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Quenching of limit cycle oscillations (LCO), either through mutual coupling or external forcing,
has attracted wide attention in several fields of science and engineering. However, the simultaneous
utilization of these coupling schemes in quenching of LCO has rarely been studied despite its practi-
cal applicability. We study the dynamics of two thermoacoustic oscillators simultaneously subjected
to mutual coupling and asymmetric external forcing through experiments and theoretical modeling.
We investigate the forced response of both identical and non-identical thermoacoustic oscillators for
two different amplitudes of LCO. Under mutual coupling alone, identical thermoacoustic oscillators
display the occurrence of partial amplitude death and amplitude death, whereas under forcing alone,
asynchronous quenching of LCO is observed at non-resonant conditions. When the oscillators are
simultaneously subjected to mutual coupling and asymmetric forcing, we observe a larger paramet-
ric region of oscillation quenching than when the two mechanisms are utilized individually. This
enhancement in the region of oscillation quenching is due to the complementary effect of amplitude
death and asynchronous quenching. However, a forced response of coupled non-identical oscillators
shows that the effect of forcing is insignificant on synchronization and quenching of oscillations in
the oscillator which is not directly forced. Finally, we qualitatively capture the experimental results
using a reduced-order theoretical model of two coupled Rijke tubes which are coupled through dis-
sipative and time-delay coupling and asymmetrically forced. We believe that these findings offer
fresh insights into the combined effects of mutual and forced synchronization in a system of coupled
nonlinear oscillators.

I. INTRODUCTION

Coupled interacting nonlinear oscillators appear exten-
sively in physical systems around us [1]. Depending upon
the nature of coupling, a population of interacting oscilla-
tors can synchronize starting from an initially incoherent
or desynchronized state. Such synchronized oscillators
can exhibit an emergence of ordered patterns as observed
in several examples in nature, such as flocking of bird or
flashing of light by fireflies [2]. However, synchronization
of oscillations may be detrimental sometimes, and may
need to be desynchronized [3] or quenched [4]. Here, we
study the practical application of synchronization theory
in attaining control of self-excited oscillations in a sys-
tem of coupled prototypical thermoacoustic oscillators. A
thermoacoustic oscillator refers to a confined combustion
system (for example, gas turbine combustor and rocket
engines). In such a system, positive feedback between the
acoustic pressure oscillations and the heat release rate os-
cillations leads to the generation of large amplitude, self-
sustained periodic oscillations in the acoustic field. The
occurrence of these large amplitude oscillations is referred
to as thermoacoustic instability (TAI). The presence of
such instabilities can inflict considerable damage to me-
chanical and structural components used in gas turbine
and rocket engines [5–7]. Complex interactions between
the acoustic field, turbulent flow field, and heat release
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rate field has recently led to the widespread use of com-
plex systems approach to understand the phenomenon of
thermoacoustic instability [6, 8].

In general, there are two types of interactions leading
to synchronization of oscillators: mutual and forced [7].
In the former, oscillators mutually interact through bidi-
rectional coupling, leading to the adjustment of phases
and frequencies of both the oscillators to a common state
of mutual synchronization. Oscillation quenching at-
tained through the phenomenon of amplitude death (AD)
in mutually coupled systems is an exciting prospect that
has been shown to work for various systems [9–12]. Am-
plitude death in a population of strongly coupled oscil-
lators refers to a situation where all the oscillators pull
each other off of their oscillatory state into the same sta-
ble fixed point, leading to complete cessation of oscilla-
tions. If the mutual coupling is not strong enough, the
situation of partial amplitude death (PAD) may arise,
where some oscillators retain their oscillatory behavior
while oscillations are ceased in others [13]. On the other
hand, in the case of forced synchronization, an indepen-
dent master system (an external force) drives a slave sys-
tem (driven oscillator); thus, forming a unidirectional
master-slave system [14]. In this type of coupling, the
driven system adjusts its phase and frequency to that
of the external forcing during the state of synchroniza-
tion. Depending upon the frequency and the amplitude
of forcing, the natural oscillations can be phase-locked
to forcing, and in some cases, the self-excited oscillations
can be completely suppressed through the phenomenon
of asynchronous quenching [15, 16].
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Quite a few numerical studies have been conducted to
investigate the simultaneous effect of forcing in a sys-
tem of coupled oscillators. In a system of two weakly
coupled Van der Pol oscillators, Battelino [17] observed
that when each oscillator is externally forced, and a
constant phase difference is present between the forc-
ing signals applied to each of the oscillators, the sys-
tem exhibits three-frequency quasiperiodicity. As the
coupling strength and forcing amplitude are increased,
three-frequency quasiperiodicity is first replaced by a
two-frequency quasiperiodic regime, and subsequently by
phase-locked periodic and chaotic regimes. The transi-
tion between the phase-locked region and the two- and
three-frequency quasiperiodic regions takes place through
saddle-node bifurcations [18, 19]. The external force first
destroys the regime of mutual synchronization of oscilla-
tors. As the forcing amplitude is increased, the oscillator
which is subjected to external forcing synchronizes with
the forcing signal first, followed by the forced synchro-
nization of the entire system [20]. Similar observations
were made in a system of coupled Van der Pol and Duff-
ing oscillators [21]. Such an approach was utilized for
modeling the effect of a pacemaker on the dynamics of
the human heart [22]. On the flip side, to the best of our
knowledge, only one experimental study has been con-
ducted to understand the effect of forcing on mutually
coupled electronic circuits with the aim of verifying the
phase dynamics associated during regimes of desynchro-
nized, mutually synchronized, two-frequency quasiperi-
odic, three-frequency quasiperiodic, and forced synchro-
nized oscillations [18]. Further, all the aforementioned
studies focus on the phase dynamics of the system with
particular attention afforded to the dynamics of bifurca-
tions among quasiperiodic, periodic, and chaotic regimes.
In light of the above discussed limitations of past stud-
ies, there is a need to experimentally quantify the effect of
mutual coupling and external forcing on the amplitude of
the limit cycle oscillations (LCO) observed in both the
oscillators. Thus, we analyze the phase as well as the
amplitude response of two coupled thermoacoustic oscil-
lators under the condition of asymmetric external forcing,
and model the observations with a low-order model. This
makes up the key objective of the present study, and is
of general interest to the nonlinear dynamics community.

