details ²⁹⁹ discussed in section 2.1). Temperature data were recorded using the computer ³⁰⁰ interfaced data logger at a frequency of 2 Hz. The flame images and videos were ³⁰¹ recorded using a digital camera; the lens was placed at a distance of 40 cm from ³⁰² the combustion chamber aligned with the quartz windows.

303 2.1. Experimental procedure

As heating of porous cylinder affects the a_q values, experiments were per-304 formed in two ways - (1) global extinction strain rate (a_q) measurement for 305 steady inlet fuel temperature issuing from porous cylinder termed as M1 or 306 method 1 and, (2) global extinction strain rate (a_a) measurement with minimal 307 inlet fuel heating termed as M2 or method 2. The experimental procedure to 308 measure a_g to quantify these effects is given below. For a particular fuel-oxidizer 309 combination, experiments were repeated at least five times (maximum deviation 310 was < 5 % of the average value of a_q). Uncertainty in the measurement of a_q 311 values is equal to 1 % of full-scale reading of mass flow controller used for oxi-312 dizer flow rate measurement. Range of mass flow controller used for measuring 313 the oxidizer flow rate is 0-1000 lpm. For this range, uncertainties in the mea-314 surement of a_q values are 17, 12, 8 and 6 s⁻¹ for 10.6, 15.6, 22.8 and 30.8 mm 315 porous burner diameter respectively. 316

To measure a_q using Method 1 (M1), a stable flame was established around 317 the porous cylinder burner and fuel inlet pipe at low strain rate. The location of 318 flame was maintained sufficiently far ($\approx 20-25$ mm) to avoid direct heat transfer 319 from the flame surface to the porous cylinder fuel inlet. An oxidizer flow rate 320 of 50 lpm which corresponds to oxidizer free stream velocity of 0.23 m/s (equal 321 to 30 $\rm s^{-1}$ for 3.08 cm porous burner diameter) and fuel velocity of 0.33 m/s 322 was found to be suitable for avoiding heat loss by flames to the porous burner. 323 However, as the fuel was discharged only from the porous area of the burner 324 $(\pi/3 \text{ degrees on either side of the stagnation point})$, heat transfer from the flame 325 to the non-porous side of burner causes an increase in fuel temperature from 326

300 K to a steady value. This steady temperature value is dependent on the 327 type of fuel and diluent used (for instance, 490 K for CH_4 -70N₂ for 3.08 cm 328 porous burner diameter). Steady-state temperature increases with the decrease 329 in N_2 percentage in the fuel-inert mixture. Due to this, extinction of other three 330 CH₄-N₂ mixture used for this study occurs at higher airflow rates, which was 331 beyond the available compressor capacity (maximum flow rate the compressor 332 can supply is 650 lpm, which corresponds to 390 $\rm s^{-1}$ for porous burner of di-333 ameter of 3.08 cm). So, using method 1 (M1) extinction cannot be achieved 334 for the other three CH_4-N_2 and some syngas mixtures. Hence, experiments 335 using method 1 (M1) were performed only for the compositions (CH_4 - 70 N_2 , 336 $Syn-1H_270N_2$, $Syn-5H_270N_2$, $Syn-5H_280N_2$, $Syn-10H_280N_2$) which are under 337 the range of compressor capacity (refer to Tables A.4 and A.5 of Appendix A 338 for data). 339

Once the fuel inlet temperature reaches a steady value, airflow rate was increased to achieve extinction. With the increase in oxidizer flow rate the burner temperature increases, however, difference in fuel inlet temperature from the start till flame extinction was about 10-15 K. This shows that there was minimal direct heat transfer from the flame surface to the fuel inlet once steady state was reached and flame extinction occurs when the mixing time for fuel and oxidizer becomes comparable to reaction time.

Figure 3 shows non-premixed flames stabilized over the porous cylinder burner of diameter 3.08 cm for CH_4 -70N₂-air combination obtained using M1. In the figure shown, as we move from left to right, airflow rate increases causing the flame to move closer to the porous burner until extinction occurs. At this moment, the measured air flow rate was recorded and used to calculate a_a .

Figure 3: Combined image for Tsuji type non-premixed flames (D = 3.08 cm, CH₄-70N₂-air combination) obtained using method 1 (M1) with increasing global strain rates until extinction

The other set of experiments were performed to measure the global extinc-352 tion strain rate with minimal heating of inlet fuel termed as M2 or method 2. 353 Initially, at low strain rate, a stable flame was established around the burner. 35 Once the stable flame was established, the oxidizer flow was increased (\approx 75– 355 $100 \text{ s}^{-1}/\text{s}$) until extinction. At this moment, flow rate and temperature were 356 recorded. Immediately after extinction, fuel temperature was found to be in 357 the range of 305–340 K. To minimize the effect of heating after each reading, 358 both the combustion chamber and porous cylinder were cooled down to room 359 temperature. Once cooled down to room temperature, the experiment was re-360 peated for a new reading (refer to Tables A.4, A.5, A.6 A.7, A.8, A.9, A.10 and 361 A.11 of Appendix A for data). The a_g values obtained from M1 (steady fuel 362 inlet temperature) is 40-60 % higher when compared to M2 (minimal heating 363 case). The a_q data from the past literature is compared with a_q data from the 364 M2 (see Table 3). This is due to the fact that, a_q data obtained using method 2 365 (M2) is with minimal heating effects, which is the case with most data available 366 from the past literature ([25, 28, 30, 31, 57]). 367

Table 3 shows the compiled data for a_g and its variation with respect to Dfrom literature and current work. Tsuji and co-workers have performed experiments on three fuel-air combinations namely, CH₄-air, C₃H₈-air and citygas-air ([25]).