Biwa et al. [4] were the first to experimentally demon-
strate the control of LCO through amplitude death in
coupled thermoacoustic engines using both the dissipa-
tive and time-delay couplings. Thomas et al. [23] investi-
gated amplitude death in a model of coupled Rijke tubes.
They found that the simultaneous presence of dissipative
and time-delay couplings was far more effective in attain-
ing AD in the Rijke tubes than either of the two types of
coupling applied separately. In a follow-up study with ad-
ditive Gaussian white noise, Thomas et al. [24] observed
that the presence of noise affects the coupled behavior of
oscillators and mutual coupling only leads to about 80%

suppression in the amplitude of the uncoupled LCO as
opposed to the state of AD observed in the absence of
noise in the system. Dange et al. [25] performed detailed
experimental characterization of coupled Rijke tube os-
cillators and found that only time delay coupling is suffi-
cient to achieve AD of low amplitude LCO. In oscillators
undergoing high amplitude oscillations, frequency detun-
ing is needed in addition to time delay coupling for attain-
ing AD and PAD. They also reported the phenomenon
of phase-flip bifurcation in the coupling of identical ther-
moacoustic oscillators. Recently, Hyodo et al. [26] used
double-tube coupling method to significantly reduce the
tube diameter necessary for demonstrating AD in a sys-
tem of coupled identical Rijke tubes. Jegal et al. [27]
demonstrated the occurrence of AD in a practical turbu-
lent system consisting of two lean-premixed model swirl
combustors. Moon et al. [28] compared the characteris-
tics of mutual synchronization of these systems when the
length and diameter of the coupling tube were changed.
Jegal et al. [27] also found that under different condi-
tions, mutual synchronization can also trigger the strong
excitation of a new mode, even when the two combustors
are individually stable in the absence of coupling.

On the other hand, Balusamy et al. [29] experimen-
tally studied the forced response of LCO in a swirl-
stabilized turbulent combustor using the framework of
forced synchronization and observed different states such
as phase-locking, phase drifting, and phase trapping in
the system. Kashinath et al. [30] highlighted the route to
forced synchronization of limit cycle, quasiperiodic, and
chaotic oscillations in a numerical model of the premixed
flame. These findings were verified in experiments on Ri-
jke tubes [16] and laminar combustors [31–33]. Mondal
et al. [16], Guan et al. [31] and Roy et al. [32] further
showed that forcing at frequencies away from the natural
frequency of LCO lead to greater than 80% decrease in
their amplitude through a phenomenon known as asyn-
chronous quenching.

The aforementioned studies demonstrate the possibil-
ity of controlling thermoacoustic instability based on mu-
tual or forced synchronization. However, the scope of
these studies is still limited as external forcing can quench
thermoacoustic instability in a single system in a spe-
cific range of forcing parameters, whereas practical en-
gines generally have multiple combustors working in tan-
dem. Hence, the information on how the forcing of ther-
moacoustic instability in one combustor affects the ther-
moacoustic instability developed in another combustor
is still unknown. Similarly, mutual coupling works for
two coupled oscillators; however, the parametric regime
for which amplitude death is observed is limited. There-
fore, there is a need to combine both these methodologies
to overcome their individual limitations. Essentially, we
aim to implement a proof-of-concept capable of combin-
ing the best of both strategies – asynchronous quenching
and mutual synchronization – to control thermoacoustic
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oscillations. Towards this purpose, we couple two Ri-
jke tubes during the state of thermoacoustic instability
and subject one to external harmonic forcing (asymmet-
ric forcing). We then measure the phase and amplitude
response of the resultant acoustic pressure oscillations
in the combustors at different conditions of forcing and
coupling parameters. We perform asymmetric forcing
experiments on identical and non-identical thermoacous-
tic oscillators to comprehensively assess the response to
forcing. We find that through asymmetric forcing, we
can expand the region of oscillation quenching of ther-
moacoustic instability in the system of coupled identical
Rijke tubes by compounding the effect of asynchronous
quenching and mutual synchronization. Finally, we de-
velop a model where two Rijke tube oscillators are cou-
pled through dissipative and time-delay coupling and are
forced asymmetrically. We show that the model com-
pares favorably with the experimental results, indicating
the usefulness of reduced-order modeling of coupled os-
cillator models under forcing.

The rest of the paper is organized as follows. In §II we
describe the experimental setup. In §IIIA, we investigate
the forced synchronization characteristics of a single Ri-
jke tube. We then demonstrate the presence of AD and
PAD in mutually coupled Rijke tubes in §III B. In §III C,
we characterize the response of coupled identical Rijke
tubes to asymmetric forcing. We consider the response
of non-identical oscillators in §IIID. In §IV, we describe
the model and numerically investigate the dynamics of
coupled Rijke tube oscillators under forcing. Finally, we
present the conclusions from the study in §V.

II. EXPERIMENTAL SETUP

The experimental setup used in this study consists of a
pair of horizontal Rijke tubes (Fig. 1). Rijke tube A has
a cross-section of 9.3× 9.4 cm2 with a length of 102 cm.
Rijke tube B has a cross-section of 9.3 × 9.5 cm2 and a
length of 104 cm. A decoupler of dimensions 102×45×45
cm3 is attached to the inlet of the respective Rijke tube
to eliminate upstream disturbances and ensure a steady
flow in the system. Each Rijke tube consists of a separate
electrically heated wire mesh, powered by an external DC
power supply, which acts as a compact heat source. The
heaters are located 27 cm downstream of the inlet in each
duct. The air flow rate is maintained constant in each
of the Rijke tubes through separate mass flow controllers
(MFC, Alicat Scientific) of uncertainty ±(0.8% of the
measured reading + 0.2% of the full scale reading).

Both the Rijke tubes are coupled using a single vinyl
tube of length L and internal diameter d (see Fig. 1). The
ports for the connecting tube are located 57 cm down-
stream of the inlet. Ball-type valves are manually opened
to establish coupling between the two oscillators. Four
wall mounted acoustic drivers (Minsound TD-200A) are

FIG. 1. Schematic of the experimental setup having two
horizontal Rijke tube oscillators A and B, which are coupled
using a connecting tube. Rijke tube A is acoustically forced
with 4 acoustic drivers attached to its sides. An extension
duct in Rijke tube A is used for implementing frequency de-
tuning in the system.

attached on each side of Rijke tube A, 41 cm downstream
of the inlet. The acoustic drivers are connected in paral-
lel to a power amplifier (Ahuja UBA-500M). Sinusoidal
forcing signal with mean-to-peak amplitude (Af , in mV)
and frequency (ff , in Hz), generated using a Tektronix
function generator (Model No. AFG1022), is input to
the power amplifier to drive the coupled system.

A piezoelectric pressure transducer (PCB 103B02, sen-
sitivity 217.5 mV/kPa, uncertainty ±0.15 Pa) is mounted
close to the midpoint along the length of the duct in each
Rijke tube and is used for measuring the acoustic pres-
sure fluctuations in the system. Data are acquired simul-
taneously from both the Rijke tubes at a sampling rate
of 10 kHz for a duration of 5 s for each parametric con-
dition using a data acquisition system (NI USB 6343).
The resolution of frequency in the power spectrum of the
signals is equal to 0.2 Hz. The rate of decay of an acous-
tic pulse generated from loudspeakers in the absence of
flow is used to measure the damping in the two Rijke
tubes. The acoustic decay rate values for Rijke tubes A
and B are measured to be 16.5±2 s−1 and 12.9±1.8 s−1,
respectively. To ensure repeatability of the results and
consistency of the experimental conditions, the experi-
ments are conducted only when the measured acoustic
decay rates lie in the range mentioned above. A change
in the decay rate only changes the critical parameter val-
ues at which the different dynamical states are observed;
however, the overall dynamics remain the same. During
each experiment, both the Rijke tubes are preheated for
10 minutes by supplying DC power at 1 V to the wire
mesh. The preheating ensures a steady temperature pro-
file inside the Rijke tubes.

A telescopic slide mechanism of 12 cm length is used to
vary the length of Rijke tube A. The natural frequency
of Rijke tube A can be varied between fn0 = 162 Hz to
fn0 = 148 Hz with an uncertainty of ±2 Hz due to the
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FIG. 2. Forced response of a single Rijke tube. (a,c) The phase response shown in terms of PLV and (b,d) amplitude response
in terms of fractional change in the amplitude of LCO in the Rijke tube for (a,b) p′0 = 120 Pa and (c,d) p′0 = 200 Pa for
different values of Āf and ff . The synchronization boundaries in (a-d) are obtained through least-square-fit of points where
PLV = 0.98. The R2 values for the least-square fitting are given in Section I of the Supplemental Material. The region of
forced synchronization decreases with increase in p′0 (a,c), while quenching of LCO is observed only for ff < fn0 (b,d). Green
region around ff/fn0 = 1 in (b,d) signifies the amplification of LCO above twice the value of unforced amplitude, such that
∆p′rms/p

′

0 varies in the range (-5.76, -1) in (b), and (-4.47, -1) in (d).

uncertainty in measuring the length of the Rijke tube.
After preheating both the Rijke tubes, the heater power
is increased such that the system undergoes subcritical
Hopf bifurcation. The heater power is maintained away
from the bistable region in all experiments. LCO are
maintained in each of the Rijke tubes before coupling
is induced. The amplitude of the LCO are controlled
by varying the heater power and the air flow rate. All
the experiments are reported for two different amplitudes
(root-mean-square) of the LCO in both the Rijke tubes
in the uncoupled state: (a) lower amplitude p′0 = 120
Pa maintained by supplying a constant air flow rate of
2.4 ± 0.01 g/s (Re = 1370) in each Rijke tube, and (b)
higher amplitude p′0 = 200 Pa maintained by supplying
a constant air flow rate of 3.95± 0.01 g/s (Re = 2284) in
each Rijke tube. After both the oscillators exhibit LCO
in their uncoupled state, the valves are opened to couple
these oscillators. The coupled system is then asymmetri-
cally forced through the loudspeakers connected to Rijke
tube A.

III. RESULTS AND DISCUSSIONS

A. Response of a thermoacoustic oscillator to

external forcing

We begin by investigating the forced acoustic response
of LCO in a single Rijke tube. Figure 2 shows a two-
parameter bifurcation plot on an Āf − ff plane illustrat-
ing the phase (Figs. 2a,c) and amplitude (Figs. 2b,d)
response of LCO under external forcing. The natural fre-
quency of LCO is fn0 = 160± 2 Hz. The forced response
is studied for two different amplitudes of unforced LCO:
p′0 = 120 Pa corresponding to p0 = 26 mV (Figs. 2a,b)
and p′0 = 200 Pa corresponding to p0 = 43 mV (Figs.
2c,d). Here, p′0 refers to the amplitude of the unforced
LCO in pascal (Pa), and p0 refers to the equivalent read-
ing obtained from the piezoelectric transducer in mV.
The values of forcing amplitude Af (in mV) are normal-
ized with the unforced amplitude of LCO measured in
mV such that Āf = Af/p0.
In Figs. 2a,c, we plot the distribution of phase locking

value (PLV ) between the forced LCO and the external
forcing signal on the Āf − ff plane. PLV quantifies the
degree of synchronization between a pair of oscillators at
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any given condition of forcing (Af , ff ). It is defined as
[7],

PLV =
1

N

∣
∣
∣
∣
∣

N∑

n=1

exp(i∆φ)

∣
∣
∣
∣
∣
, (1)

where N is the length of the p′ signal, and ∆φ is the
instantaneous phase difference between the p′ and forc-
ing signals. Here, forcing is assumed to be sinusoidal
of the form F (t) = Af sin(2πff t). The instantaneous
phase of the signals is determined using the analytic sig-
nal approach utilizing the Hilbert transform [7]. A PLV
of 1 indicates synchronization of two oscillators, while
a PLV of 0 indicates desynchronization of the oscilla-
tors. In experimental situations, it is difficult to ob-
tain PLV = 1; hence, we denote phase synchroniza-
tion boundaries of LCO through a least-square-fit of the
points where PLV = 0.98. The R2 values of the least-
square-fit lines are given in Section I of the Supplemen-
tal Material. The V-shaped region, called the Arnold
tongue, separates the region of forced synchronization
from the region desynchronization. The critical ampli-
tude of forcing required for forced synchronization of
LCO, Af = Af,c, increases almost linearly with an in-
crease in the frequency difference ∆f = |ff − fn0|.