Evel and dimen		Experiments	1D computation
Fuel-oxidizer	$D \ (\mathrm{mm})$	$a_g \; ({\rm s}^{-1})$	$a_g \ (s^{-1})$
		Tsuji and coworkers	
CH_4 -air	60, 15	320, 375	460, 320, 350, 400-405
		[25, 31]	[28, 57]
$\rm C_3H_8-air$	60, 45,	365, 420[30]	-
	30, 15	486, 650[30] -	
		Ali and Varunkumar [58]	-
$\rm CH_4{-}50N_2{-}air$	30, 15	210, 350	-
$\rm CH_4-70N_2-air$	60, 45	85,100	-
	30, 15	120, 190	-
		Current work	-
$\rm CH_4-70N_2-air$	30.8, 22.8	170, 211	
	15.6,10.6	244, 276	-
$\rm CH_4-N_2-air$	30.8, 22.8	277, 349	
	15.6,10.6	443, 515	-
$\rm CH_4{-}30N_2{-}air$	30.8, 22.8	351, 429	
	15.6,10.6	539, 620	-
CH_4-air	30.8, 22.8	380, 463	
	15.6, 10.6	614, 756	-

Table 3: Summary of the a_g (s⁻¹) for Tsuji type configuration

Tsuji and co-workers have performed extensive studies on Tsuji-type configuration, but the only systematic study on variation of a_g with porous burner diameter (D) the authors came across is for C₃H₈-air combination ([30]). From the data shown in Table 3, it is clear that a_g decreases with increase in D. This decreasing trend for a_g is also verified by Ali and Varunkumar [58] for CH₄-70N₂-air and CH₄-50N₂-air combinations and also from the current experiments (see Fig. 4).

Figure 4 shows the a_g values for four different CH₄-N₂-air combinations from the current work. The a_g data from the current experiments show that if

 $_{381}$ D is decreased from 30.8 to 10.6 mm, the values of a_g increases approximately

₃₈₂ by a factor of 2.

Figure 4: Variation of experimentally obtained a_g with D for four CH₄–N₂-air combinations. Note: Error bars less then symbol size are eliminated

This observation is consistent with data from Tsuji and Yamaoka [30] for 383 C_3H_8 -air. However, a_g data obtained by Tsuji and Yamaoka [31] and Tsuji 384 [25] for CH_4 -air combination do not show a significant increase in a_q with the 385 same decrease in D. Analysis of Tsuji and Yamaoka [31] and Tsuji [25] data 386 for CH_4 -air combination shows that, as D is reduced 4 times (6 cm to 1.5 cm), 387 a_g increases only by 17 %. This increase in a_g with decrease in D for CH₄-air 388 combination is inconsistent with data from current work and that for C_3H_8 -air 389 a_q data (increase by factor of 2) from Tsuji and Yamaoka [30]; hence data for 390 CH₄-air from Tsuji and Yamaoka [31] is not used for the current analysis. The 391 reason for 15–20 % increase in the current a_g values compared to data reported 392 in Ali and Varunkumar [58] is the reduction in non-uniformity in upstream flow 393 in the current experimental setup. 394

As reported by Kee et al. [49], Sarnacki et al. [59] and Wang et al. [46], one of the main reasons for difference in a_q between experiments and 1D computation ³⁹⁷ in opposed jet configuration is due to failure of plug flow boundary condition. ³⁹⁸ The porous cylinder was kept at three different values (12 cm, 10 cm and 6 cm) ³⁹⁹ from the oxidizer inlet and a_g experiments were repeated using method 2 (M2) ⁴⁰⁰ for validating the plug flow condition in Tsuji burner.

Figure 5: Variation of experimentally obtained a_g with D for CH₄-air combinations for three porous cylinder location

The data showed that the measured values of a_q for three distances are 401 within 10 s⁻¹ which corresponds to ± 3 % of average a_q (refer to Table A.8 402 of Appendix A for data). Hence, for the Tsuji type configuration, plug flow 403 boundary condition is valid for the conditions investigated in the current work. 404 The other two effects which can also modify the flame surface are, (1) flow-field 405 modification by the blocking effect of a porous burner and (2) heat loss by the 406 flame surface to the adjacent walls. To find the effect of flow-field modification 407 by burner blocking on a_g , the wire meshes covering from the side walls were 408 removed and experiments were repeated. The data show slightly higher a_q 409 values for the removed wall case, but the maximum difference was 11 s^{-1} . This 410 largest deviation in the a_g was less than 3 % (< 3 %) of the measured value 411 (refer to Table A.9 of Appendix A for data). 412

Figure 6: Variation of experimentally obtained a_g with D for CH₄-air combinations with and without side mesh walls

The largest porous cylinder diameter is one-fourth (1/4) of the combustion 413 chamber width; this suggests that the flow blocking effect can be neglected for 414 the porous cylinder diameters used in the current work. To find the effect of heat 415 loss by the flame to adjacent walls on a_g , experiments are performed by cov-416 ering the burner casing with a thick cerawool insulation and these results were 417 compared with experiments without insulation. Figure 7 shows the comparison 418 of a_g values for Syn–10H_280N_2-air combinations with and without insulation 419 using method 2 (M2). 420

Figure 7: Variation of experimentally obtained a_g with D for Syn-10H₂80CO₂-air combinations with and without insulation using method 2 (M2)

The data show that, a_g values obtained using insulated burner are about 16–36 s⁻¹ higher compared to non-insulated burner (refer to Table A.10 in Appendix A for data). This correspond to 4-9 % of average a_g for Syn–10H₂80N₂air combination. So, while comparing with computations for Tsuji-type configuration, we can say a maximum of 10 % decrease in a_g can be explained through heat loss by flame.

427 3. Results and discussion

This section presents the results and discussion on the effect of porous cylinder diameter (D), diluent fraction of species (CO₂ and N₂) in fuel and CO/H₂ ratio on experimentally determined values of a_q .

 $_{431}$ 3.1. Effect of porous burner diameter (D)

Figure 8 shows the variation of a_g values with D obtained using Method 1 (M1) for CH₄ and two CO/H₂ mixtures diluted with 70 % of N₂. The data show that, a_g decreases with increase in D for all three fuel-oxidizer combinations. Figure 8 shows that, a_g increases by a factor of 1.7–1.8 with decrease in porous cylinder diameter (*D*) from 30.8 to 10.6 mm. This increasing trend is also consistent with a_g data for syngas-air and CH₄–N₂-air combinations obtained using M2 (see Figs. 4 and 9). The data also shows that, the fuel inlet temperature for CH₄–70N₂ mixture is higher in comparison to Syn–1H₂70N₂ and Syn–5H₂70N₂ mixtures due to overall higher integrated heat release.