From Figs. 2a,c, we notice that for p′0 = 200 Pa, the
range of ff for which forced synchronization occurs in
the system is smaller than that observed for p′0 = 120
Pa, indicating the dependence of forced synchronization
of LCO on their amplitude in the unforced state. Further,
at higher values of ∆f , achieving forced synchronization
of both LCO becomes difficult. We also observe regions of
desynchronized oscillations (indicated in red) in the range
of ff/fn0 = 0.62−0.70 at high values of Āf (Āf > 0.35 in
Figs. 2a,c). The reason for desynchrony in this region is a
result of period-3 behavior in p′, which leads to low values
of PLV (see Section II of the Supplemental Material).

We also plot the normalized change in the amplitude of
LCO due to external forcing, ∆p′rms/p

′

0 = (p′0−p′rms)/p
′

0

in Figs. 2b,d. Here, ∆p′rms/p
′

0 ∼ 1 corresponds to com-
plete suppression of LCO in the Rijke tube due to forcing,
whereas ∆p′rms/p

′

0 < 0 indicates increase in the ampli-
tude of LCO above the unforced value due to forcing.
The green region in Figs. 2b,d corresponds to an in-
crease in the amplitude of LCO above twice of its un-
forced value (i.e., ∆p′rms/p

′

0 < −1) due to resonant am-
plification of the acoustic pressure signal as ff is very
close to fn0. ∆p′rms/p

′

0 < −1 implies that the resul-
tant amplitude is more than twice the amplitude of LCO
in unforced conditions. The simultaneous occurrence of
forced synchronization for ff ≈ fn0 along with the reso-
nant amplification of the amplitude of LCO is referred to
as synchronance [16]. We further observe a large region
with a reduction in amplitude greater than 80% of p′0 only
for ff < fn0. A significant decrease in the amplitude of
LCO at non-resonant conditions (ff 6= fn0) of forcing is a

result of asynchronous quenching [16, 31]. Asynchronous
quenching of LCO is achieved through forced synchro-
nization, where the response p′ signal oscillates at ff ,
which can be seen from the coincidence of the bound-
aries of the Arnold tongue with region corresponding to
∆p′rms/p

′

0 ≈ 1 (see Figs. 2b,d). The asymmetry in the
characteristics of the Arnold tongue and asynchronous
quenching of LCO arises due to the inherent nonlinearity
of the thermoacoustic system [30].

B. Response of coupled thermoacoustic oscillators

We now examine the response of two mutually coupled
Rijke tubes when the length of the coupling tube (L) and
the frequency detuning ∆fn0 (= fB

n0−fA
n0) between them

are varied independently, where fa
n0 and fB

n0 are natural
frequencies of oscillators A and B in the uncoupled state,
respectively. In this study, the diameter of the connecting
tube is kept constant at 1 cm for all the experiments (see
Section III of Supplemental Material).
We note that the use of the connecting tube induces an

acoustic time delay in the coupling between the two Rijke
tubes, as a finite time is required for the acoustic waves
in the two oscillators to interact with one another [25].
A change in the length of the coupling tube changes the
acoustic time-delay between the two mutually interact-
ing Rijke tubes. A change in the diameter of the coupling
tube changes the coupling strength between the two in-
teracting Rijke tubes. The coupling strength comprises
of two parts: time-delay coupling and dissipative cou-
pling. Dissipative coupling is related to the interaction
that arises due to mass transfer between the two ducts
[34]. We observe the presence of both time delay and
dissipative coupling in our system.
In Fig. 3, we plot the fractional change in the ampli-

tude of LCO in these oscillators, ∆p′rms/p
′

0, as a function
of L and ∆fn0 for two different values of p′0 = 120 Pa
(Figs. 3a,b) and 200 Pa (Figs. 3c,d). The colorbar illus-
trating ∆p′rms/p

′

0 values range from 0 to 1. During mu-
tual coupling of oscillators, we seldom observe any ampli-
fication of LCO.As a result, ∆p′rms/p

′

0 is never negative.
In contrast, during forcing experiments in Fig. 2b,d, we
observe resonant amplification of LCO.
In Fig. 3, for identical oscillators (∆fn0 = 0 Hz), we do

not observe any perceivable reduction in the amplitude of
LCO due to coupling for either values of p′0. However, a
significant reduction in the amplitude of LCO is observed
when non-identical oscillators are coupled. We observe
two states of oscillation quenching, i.e., amplitude death
(AD) and partial amplitude death (PAD), in coupled Ri-
jke tubes for a particular range of L. For example, when
∆fn0 = 5 − 10 Hz and L = 85 cm, we witness the pres-
ence of PAD in the system (see green box in Fig. 3),
while for ∆fn0 = 7−10 Hz and L = 95 cm, we notice the
occurrence of AD in the system (see yellow box Fig. 3).
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FIG. 3. Coupled response of two Rijke tubes. Fractional change in the amplitude of LCO for Rijke tube A and B as functions
of the frequency detuning (∆fn0 = |fA

n0 − fB
n0|) and length of the connecting tube (L) for (a,b) p′0 = 120 Pa and (c,d) p′0 = 200

Pa in both the oscillators. The region of AD and PAD are indicated. At other regions in the plots, LCO are observed at
reduced amplitude due to coupling. The parametric region exhibiting AD shrinks in size as p′0 is increased from 120 Pa to 200
Pa.

During the state of PAD, LCO in Rijke tube B (unforced)
undergoes suppression and that in Rijke tube A (forced)
remains at the reduced amplitude. For the state of AD,
we observe greater than 95% decrease in the amplitude of
LCO in both the oscillators due to coupling. The range
of ∆fn0 for which AD is observed in the system is smaller
for p′0 = 200 Pa (Fig. 3c,d) when compared to that for
p′0 = 120 Pa (Fig. 3a,b). Thus, the occurrence of AD
in Rijke tube oscillators has a dependence on the ampli-
tude of uncoupled LCOs. It is quite clear from Fig. 3
that the mutual coupling induced through the coupling
tube is not capable of inducing AD in identical oscilla-
tors, and the occurrence of AD in high amplitude LCO
is restricted to a small range of L and requires a finite
value of ∆fn0 in the system [25].

C. Response of coupled identical thermoacoustic

oscillators under asymmetric forcing

As observed in Fig. 3, in the absence of frequency
detuning, mutual coupling is ineffective in achieving os-
cillation quenching (i.e., AD or PAD) in the coupled sys-
tem. Hence, we asymmetrically force the coupled ther-
moacoustic oscillators to enhance the quenching of LCOs.

Figure 4 shows the representative time series of the acous-
tic pressure fluctuations in Rijke tube A (in blue) and B
(in brown) under the effect of mutual coupling and exter-
nal forcing when introduced sequentially. Both the oscil-
lators are initially coupled through a single tube and then
oscillator A is forced through loudspeakers. The time in-
stant when coupling and forcing are switched on/off are
marked as well. In some situations, we notice that cou-
pling and forcing can marginally reduce the amplitude of
LCO in the coupled system (Fig. 4a). While in others,
forcing can completely quench LCO in one and reduce
the amplitude of LCO in the other oscillator (Fig. 4b).
This situation is akin to the state of PAD. Thus, forc-
ing aids in attaining PAD. On the flip side, in Fig. 4c,
we observe that forcing can also lead to an amplification
of the acoustic pressure oscillations, as can be seen from
the increased amplitude of these oscillations in Rijke tube
A above the uncoupled value. In contrast, the acoustic
pressure oscillations remain quenched in Rijke tube B.
Thus, the effectiveness of coupling and forcing of ther-
moacoustic oscillators is restricted to a particular range
of coupling and forcing parameters and hence, we focus
on the identification of such regions in the subsequent
discussion.

In Fig. 5, we plot the amplitude (Fig. 5a,b) and the
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FIG. 4. (a)-(c) Time series of p′ in Rijke tubes A (blue) and B (brown) sequentially illustrating the effect of coupling and
forcing on the amplitude of LCO in both the Rijke tubes for different coupling and forcing parameters. In (a,c), the Rijke tubes
are non-identical and have a frequency difference of 10 Hz. (i,ii) The enlarged portions of the desynchronized LCO and the
state of PAD in (c), respectively. The coupling of oscillators always leads reduction in the amplitude of LCO, while forcing of
oscillators can have both reduction or amplification effects, depending on the values of coupling and forcing parameters. The
common parameters in all plots are: d = 10 mm, ff = 140 Hz, and Af = 30 mV.

phase (Fig. 5c,d) response of identical Rijke tubes as a
function of the forcing amplitude (Af ) and the length
of coupling tube (L). The phase response is determined
from the PLV calculated between the external forcing
signal and p′ for either of the Rijke tubes. Only Rijke
tube A is subjected to external forcing. The forcing fre-
quency is chosen as ff = 100 Hz (ff/fn0 ≈ 0.6) for which
we observe asynchronous quenching in a single forced Ri-
jke tube oscillator (Fig. 2d).

For Af = 0, we observe that a change in L does not
lead to any suppression of LCO in the oscillators (Fig.
5a,b). With an increase in Af , we observe a gradual
decrease in the amplitude of LCO in both the oscilla-
tors with the effect on Rijke tube B (unforced) being
more pronounced than Rijke tube A (forced). Com-
plete suppression of LCO (∆p′rms/p

′

0 ≈ 1) is observed
in a particular range of L in Rijke tube B (Fig. 5b),
while a significant decrease in the amplitude of LCO (i.e.,
∆p′rms/p

′

0 ≈ 0.8) is observed over a wider range of L in
Rijke tube A (Fig. 5a). For the coupled systems without
forcing in Fig. 3, we did not observe AD or PAD when
identical Rijke tubes were coupled for any L. However,
the same coupled identical oscillators when asymmetri-
cally forced exhibit the state of PAD for a range of L (see
point e in Fig. 5a). Thus, we notice that a larger region
over which suppression of high amplitude LCO can be
achieved in coupled identical thermoacoustic oscillators
when the oscillators are coupled in a particular range of
L and asymmetric forcing is applied at non-resonant fre-

quencies. We reiterate that we do not observe complete
suppression of amplitude of LCO in Rijke tube A.

Further, we notice that the region of quenching of LCO
in Rijke tube A (i.e. p′rms/p

′

0 > 0.8 in Fig. 5a) nearly
coincides with the region of forced synchronization (i.e.,
PLV ≈ 1 in Fig. 5c) while the other regions remain
desynchronized with the forcing signal. However, the
LCO in Rijke tube B always remains desynchronized with
the forcing signal, which is observed from the value of
PLV ∼ 0 in Fig. 5d. For the regions where we do not
observe suppression of LCO in Rijke tube B, difference
between ff and fn0 is too large such that there is no
phase locking between oscillations in Rijke tube B and
the forcing signal, resulting in low PLV . For the regions
where we notice complete suppression in Rijke tube B
(Fig. 5e), the oscillations are noisy with very low ampli-
tude, leading to low PLV .

The blue and red time series shown in Fig. 5g depict
the acoustic pressure fluctuations in Rijke tubes A and B,
respectively and the acoustic pressure time series corre-
spond to data point (g) in Figs. 5a,b. Although these sig-
nals appear mutual phase synchronized with each other
in Fig. 5g, they are desynchronized with the forcing sig-
nal due to a difference in the frequencies of their oscilla-
tions (i.e., fn0 = 160 Hz and ff = 100 Hz). Therefore,
the PLV distribution quantifying forced synchronization
in Fig. 5c and Fig 5d show zero values for data point (g).

Next, we measure the effect of forcing on the Arnold
tongue and the amplitude quenching characteristics of
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FIG. 5. Response of coupled, identical oscillators to asymmetric forcing. (a,b) Amplitude and (c,d) phase response as functions
of the forcing amplitude (Af ) and length of the coupling tube (L). (e-g) Representative time series of p′ for the points indicated
in (a) depicting difference in the response of Rijke tube A and B. Complementary forcing and coupling enhances the region of
L over which the suppression of LCO is observed in both the oscillators. Forcing is ineffective in synchronization of LCO in
Rijke tube B (the black region in (d) denotes the complete desynchrony of LCO in Rijke tube B with the forcing signal), while
the region of quenching of LCO in Rijke tube A nearly coincides with the region of forced synchronization (PLV ≈ 1). The
common parameters in all the plots are: p′0 = 200 Pa, ff = 100 Hz (ff/fn0 ≈ 0.6), ∆fn = 0 Hz, and d = 1 cm.

the coupled identical Rijke tubes. The length and inter-
nal diameter of the coupling tube are fixed at L = 105 cm
and d = 1 cm, respectively. Only Rijke tube A is forced
externally. The natural frequency of both the oscillators
is maintained at fA

n0 = fB
n0 ≈ 160 Hz. In Fig. 6, we

depict the fractional change in the amplitude of LCO for
each oscillator overlapped with the Arnold tongue on the
Āf − ff plane for p′0 = 120 Pa (Figs. 6a,b) and p′0 = 200
Pa (Figs. 6c,d).