Figure 8: Variation of experimental a_g data with D obtained using Method 1 (M1) for syngasair and methane/nitrogen-air combinations. Error bars are removed for clarity

The values of a_q obtained for CH₄-70N₂ is in between Syn-1H₂70N₂ and 441 $Syn-5H_270N_2$ mixtures. This implies that, compared to CH_4-70N_2 -air the over-442 all reactivity of $Syn-1H_270N_2$ -air is lower and $Syn-5H_270N_2$ -air is higher for the 443 same percentage of diluent in the fuel (70 % N₂ v/v). Wang et al. [46] have 444 obtained a_g data for opposed jet non-premixed syngas flames for a wide range 445 of compositions; comparisons have also been drawn with results from 2D axi-446 symmetric computations from their study. In the current study, we have chosen 447 two compositions from Wang et al. [46] (referred to here as $\mathrm{Syn2-70N_2}$ and 448 Syn1–65N₂, see Table 2 for details) to measure a_g using Tsuji burner. 449

Figures 9a and 9b show the variation of experimentally obtained a_g with 450 D for Syn1–65N₂-air and Syn2–70N₂-air compositions using method 2 (M2). 451 The data show that, with decrease in D from 30.8 to 10.6 mm a_g increases 452 by a factor of 2.15–2.25. For Syn1–65N₂-air combination, a_g value obtained 453 experimentally using Tsuji burner $(604\pm24 \text{ s}^{-1})$ for 10.6 mm diameter is close 454 to a_q value (647±70 s⁻¹) obtained by Wang et al. [46] for a uniform velocity 455 profile for nozzle separation distance of 10.2 mm. For parabolic velocity pro-456 file, for the same composition experimental obtained a_g value $(311\pm50 \text{ s}^{-1})$ by 457 Wang et al. [46] is close to a_g value (295±9 $\rm s^{-1})$ obtained using Tsuji burner 458 of 22.8 mm diameter. Understanding the connections between the extinction 459 strain rates obtained from different configurations and its interpretation for the 460 optimization/validation of kinetic mechanisms require further experimental and 461 computational studies. 462

(b) $CO/H_2 = 1$ (30 % by volume)

Figure 9: Experimentally obtained a_g values for Syn1–65N₂ and Syn2–70N₂ using method 2 (M2) for Tsuji type configuration

The analysis of computational and experimental data from Wang et al. [46] for these two compositions $(Syn1-65N_2 \text{ and } Syn2-30N_2)$ show that, 2D axi-

symmetric computations under predict a_g by at least 50 % of experimentally 465 obtained values (see Table A.4 in Appendix A for data). They have proposed 466 that the possible reason for this under-prediction is failure of the assumption 467 of top-hat/parabolic velocity profiles at the nozzles exit. The experiments per-468 formed in the current study using Tsuji type configuration have shown that the 469 flow field around the flame is not modified by the oxidizer boundary if the dis-470 tance between the porous burner and oxidizer inlet is greater than 2 times the 471 largest burner diameter (D) (see Fig. 5). Hence, experimental a_g data obtained 472 using Tsuji-type configuration is perhaps better suited for predicting extinction 473 using 2D planar computation without concerning about the validity of boundary 474 conditions. 475

476 3.2. Effect of diluent on a_g - N_2 vs CO_2

Figures 10a and 10b show the comparison of a_g values obtained by method 2 (M2) using two different CO/H₂ ratios (5 and 2) for a fixed diluent percentage. The data show that for all porous burner diameters (*D*) and CO/H₂ ratio used, a_g values obtained using N₂ as diluent are always 1.6–2.25 times the a_g values obtained using CO₂ as diluent. To explain this difference in a_g values, an overall reaction rate (ω_o) is calculated using a two step kinetic mechanism proposed by Slavinskaya et al. [60].

Overall reaction

(0) $\alpha CO + \beta H_2 + 0.5(\alpha + \beta)O_2 \rightarrow \alpha CO_2 + \beta H_2O$ Slavinskaya two-step mechanism

(I) $2H_2 + O_2 \rightarrow 2H_2O$ $10.8e^{-7}T^{6.1}exp(-9684.5/RT)[H_2]^2$

(I)
$$CO + H_2 + O_2 \rightarrow CO_2 + H_2O$$
 20.15e⁻⁸T^{5.9}exp(-6097.6/RT)[O₂][CO]^{1.4}

For the given two-step kinetic mechanism, H₂ and CO consumption rates are $\omega_{H_2} = 2\omega_I + \omega_{II}$ and $\omega_{CO} = \omega_{II}$, where ω_I and ω_{II} are the rates of these two reactions. The units used for the kinetic mechanism are: mole, cm³, sec, K and cal. In the overall reaction, α and β are the volumetric fractions of CO and H₂ present in the fuel. The overall reaction rate is calculated by equating the
heat release rate of Slavinskaya et al. [60] mechanism with an overall reaction.

$$\omega_o = \frac{2\omega_I(h_{f,H_2O}^o) + \omega_{II}(h_{f,CO_2}^o + h_{f,H_2O}^o - h_{f,CO}^o)}{\beta(h_{f,H_2O}^o) + \alpha(h_{f,CO_2}^o - h_{f,CO}^o)}$$
(2)

In the Eqn 2, h_{f,H_2O}^o , h_{f,CO_2}^o and $h_{f,CO}^o$ are standard heat of formation of H₂O, CO₂ and CO. The reaction rates ω_I and ω_{II} are given by Eqns. 3 and 4 when expressed in terms of mole fractions $(X_{H_2}, X_{CO_2} \text{ and } X_{H_2O})$, pressure (P) and temperature (T).

$$\omega_I = 10.8e^{-7}T^{6.1}exp\left(\frac{-9684.5}{RT}\right)\left(\frac{P}{R_uT}X_{H_2}\right)^2\left(\frac{mole}{cm^3s}\right)$$
(3)

494

$$\omega_{II} = 20.15e^{-8}T^{5.9}exp\left(\frac{-6097.6}{RT}\right)\left(\frac{P}{R_uT}\right)^{2.4}X_{O_2}(X_{CO})^{1.4}\left(\frac{mole}{cm^3s}\right)$$
(4)

495

$$X_{H_2} = \frac{\beta}{1 + [2.38(\alpha + \beta)]/\phi}$$
(5)

496

$$X_{CO} = \frac{\alpha}{1 + [2.38(\alpha + \beta)]/\phi} \tag{6}$$

497

$$X_{O_2} = \frac{(\alpha + \beta)/2\phi}{1 + [2.38(\alpha + \beta)]/\phi}$$
(7)

where, α , β represents volumetric percentage of CO and H₂ in fuel and ϕ repre-498 sents the equivalence ratio. The location of the non-premixed flame is assumed 499 at $\phi = 1$. The equilibrium temperature obtained for Syn-5H₂70N₂-air and 500 $Syn-5H_270CO_2$ -air combinations using NASA SP-273 software ([61]) for con-501 stant pressure condition is 1760 K and 1500 K respectively. With the increase 502 in flame temperature from 1500 to 1760 K, the rate of two reactions (ω_I and 503 ω_{II}) increases by factor of 3.3 and 2.4 respectively. The overall reaction rate 504 (ω_o) of the mixture with N₂ is more than that of the one with CO₂ by a factor 505 of 3.1. This is consistent with the observed differences in the global strain rate. 506

(b) $CO/H_2 = 2$ (30 % by volume)

Figure 10: Comparison of experimentally obtained a_g using method 2 (M2) diluted with $\rm N_2$ and CO_2 for different D values

507 3.3. Effect of H_2 and CO % in fuel

Figures 11a and 11b show the effect of volumetric H_2 % on a_g values ob-508 tained by Method 2 (M2) using N_2 as diluent (70 % and 80 % by volume). The 509 data show that, a_g increases approximately 1.3–1.7 times when volumetric H₂ 510 % is increased from 5 to 10 % for 70 % N₂ (v/v) in fuel mixture. However, a_q 511 increases by 2.5–3.8 times approximately, if the volumetric H_2 % is increased 512 from 1 to 5 %. Extinction strain rate (a_q) increases by 3–3.8 times approxi-513 mately, if the volumetric H_2 % is increased from 5 to 10 % for 80 % N_2 (v/v) in 514 fuel mixture. The ratios of overall reaction rates (ω_o) calculated using Eqn. 2 515 for compositions $Syn-5H_270N_2/Syn-1H_270N_2$ and $Syn-10H_270N_2/Syn-5H_270N_2$ 516 are 10.4 and 3.6. This shows that, a_g increases non-linearly ($\approx \sqrt{\omega_o}$) with in-517 crease in overall reactivity. For both H_2 and CO, hydroxyl pathway (CO + OH 518 \leftrightarrow CO₂ + H, H₂ + OH \leftrightarrow H₂O + H) is dominant for oxidation. Shih and Hsu 519 [34] have shown that OH radicals are produced mainly by two reactions which 520 are $H + O_2 \leftrightarrow O + OH$ and $O + H_2O \leftrightarrow OH + OH$. The equilibrium temper-521 ature calculated for the three compositions $(Syn-1H_270N_2, Syn-5H_270N_2 and$ 522 $Syn-10H_270N_2$) is 1775, 1760 and 1741 K respectively. The data show that the 523 flame temperature does not vary significantly with increase in H_2 % in fuel. For 524 these conditions, the rate constant of hydroxyl oxidation pathways of CO and 525 H_2 remains approximately same. Hence, the overall reaction rate is predom-526 inantly limited by amount of OH radical produced during the reaction. Shih 527 and Hsu [34] computational study shows that for very small H_2 % in syngas 528 mixtures the overall reactivity of mixture is governed by CO hydroxyl oxidation 529 path (CO + H₂ \leftrightarrow CO₂ + H). With increase in H₂ % the overall reactivity of 530 mixture shifts towards H_2 oxidation by reaction $OH + H_2 \leftrightarrow H_2O + H$ ([34]). It 531 is possible that the OH radical concentration increases at much faster rate with 532 1 to 5 % increase H_2 in comparison to 5 to 10 % of H_2 in the fuel mixture. This 533 can be a possible reason to explain the non-linear increase in a_q with increase 534 in H_2 %. Computations are needed to be performed to explore this further. 535

(b) (CO $+H_2$) = 30 % by volume

Figure 11: Effect of H₂ percentage on experimentally obtained a_g using method 2 (M2) diluted with N₂

The effect of volumetric H₂ % on a_g values is also studied using M1. Figure 12 shows the comparison of a_g and respective inlet fuel temperature at extinction for two H₂ (5 and 10 % by volume) fraction in fuel with 80 % N₂. It was observed that the inlet fuel temperature remain more or less the same with change in H₂ percentage, but a_g increases by factor 2–2.5.

The next set of a_g data is generated for fuel having very high CO/H₂ ratio. This dataset is useful for validation of kinetic parameters for direct (CO + O \approx CO₂, CO + O + M \approx CO₂ +M) and hydroxyl oxidation pathways (CO + OH \approx CO₂ +H) for CO oxidation for any given kinetic mechanism.

(a) $(CO + H_2) = 20 \%$ by volume

Figure 12: Variation of experimental a_g data with D obtained using method 1 (M1) for syngas-air and methane/nitrogen-air combinations

Figures 13a and 13b show the comparison of experimentally obtained a_g using method 2 (M2) for high CO flames diluted with N₂ and CO₂. The data show that, irrespective of CO₂ or N₂ used as diluent, a_g increases by factor of 2–2.5 with 10 % increase in CO. This ratio decreases to 1.5–1.7 with 10 % decrease in diluent for Syn-1H₂60N₂-air combination.

(a) High CO flames with CO_2 as diluent

(b) High CO flames with N_2 as diluent

Figure 13: Comparison of experimentally obtained a_g for High CO flames diluted with N_2 and CO_2

Experiments performed using 5 % H₂ by volume also show the same percentage increase in a_g values. Figures 14a and 14b show that, a_g values increases by

- $_{\tt 552}$ $\,$ factor of 2–2.5 times for CO_2 and 2.6–3.8 times for N_2 with 10 % increase in CO
- $_{553}$ $\,$ by volume in fuel mixtures containing 5 % H_2. Higher CO % in the fuel gives
- ⁵⁵⁴ higher flame temperature which increases the overall fuel reactivity leading to
- 555 increase in a_g values.

(a) 5 % H₂ by volume with CO₂ as diluent

(b) 5 % H₂ by volume with N₂ as diluent

Figure 14: Comparison of experimentally obtained a_g for difference CO % diluted with N_2 and CO_2

The ratios of overall reaction rates (ω_o) calculated using Eqn. 2 for compositions Syn-1H₂60N₂/Syn-1H₂70N₂ and Syn-1H₂50N₂/Syn-1H₂60N₂ are 1.6 and ⁵⁵⁸ 1.3 respectively. For the same case, the ratio of experimentally obtained a_g val-⁵⁵⁹ ues are 2.1–2.4 and 1.5–1.7 respectively. Hydroxyl radical (OH) concentration ⁵⁶⁰ in mixture depends on H₂ % in the fuel and flame temperature. The data shows ⁵⁶¹ that, equilibrium temperature increases with increase in CO % in the fuel (1775, ⁵⁶² 1973 and 2106 K for Syn-1H₂70N₂, Syn-1H₂60N₂ and Syn-1H₂50N₂). Hence, it ⁵⁶³ is possible for a fixed H₂ % in fuel OH concentration reduces with in increase ⁵⁶⁴ in CO % leading to reduction in a_g ratio.