When the coupled Rijke tubes are asymmetrically
forced, we notice forced synchronization at a lower value
of Āf for Rijke tube A than for Rijke tube B at any value
of ff . Therefore, the boundaries of the Arnold tongue are
observed to be longer and the forced synchronization re-
gion is wider for Rijke tube A (Figs. 6a,c) than that for
Rijke tube B (Figs. 6b,d). Furthermore, we notice that
the boundaries of the Arnold tongue for p′0 = 120 Pa are
less steeper than that for p′0 = 200 Pa. This means that a
significantly larger value of forcing amplitude is required
to synchronize and quench the large amplitude LCO in
the coupled Rijke tube oscillators. As the external forc-
ing is applied to Rijke tube A, the region of resonant
amplification is larger than that for Rijke tube B. More-
over, as the forcing amplitude is increased, the oscillator
which is subjected to external forcing (i.e., Rijke tube
A) synchronizes with the forcing signal first, followed by
the forced synchronization of the entire system, i.e., the
coupled system of Rijke tubes A & B. Further, the tran-
sition from desynchronized to forced synchronization for
Rijke tubes A & B takes place through a sequence of bi-

furcations: (i) from desynchronized limit cycle at fA,B
n0 to

two-frequency quasiperiodicity through torus-birth bifur-

cation (fA,B
n0 , ff ); and (ii) from two-frequency quasiperi-

odicity to synchronized limit cycle (ff ) either through

saddle-node bifurcation if fA,B
n0 is close to ff or through

torus-death bifurcation if fA,B
n0 is far from ff . These

two routes are quite well-known [14] and is observed for
the identically coupled Rijke tubes under forcing. fn0
denotes the natural frequency of the Rijke tubes, and fn
denotes the frequency of the acoustic pressure oscillations
exhibited by the Rijke tubes after the ducts are coupled
and asymmetrically forced.
Rijke tube A (Figs. 6a,c) shows a similar trend of

quenching of different amplitude LCO as observed for
the single oscillator (Figs. 2b,d). The similarities in-
clude an approximate coincidence of maximum amplitude
suppression with the synchronization boundary, signifi-
cant amplitude suppression only for forcing frequencies
of ff < fn0, and the presence of resonant amplification
region around ff/fn0 ∼ 1 (shown in green). However, the
Āf required for forced synchronization at any ff for the
coupled identical oscillators (Figs. 6a,c) is higher than
that for a single oscillator (Figs. 2b,d).

In contrast to the response of Rijke tube A, simulta-
neous effect of coupling and external forcing lead to a
much greater suppression of LCO along the boundaries
of forced synchronization in Rijke tube B (Figs. 6b,d).
Suppression of LCO in Rijke tube B is observed for both
ff < fn0 and ff > fn0, unlike Rijke tube A where we no-
tice a reduction only for ff < fn0. Further, the range of
ff and Āf over which the suppression of LCO occurs in
Rijke tube B is larger than that observed for Rijke tube
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FIG. 6. Amplitude and phase response (black lines) of Rijke tubes A and B when coupled identical oscillators are subjected
to asymmetric forcing for (a,b) p′0 = 120 Pa and (c,d) p′0 = 200 Pa. The LCO in Rijke tube A is externally forced through
the acoustic drivers. The forced synchronization region is wider for Rijke tube A than that observed for Rijke tube B, whereas
a much larger magnitude of suppression of LCO is observed in Rijke tube B as compared to that in Rijke tube A. Inside the
green region, the oscillations are amplified to values above twice the value of LCO amplitude in the uncoupled-unforced Rijke
tubes, such that ∆p′rms/p

′

0 is observed in the range (-6.47, -1) in (a), (-3.54, -1) in (b), (-6.67, -1) in (c), and (-2.66, -1) in (d).
Experimental conditions: fA

n0 = fB
n0 ≈ 160 Hz, L = 105 cm, d = 1 cm.

A. Thus, we reassert that asymmetrically forced coupled
system exhibits suppression of higher amplitude LCO for
a larger range of forcing parameters than that observed
when the oscillators are forced or coupled individually.

D. Forced response of coupled non-identical limit

cycle oscillators

Now, we study the response of coupled non-identical
Rijke tubes under asymmetric forcing. Only Rijke tube
A is externally forced. In Fig. 7, we depict the Arnold
tongue and the fractional change in the amplitude of
LCO for p′0 = 120 Pa (Figs. 7a,b) and p′0 = 200 Pa
(Figs. 7c,d). The oscillators are coupled through a tube
of L = 105 cm and d = 1 cm. A frequency detuning
between the uncoupled oscillators is fixed at 10 Hz (i.e.,
∆fn0 = fB

n0 − fA
n0 = 10 Hz). We notice that the effect of

forcing is quite insignificant for synchronization of LCO
in Rijke tube B. We observe a small range of ff (i.e.,
ff < fB

n0) over which Rijke tube B is synchronized to

forcing for p′0 = 120 Pa (Fig. 7b). The region of forced
synchronization is completely absent when p′0 is increased
to 200 Pa (Fig. 7d). In contrast, as the external forcing is
applied directly to Rijke tube A, it is easily synchronized
with the forcing, as seen from the longer boundaries of
the Arnold tongue for both p′0 = 120 and 200 Pa in Figs.
7a,c, respectively.

Finally, the mechanism through which forced sychro-
nization is attained for p′0 = 120 Pa in the non-identical
system is quite different from that of the coupled sys-
tem. As the forcing amplitude is increased, the oscil-
lator which is subjected to external forcing (i.e., Rijke
tube A) synchronizes with the forcing signal first, fol-
lowed by the forced synchronization of the entire sys-
tem, i.e., the coupled system of Rijke tubes A & B. The
entire system undergoes forced synchronization only in

ff/f
A,B
n0 < 1 range. The transition from desynchronized

to forced synchronization for Rijke tube A takes place
through the following sequence of bifurcations: (i) from
desynchronized two-frequency quasiperiodicity (fA

n0, f
B
n0)
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FIG. 7. The amplitude and phase response (black lines) of Rijke tubes A and B when coupled non-identical oscillators are
subjected to asymmetric forcing for (a,b) p′0 = 120 Pa and (c,d) p′0 = 200 Pa. The effect of forcing is less effective in
synchronizing and quenching of LCO in Rijke tube B, while it shows regions of forced synchronization and quenching of LCO
in Rijke tube A. Inside the region marked in green colour, ∆p′rms/p