⁵⁶⁵ 4. Conclusion and future Work

In the present study, global extinction strain rate (a_q) is obtained for CH₄/N₂-566 air and syngas-air non-premixed flame using Tsuji-type counterflow configura-567 tion. The effect of porous burner diameter (D) on a_g value, that is, a_g decrease 568 with increase in D is determined. Plug flow boundary condition is experimen-569 tally verified by obtaining a_q at three distances of oxidizer inlet from the porous 570 burner. The flow-field blocking by porous burner has shown a deviation of less 571 than 3 % in a_q for a CH₄-air combination. Hence, the blocking effect of burner 572 diameter (D) of dimensions less than 1/4 of combustion chamber side wall length 573 is negligible. The past literature shows the failure of assumed velocity profiles 574 at the nozzle exit as the possible reason for under-prediction of a_g for opposed 575 jet counterflow configuration. This issue can be resolved by using Tsuji type 576 configuration for extinction studies. Convective and radiative heat loss by the 577 flame to ambient can cause 4–9 % decrease in a_q values. So, for accurate a_q 578 predictions these losses should be incorporated in 2D planar simulations. Ni-579 trogen when used as a diluent, yields 1.6-2.25 times higher a_q in comparison 580 to CO_2 used as diluent. Increasing H_2 from 1 to 5 % leads to 2.5–3.8 times 581 increase in a_g compared to 1.3–1.7 times increase in a_g with 5 to 10 % increase 582 in H_2 for fuel mixture consisting of 70 % N_2 by volume. Increasing CO by 583 10 % leads to 1.5–2.4 times increase in a_g for fuel mixtures consisting of H₂ 584 (1 and 5 % by v/v), CO_2 (50, 60 and 70 % by v/v) and N_2 (50, 60, 70 and 585 80 % by v/v). The comparison of overall reactivity (ω_o) with a_g shows that, 586

 a_g increase non-linearly ($\approx \sqrt{w_o}$) with increase in H₂ % in fuel mixture. This increase in a_g with an increase H₂ % in fuel mixture can be explained from the OH radical concentration which requires 2D computations using simplified kinetic mechanism and will be taken up in future.

591 Acknowledgements

We are thankful to Ms. Kathyayani. N for providing technical assistance in conducting experiments. We are also thankful to Dr. Faheem Ulla Khan for constructive criticism on the manuscript.

595 Nomenclature

596	α	CO $\%$ in fuel (v/v)
597	β	$H_2 \%$ in fuel (v/v)
598	ω_I	Reaction rate 1 (mole/cm 3 s)
599	$\omega_I I$	Reaction rate 2 (mole/cm ³ s)
600	ω_{CO}	Overall CO comsumption rate $(mole/cm^3s)$
601	ω_{H_2}	$Overall \; H_2 \; comsumption \; rate \; (mole/cm^3 s)$
602	ω_o	Overall fuel comsumption rate $(mole/cm^3s)$
603	ϕ	Equivalance ratio
604	a_g	Global extinction strain rate (s^{-1})
605	D	Porous cylinder radius (m)
606	du/dx	axial velocity gradient (s^{-1})
607	h	Combustion chamber height (m)
608	h^o_{f,CO_2}	Heat of formation of CO_2 (KJ/mol-K)

- $h_{f,CO}^{o}$ Heat of formation of CO (KJ/mol-K)
- 610 h_{f,H_2O}^o Heat of formation of H₂O (KJ/mol-K)
- $_{611}$ *l* Combustion chamber length (m)
- 612 u_{ox} free stream oxidizer velocity (m/s)
- $_{613}$ w Combustion chamber width (m)
- a_l Local extinction strain rate (s⁻¹)
- $_{615}$ P Pressure (N/m²)
- 616 P Temperature (K)
- $_{617}$ X_{CO} Mole fraction of CO
- $_{618}$ X_{H₂} Mole fraction of H₂
- $_{619}$ X_{O₂} Mole fraction of O₂
- 620

621 References

- [1] V. Jaganathan, S. Varunkumar, Net carbon-di-oxide conversion and other
 novel features of packed bed biomass gasification with o2/co2 mixtures,
 Fuel 244 (2019) 545-558.
- [2] V. Jaganathan, O. Mohan, S. Varunkumar, Intrinsic hydrogen yield from
 gasification of biomass with oxy-steam mixtures, International Journal of
 Hydrogen Energy (2019).
- [3] N. Gnanapragasam, M. Rosen, A review of hydrogen production using
 coal, biomass and other solid fuels, Biofuels 8 (2017) 725–745.
- [4] M. M. Joshi, S. Lee, Integrated gasification combined cyclea review of igcc
 technology, Energy Sources 18 (1996) 537–568.

- [5] D. Sanchez, R. Chacartegui, J. Munoz, A. Munoz, T. Sanchez, Performance
 analysis of a heavy duty combined cycle power plant burning various syngas
- fuels, International Journal of Hydrogen Energy 35 (2010) 337–345.
- [6] A. L. Boehman, O. L. Corre, Combustion of syngas in internal combustion
 engines, Combustion science and technology 180 (2008) 1193–1206.
- [7] S. Verhelst, Recent progress in the use of hydrogen as a fuel for internal
 combustion engines, international journal of hydrogen energy 39 (2014)
 1071–1085.
- [8] M. Klell, H. Eichlseder, M. Sartory, Mixtures of hydrogen and methane in
 the internal combustion engine-synergies, potential and regulations, International journal of hydrogen energy 37 (2012) 11531–11540.
- [9] S. Varunkumar, N. Rajan, H. Mukunda, Single particle and packed bed
 combustion in modern gasifier stovesdensity effects, Combustion Science
 and Technology 183 (2011) 1147–1163.
- [10] S. Varunkumar, N. Rajan, H. Mukunda, Experimental and computational
 studies on a gasifier based stove, Energy Conversion and Management 53
 (2012) 135–141.
- [11] A. K. Das, K. Kumar, C.-J. Sung, Laminar flame speeds of moist syngas
 mixtures, Combustion and Flame 158 (2011) 345–353.
- [12] N. Bouvet, C. Chauveau, I. Gökalp, S.-Y. Lee, R. J. Santoro, Charac terization of syngas laminar flames using the bunsen burner configuration,
 International Journal of Hydrogen Energy 36 (2011) 992–1005.
- [13] H. Lee, L. Jiang, A. Mohamad, A review on the laminar flame speed and
 ignition delay time of syngas mixtures, International Journal of Hydrogen
 Energy 39 (2014) 1105–1121.
- 657 [14] O. Askari, Z. Wang, K. Vien, M. Sirio, H. Metghalchi, On the flame
 658 stability and laminar burning speeds of syngas/o2/he premixed flame, Fuel
 659 190 (2017) 90–103.

- [15] E. Monteiro, M. Bellenoue, J. Sotton, N. A. Moreira, S. Malheiro, Laminar
 burning velocities and markstein numbers of syngas-air mixtures, Fuel 89
 (2010) 1985–1991.
- [16] R. J. Varghese, H. Kolekar, V. Hariharan, S. Kumar, Effect of co content
 on laminar burning velocities of syngas-air premixed flames at elevated
 temperatures, Fuel 214 (2018) 144–153.
- [17] R. J. Varghese, H. Kolekar, S. Kumar, Demarcation of reaction effects
 on laminar burning velocities of diluted syngas-air mixtures at elevated
 temperatures, International Journal of Chemical Kinetics 51 (2019) 95–
 104.
- [18] R. J. Varghese, H. Kolekar, S. Kumar, Laminar burning velocities of
 h2/co/ch4/co2/n2-air mixtures at elevated temperatures, International
 Journal of Hydrogen Energy 44 (2019) 12188–12199.
- [19] A. Cuoci, A. Frassoldati, G. B. Ferraris, T. Faravelli, E. Ranzi, The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. note 2: Fluid dynamics and kinetic aspects of syngas combustion,
 International Journal of Hydrogen Energy 32 (2007) 3486–3500.
- [20] A. Frassoldati, T. Faravelli, E. Ranzi, The ignition, combustion and flame
 structure of carbon monoxide/hydrogen mixtures. note 1: Detailed kinetic
 modeling of syngas combustion also in presence of nitrogen compounds,
 International Journal of Hydrogen Energy 32 (2007) 3471–3485.
- [21] H.-M. Li, G.-X. Li, Z.-Y. Sun, Y. Zhai, Z.-H. Zhou, Measurement of the
 laminar burning velocities and markstein lengths of lean and stoichiometric
 syngas premixed flames under various hydrogen fractions, international
 journal of hydrogen energy 39 (2014) 17371–17380.
- [22] H. A. Yepes, A. A. Amell, Laminar burning velocity with oxygen-enriched
 air of syngas produced from biomass gasification, International Journal of
 Hydrogen Energy 38 (2013) 7519–7527.

- [23] N. Bouvet, C. Chauveau, I. Gökalp, F. Halter, Experimental studies of the
- fundamental flame speeds of syngas (h 2/co)/air mixtures, Proceedings of the Combustion Institute 33 (2011) 913–920.
- [24] R. Bilger, Reaction rates in diffusion flames, Combustion and Flame 30
 (1977) 277–284.
- [25] H. Tsuji, Counterflow diffusion flames, Progress in energy and combustion
 science 8 (1982) 93–119.
- [26] R. Barlow, G. Fiechtner, C. Carter, J.-Y. Chen, Experiments on the scalar structure of turbulent $co/h_2/n_2$ jet flames, Combustion and Flame 120 (2000) 549–569.
- ⁶⁹⁸ [27] O. A. Marzouk, E. D. Huckaby, A comparative study of eight finite-rate ⁶⁹⁹ chemistry kinetics for co/h_2 combustion, Engineering applications of com-⁷⁰⁰ putational fluid mechanics 4 (2010) 331–356.
- [28] H. Chelliah, C. Law, T. Ueda, M. Smooke, F. Williams, An experimental
 and theoretical investigation of the dilution, pressure and flow-field effects
 on the extinction condition of methane-air-nitrogen diffusion flames, Symposium (International) on Combustion 23 (1991) 503–511.
- [29] K. Seshadri, F. Williams, Laminar flow between parallel plates with injection of a reactant at high reynolds number, International Journal of Heat
 and Mass Transfer 21 (1978) 251–253.
- [30] H. Tsuji, I. Yamaoka, The counterflow diffusion flame in the forward stagnation region of a porous cylinder, Symposium (International) on Combustion 11 (1967) 979–984.
- [31] H. Tsuji, I. Yamaoka, The structure of counterflow diffusion flames in the
 forward stagnation region of a porous cylinder, Symposium (International)
 on Combustion 12 (1969) 997–1005.

- [32] D. E. Giles, S. Som, S. K. Aggarwal, Nox emission characteristics of counterflow syngas diffusion flames with airstream dilution, Fuel 85 (2006)
 1729–1742.
- [33] A. Sahu, R. Ravikrishna, A detailed numerical study of nox kinetics in
 low calorific value h2/co syngas flames, International Journal of Hydrogen
 Energy 39 (2014) 17358–17370.
- [34] H.-Y. Shih, J.-R. Hsu, Computed nox emission characteristics of opposed jet syngas diffusion flames, Combustion and Flame 159 (2012) 1851–1863.
- [35] S. Park, Y. Kim, Effects of nitrogen dilution on the nox formation characteristics of ch4/co/h2 syngas counterflow non-premixed flames, International Journal of Hydrogen Energy 42 (2017) 11945–11961.
- [36] D. Ning, A. Fan, H. Yao, Effect of radiation emission and reabsorption
 on flame temperature and no formation in h2/co/air counterflow diffusion
 flames, International Journal of Hydrogen Energy 42 (2017) 22015–22026.
- [37] K.-H. Yang, H.-Y. Shih, No formation of opposed-jet syngas diffusion
 flames: Strain rate and dilution effects, International Journal of Hydrogen
 Energy 42 (2017) 24517-24531.
- [38] S. Som, A. Ramirez, J. Hagerdorn, A. Saveliev, S. Aggarwal, A numerical
 and experimental study of counterflow syngas flames at different pressures,
 Fuel 87 (2008) 319–334.
- [39] J. Park, D. S. Bae, M. S. Cha, J. H. Yun, S. I. Keel, H. C. Cho, T. K. Kim,
 J. S. Ha, Flame characteristics in h2/co synthetic gas diffusion flames
 diluted with co2: effects of radiative heat loss and mixture composition,
 international journal of hydrogen energy 33 (2008) 7256–7264.
- [40] J. Park, O. B. Kwon, J. H. Yun, S. I. Keel, H. C. Cho, S. Kim, Preferential diffusion effects on flame characteristics in h 2/co syngas diffusion flames diluted with co 2, international journal of hydrogen energy 33 (2008) 7286–741 7294.