′

0 varies in the range (-6.03, -1) in (a), (-1.47, -1) in (b),
and (-3.04, -1) in (c). The common parameters in all the plots are: ∆fn0 = 10 Hz, L = 105 cm, d = 1 cm.

to three-frequency quasiperiodicity (fA
n0, f

B
n0, ff ) as Af

is increased; and (ii) from three-frequency quasiperiod-
icity to synchronized limit cycle (ff ). This route was
reported for coupled Van der Pol oscillators under asym-
metric forcing [19, 20]. However, Rijke tube B goes from
two-frequency quasiperiodicity (fA

n0, f
B
n0) to synchronized

limit cycle (ff ) when ff/fn0 < 1. For p′0 = 200 Pa,
the acoustic pressure fluctuations in Rijke tube B remain
desynchronized with the forcing signal throughout the
Āf − ff parameter plane.

The amplitude response of Rijke tube A and B shows
that the significant suppression of LCO can still be
achieved at non-resonant conditions of forcing. The re-
gion of resonant amplification observed around ff/fn0 ∼
1 is very small for Rijke tube B as compared to Rijke
tube A. Furthermore, the comparison of the forced re-
sponse of the coupled oscillators with p′0 = 120 Pa (Figs.
7a,b) and p′0 = 200 Pa (Figs. 7c,d) shows that for the
higher amplitude LCO, we need significantly larger values
of Āf for synchronization and quenching of oscillations in
both the Rijke tubes. This is similar to the observations
made for identical oscillators in Fig. 6. Note that the
ordinate in Figs. 7c,d is much larger than that in Figs.

7a,b. Thus, we re-emphasize that the effect of forcing
is more significant in suppressing LCO in both coupled
thermoacoustic oscillators if their natural frequencies are
nearly the same as compared to that seen in the case of
non-identical oscillators.

IV. MATHEMATICAL MODEL

In this section, we will discuss a reduced-order model
developed for the system of coupled horizontal Rijke
tubes subjected to asymmetric forcing. The model of
the uncoupled oscillator is based on Balasubramanian
and Sujith [35]. We neglect the effects of mean flow and
mean temperature gradient in the duct. The temporal
evolution of a single Rijke tube is described by the fol-
lowing set of ODEs

dηj
dt

= η̇j , (2)
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dη̇j
dt

+ 2ξjωj η̇j + k2j ηj

= −jπK

[√∣
∣
∣
∣

1

3
+ u′

f (t− τ)

∣
∣
∣
∣
−

√

1

3

]

sin(jπxf ),

(3)

where kj = jπ refers to the non-dimensional wave num-
ber and ωj = jπ refers to the non-dimensional angular
frequency of the jth mode. Other parameters are the
non-dimensional heater power K, and non-dimensional
velocity, u′

f at the non-dimensional heater location, xf .
The thermal inertia of the heat transfer in the medium
is captured by a parameter time lag τ .The coefficient ξj
appearing in the second term of Eq. (3) represents the
frequency-dependent damping [36], and is given by the
following ansatz [37]:

ξj =

c1
ωj

ω1

+ c2

√
ω1

ωj

2π
(4)

Here, c1 and c2 are the damping coefficients which de-
termine the amount of damping. We choose the values
c1 = 0.1 and c2 = 0.06 based on [37] for all simula-
tions. We also set xf = 0.25 (= L/4), as it is the
most favorable location for the onset of thermoacous-
tic instability [36]. The non-dimensional velocity u′ and
non-dimensional pressure p′ fluctuations in the model are
written in terms of the Galerkin modes:

p′(x, t) =

N∑

j=1

−γM

jπ
η̇j(t) sin(jπx), (5)

u′(x, t) =

N∑

j=1

ηj(t) cos(jπx). (6)

For Rijke tubes, Matveev [36] and Sayadi et al. [38]
have shown that the first mode is the most unstable of
all the other modes. Consequently, we consider only the
first mode (N = 1) in our numerical analysis, to keep the
model simple.

Let superscripts “a” and “b” denote Rijke tube A and
B, respectively. We assume that the two Rijke tubes
are coupled through time-delay and dissipative couplings.
The governing equations for coupled non-identical Ri-
jke tubes with asymmetric sinusoidal forcing can then
be written as:

dηa,bj

dt
= η̇j

a,b, (7)

Parameter Value Parameter Value Parameter Value
N 1 τ 0.25 K 5
γ 1.4 M 0.005 xf 0.25
c1 0.1 c2 0.06 ωf jπ

TABLE I. Model parameters kept constant throughout the
numerical analysis of the reduced-order model.

dη̇j
a,b

dt
+ 2ξj

( ωj

ra,b

)

η̇j
a,b +

(
kj
ra,b

)2

ηa,bj

= − jπ

ra,b
2
K

[√∣
∣
∣
∣

1

3
+ u′a,b

f (t− τ)

∣
∣
∣
∣
−

√

1

3

]

sin

(
jπxf

ra,b

)

+ Kd(η̇j
b − η̇j

a)
︸ ︷︷ ︸

Dissipative coupling

+Kτ (η̇j
b(t− τtube)− η̇j

a(t))
︸ ︷︷ ︸

Time-delay coupling

+ [Af sin(2πff t)]
a

︸ ︷︷ ︸

Forcing term

, (8)

where, ra,b is defined as the ratio of the length of the
duct to a reference length, La,b/Lref . We consider La

to be the reference length. For identical oscillators, ra =
rb = 1. For non-identical oscillators, ra = 1 and rb =
Lb/La = ωa/ωb. The detailed derivation of Eq. (8) is
provided in Section IV of the Supplemental Material.

The second and third terms on the right-hand side of
Eq. (8) are the dissipative and time-delay coupling terms,
respectively. Dissipative coupling encapsulates the inter-
action that arises from the mass transfer between the
two ducts [34]. Time-delay coupling quantifies the time
taken by acoustic waves to propagate through the cou-
pling tube connecting the two Rijke tubes [4, 23]. Thus,
τtube denotes the time-delay in the response induced by
one Rijke tube on the other, and is proportional to the
length of the coupling tube, i.e., τtube ∝ L/c, where c is
the speed of sound inside the coupling tube. The fourth
term is the sinusoidal forcing term with amplitude Af

and frequency ff . The external forcing is applied only to
Rijke tube A.