- [41] H.-Y. Shih, J.-R. Hsu, Dilution effects analysis of opposed-jet h2/co syngas
 diffusion flames, Combustion Theory and Modelling 17 (2013) 543–562.
- [42] J. Park, J. S. Kim, J. O. Chung, J. H. Yun, S. I. Keel, Chemical effects of
 added co 2 on the extinction characteristics of h 2/co/co 2 syngas diffusion
 flames, international journal of hydrogen energy 34 (2009) 8756–8762.
- [43] H.-Y. Shih, J.-R. Hsu, A computational study of combustion and extinction
 of opposed-jet syngas diffusion flames, international journal of hydrogen
 energy 36 (2011) 15868–15879.
- [44] M. Safer, F. Tabet, A. Ouadha, K. Safer, A numerical investigation of
 structure and emissions of oxygen-enriched syngas flame in counter-flow
 configuration, international journal of hydrogen energy 40 (2015) 2890–
 2898.
- [45] H.-Y. Shih, J.-R. Hsu, Y.-H. Lin, Computed flammability limits of opposedjet h2/co syngas diffusion flames, International Journal of Hydrogen Energy
 39 (2014) 3459–3468.
- ⁷⁵⁷ [46] W. Wang, A. E. Karatas, C. P. Groth, Ö. L. Gülder, Experimental and
 ⁷⁵⁸ numerical study of laminar flame extinction for syngas and syngas-methane
 ⁷⁵⁹ blends, Combustion Science and Technology 190 (2018) 1455–1471.
- [47] J. Fu, C. Tang, W. Jin, Z. Huang, Effect of preferential diffusion and flame stretch on flame structure and laminar burning velocity of syngas bunsen flame using oh-plif, international journal of hydrogen energy 39 (2014) 12187–12193.
- [48] A. Sahu, R. Ravikrishna, Effect of h2/co composition on extinction strain
 rates of counterflow syngas flames, Energy & Fuels 29 (2015) 4586–4596.
- [49] R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, A computational
 model of the structure and extinction of strained, opposed flow, premixed
 methane-air flames 22 (1989) 1479–1494.

- ⁷⁶⁹ [50] J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, J. J. Scire Jr, A
 ⁷⁷⁰ comprehensive kinetic mechanism for co, ch2o, and ch3oh combustion, In⁷⁷¹ ternational Journal of Chemical Kinetics 39 (2007) 109–136.
- [51] G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W. Gardiner, et al., Gri-mech 3.0
 http://www. me. berkeley. edu/gri_mech, Last visited March (2007).
- [52] S. G. Davis, A. V. Joshi, H. Wang, F. Egolfopoulos, An optimized kinetic
 model of h 2/co combustion, Proceedings of the Combustion Institute 30
 (2005) 1283–1292.
- [53] M. A. Mueller, R. A. Yetter, F. Dryer, Flow reactor studies and kinetic
 modeling of the h2/o2/nox and co/h2o/o2/nox reactions, International
 Journal of Chemical Kinetics 31 (1999) 705–724.
- [54] F. Dryer, I. Glassman, High-temperature oxidation of co and ch4, Sympo sium (International) on combustion 14 (1973) 987–1003.
- [55] G. Williams, H. Hottel, A. Morgan, The combustion of methane in a jetmixed reactor, in: Symposium (International) on Combustion, volume 12,
 Elsevier, pp. 913–925.
- [56] S. Varunkumar, N. Rajan, H. Mukunda, Universal flame propagation behavior in packed bed of biomass, Combustion Science and Technology 185
 (2013) 1241–1260.
- [57] G. Dixon-Lewis, T. David, P. Gaskell, S. Fukutani, H. Jinno, J. Miller,
 R. Kee, M. Smooke, N. Peters, E. Effelsberg, et al., Calculation of the
 structure and extinction limit of a methane-air counterflow diffusion flame
 in the forward stagnation region of a porous cylinder, Symposium (International) on Combustion 20 (1985) 1893–1904.
- ⁷⁹⁴ [58] S. M. Ali, S. Varunkumar, On the extinction strain rate of counterflow
 ⁷⁹⁵ diffusion flames, 11th Asia-Pacific Conference on Combustion (2017) 4.

- [59] B. Sarnacki, G. Esposito, R. Krauss, H. Chelliah, Extinction limits and
 associated uncertainties of nonpremixed counterflow flames of methane,
 ethylene, propylene and n-butane in air, Combustion and Flame 159 (2012)
 1026–1043.
- [60] N. Slavinskaya, M. Braun-Unkhoff, P. Frank, Reduced reaction mechanisms
 for methane and syngas combustion in gas turbines, Journal of engineering
 for gas turbines and power 130 (2008) 021504.
- [61] S. Gordon, J. McBride, Nasa sp-273, NASA Lewis Research, Cleveland,
 OH (1976).

Appendix A. Global extinction strain rate (a_g) experimental data

$D \ (mm)$	10.6	15.6	22.8	30.8
Fuel	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g \ (s^{-1})/T \ (K)$	$a_g~(s^{-1})/T~(K)$
M2				
CH_4	761±17/-	$614 \pm 9/-$	$467 \pm 10/-$	$380 \pm 7/-$
$\rm CH_4{-}30N_2$	$620\pm5/-$	$539 \pm 4/-$	$429 \pm 5/-$	$350 \pm 4/-$
CH_4 – $50N_2$	$515 \pm 6/-$	443±12/-	$349 \pm 5/-$	277±4/-
$\rm CH_4–70N_2$	277±5/-	$244{\pm}10/{-}$	211±8/-	$170 \pm 3/-$
M1				
$\rm CH_4–70N_2$	$436{\pm}5/557$	$351{\pm}2/540$	$280{\pm}3/524$	$239{\pm}2/490$

Table A.4: Global extinction strain (a_g) and burner temperature (T) data for CH₄-N₂-air combinations

$D \ (mm)$	10.6	15.6	22.8	30.8
Fuel	$a_g~(s^{-1})/T~(K)$	$a_g \ (s^{-1})/T \ (K)$	$a_g \ (s^{-1})/T \ (K)$	$a_g \ (s^{-1})/T \ (K)$
M2				
$\rm Syn{-}5H_280N_2$	$188{\pm}18/313$	$113{\pm}11/315$	$113 \pm 7/321$	$91{\pm}6/332$
$\rm Syn{-}10\rm H_{2}80\rm N_{2}$	$438{\pm}25/314$	$383{\pm}11/323$	$288 \pm 6/315$	$224 \pm 5/327$
$\rm Syn{-}1H_270N_2$	$179{\pm}14/326$	$139{\pm}5/323$	$125 \pm 9/324$	$108 \pm 8/323$
$\rm Syn{-}5H_270N_2$	$495{\pm}25/328$	$439 {\pm} 9/320$	$301{\pm}6/321$	$270{\pm}5/331$
$\rm Syn{-}10\rm H_270\rm N_2$	$819{\pm}34/323$	$578 \pm 12/332$	$420{\pm}12/317$	$354{\pm}5/336$
$\rm Syn{-}1\rm H_{2}60\rm N_{2}$	$395{\pm}10/321$	$312 \pm 4/327$	$269 \pm 5/324$	$262 \pm 7/333$
$\rm Syn{-}1\rm H_{2}50\rm N_{2}$	$592{\pm}13/333$	$483{\pm}14/337$	$368{\pm}9/320$	$351{\pm}10/339$
M1				
$Syn-5H_280N_2$	$255{\pm}13/421$	$216{\pm}7/404$	$168 {\pm} 2/423$	$141 \pm 8/396$
$\rm Syn{-}10H_280N_2$	$644{\pm}16/413$	$509{\pm}16/399$	$375 \pm 4/424$	-/-
$\rm Syn{-}1H_270N_2$	$304 {\pm} 9/467$	$270{\pm}7/469$	$251 \pm 5/484$	$175 \pm 3/454$
$Syn-5H_270N_2$	$666 \pm 6/451$	$588 \pm 3/471$	$421\pm8/481$	-/-

Table A.5: Global extinction strain (a_g) and burner temperature (T) data for Syn–H_2N_2-air combinations

Table A.6: Global extinction strain (a_g) and burner temperature (T) data for Syn–H₂CO₂-air combinations

D (mm)	10.6	15.6	22.8	30.8
Fuel	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$
M2				
$\rm Syn{-}5H_270CO_2$	$275{\pm}13/314$	$196{\pm}10/311$	$173 \pm 8/309$	$163 \pm 5/315$
$\rm Syn{-}10H_270CO_2$	$549{\pm}28/316$	$368{\pm}8/312$	$266{\pm}16/311$	$263{\pm}9/313$
$\rm Syn{-}1H_260CO_2$	$207{\pm}13/319$	$172{\pm}10/312$	$145{\pm}11/310$	$126 \pm 9/314$
$\rm Syn{-}5H_260CO_2$	$520{\pm}12/323$	$394{\pm}10/326$	$286{\pm}15/311$	$280{\pm}4/316$
$Syn-1H_250CO_2$	$392{\pm}25/324$	$341 \pm 9/315$	$295{\pm}7/311$	$261{\pm}9/313$

Table A.7: Global extinction strain (a_g) and burner temperature (T) data for Syn1–N₂-air and Syn2–N₂-air combinations

$D \ (mm)$	10.6	15.6	22.8	30.8
Fuel	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$
M2				
$Syn1-65N_2$	$604{\pm}24/318$	$434{\pm}4/313$	$295 \pm 9/313$	$280{\pm}3/309$
$Syn1-55N_2$	-/-	$654{\pm}10/327$	-/-	-/-
$Syn2-70N_2$	$629 \pm 21/313$	$447 \pm 8/312$	$301 \pm 5/312$	$276 \pm 5/308$
Syn2–60N2 $_2$	-/-	$660 \pm 9/332$	-/-	-/-

D (mm)	10.6	15.6	22.8	30.8
Distance (L)	$a_g \ (s^{-1})$	$a_g \ (s^{-1})$	$a_g \ (s^{-1})$	$a_g \ (s^{-1})$
M2				
$6 \mathrm{~cm}$	761 ± 11	607 ± 4	457 ± 9	$386{\pm}10$
$10 \mathrm{~cm}$	765 ± 2	610 ± 2	469 ± 4	384 ± 4
$12~{\rm cm}$	$761{\pm}17$	614 ± 9	$467 {\pm} 10$	382 ± 7

Table A.8: Global extinction strain (a_g) data for CH₄-air combination at three different distances

Table A.9: Global extinction strain (a_g) data for CH₄-air combination for wall effects

$D \ (\mathrm{mm})$	10.6	15.6	22.8	30.8
	$a_g \ (s^{-1})$	$a_g \ (s^{-1})$	$a_g \ (s^{-1})$	$a_g \ (s^{-1})$
M2				
with side wall	761 ± 17	614 ± 9	$467{\pm}10$	382 ± 7
without side wall	$768{\pm}11$	620 ± 7	$478 {\pm} 14$	387 ± 3

Table A.10: Effect of insulation on global extinction strain (a_g) data for Syn-10H₂80N₂-air combination

D (mm)	10.6	15.6	22.8	30.8
	$a_g \ (s^{-1})/T \ (K)$	$a_g~(s^{-1})/T~(K)$	$a_g \ (s^{-1})/T \ (K)$	$a_g \ (s^{-1})/T \ (K)$
M2				
without insulation	$438 {\pm} 25/317$	$383{\pm}11/323$	$288 {\pm} 6/315$	$224 \pm 5/327$
with insulation	$474 \pm 31/313$	$399{\pm}10/323$	$308{\pm}6/313$	$247 \pm 8/318$

Table A.11: Effect of fuel flow rate on global extinction strain (a_g) data for Syn–5H₂80N₂-air combination using D = 22.8 mm

fuel flow	6 Lpm	8 Lpm	10 Lpm	12 Lpm	15 Lpm
Fuel	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$	$a_g~(s^{-1})/T~(K)$
M2					
$\rm Syn{-}5H_280N_2$	$74{\pm}4/312$	$91{\pm}4/315$	$96{\pm}2/318$	$114 \pm 8/321$	$116{\pm}6/318$