The effect of the source term is characterized by the
time-delay τ , which captures the thermal inertia of the
heat transfer in the medium. The ODEs given in Eqs.
(7) and (8) are solved numerically using dde23, an inbuilt
function for solving delay differential equations in MAT-
LAB [39], and p′ is calculated using Eq. (5). The param-
eters which are kept constant during the simulations are
indicated in Table I. These parameters have been chosen
such that the both the oscillators exhibit limit cycle os-
cillations at a parametric location away from the bistable
regime and also to quantitatively match the experimental
results.
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FIG. 8. (a) The phase response and (b) the amplitude response obtained from the model of a single Rijke tube under external
forcing. The synchronization boundaries are obtained through a least-square-fit of points where PLV = 0.98. The Arnold
tongue and extent of asynchronous quenching from the model show a qualitative match with the experimental results in Fig.
2. In (b), the green region around ff/fn0 = 1 indicates doubling of LCO amplitude from its unforced value, where ∆p′rms/p

′

0

varies in the range (-6.35, -1) in (b).

A. Model results for a single oscillator and

mutually coupled oscillators

We begin by analyzing the forced response of a single
Rijke tube by adding the forcing term Af sin(2πff t) to
the right hand side Eq. (3). Considering only the first
mode, we get the following set of ODEs is:

dη1
dt

= η̇1, (9)

dη̇1
dt

+ 2ξ1ω1η̇1 + k21η1 = −πK

[√∣
∣
∣
∣

1

3
+ u′

f (t− τ)

∣
∣
∣
∣
−
√

1

3

]

× sin(πxf ) +Af sin(2πff t)
︸ ︷︷ ︸

Forcing term

.

(10)

Figure 8 shows the two-parameter bifurcation plot on
the Af − ff plane illustrating the phase and amplitude
dynamics of the limit cycle oscillations in a single Rijke
tube, obtained from the mathematical model. We ob-
serve the existence of Arnold tongue in Fig. 8a along with
the region of asynchronous quenching (∆p′rms/p

′

0 > 0.5)
in Fig. 8b. We observe the qualitative match between
experimental results shown in Fig. 2 and those obtained
from the model in Fig. 8. However, there are a number
of differences. First, the region of asynchronous quench-
ing observed in the model is smaller than that observed
in the experiments. Second, the resonant amplification
region is spread over a larger extent of parameter val-
ues in the model. Finally, the Arnold tongue obtained
from the model is symmetrical as opposed to left-skewed
in the experiments. The skewness of the Arnold tongue
increases as the model heater power K is increased to
higher-values, indicating the nonlinear behavior of the

overall systems. Figure 8 has been shown for a model
heater power K for which we get the best match with
the experimental results in Fig. 2.
In Fig. 3, we showed that the state of AD was attained

in coupled Rijke tubes only when there was a frequency
detuning present in the two oscillators, in addition to the
dissipative and time-delay coupling due to the connecting
tube. In Fig. 9, we show the effect of coupling and
frequency detuning on the occurrence of the state of AD
in the model. We fixed the value of Kd = 1.0 and Kτ =
0.2, and varied τtube and frequency detuning ∆fn0. For
identical oscillators (∆fn0 = 0), we did not observe any
appreciable reduction in the amplitude of LCO. However,
for finite value of detuning, we observe the state of AD in
the model, consistent with our experimental observations
in Fig. 3. Thus, the effect of change of the length of
coupling tube is captured quite well by the time-delay
τtube.
The results summarized in Figs. 8 and 9 validate our

model against experimental observations for a single and
coupled Rijke tubes reported in the present study (Figs.
2 and 3), as well as those made in past studies [23, 25, 40].
We now turn our attention towards modeling the effect
of asymmetric forcing on the coupled Rijke tubes.

B. Model results for coupled behavior of

thermoacoustic oscillators under asymmetric forcing

In Fig. 10, we plot the amplitude and the phase re-
sponse of the coupled identical Rijke tubes under asym-
metric forcing, i.e., only Rijke tube A is subjected to ex-
ternal forcing according to Eq. (8). The effect of coupling
is parameterized by τtube, while that of external forcing
by Af . The forcing frequency is fixed at ff/fn0 = 0.6.
Kd, Kτ & K values are fixed at 1.0, 0.2 and 5.0, respec-
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FIG. 9. Two-parameter bifurcation plots between frequency detuning between the two Rijke tube model oscillators and τtube.
Kd and Kτ are kept constant at 1.0 and 0.2, respectively. The dark red region in both the plots represent regions of AD
observed in the model oscillators. At other places, LCO are observed at reduced amplitude due to coupling.

FIG. 10. (a,b) Amplitude and (c,d) phase response of coupled, identical oscillators under asymmetric forcing for different
values of τtube and Af . Amplitude response is indicated by the fractional change in the amplitude of LCO (∆p′rms/p

′

0) while
phase response is quantified by the PLV between p′ and forcing signal. For τtube > 0.4 and Af > 1.5, large suppression in the
amplitude of LCO is observed in the two Rijke tubes.

tively. Note that the heater power K = 5.0 leads to high

amplitude LCO in the two Rijke tubes (p′A,B
0 = 648 Pa).

For Af = 0, we notice that the change in τtube
leads to very low suppression in either of the oscillators
(∆p′rms/p

′

0 < 0.5). This is again a reflection of the fact
that the region of AD is quite limited when identical oscil-
lators are coupled. Our aim is to illustrate that external
forcing can lead to significant quenching of LCO in the
identical oscillators. When Af is increased, we observe a
decrease in the amplitude of LCO in both the oscillators
after a critical value of Af . The effect of forcing is more
pronounced in Rijke tube B as compared to that in Rijke
tube A, which is evident from the larger “red” region in
Fig. 10b compared to that in Fig. 10a.

The results obtained from the model (Fig. 10) can be

compared with the experimental results shown in Fig. 5.
The ratio of forcing frequency to natural frequency is kept
same for ease of comparison. Although the magnitude of
amplitude suppression is not captured quantitatively by
the model, the qualitative trends such as the extent of
amplitude suppression in the two model oscillators along
with the forced synchronization characteristics are con-
sistent between the experimental and numerical results.
Compared to the pressure oscillations in Rijke tube B ex-
hibiting complete suppression in the experimental study
(for e.g., point (e) in Fig. 5a), we observe around 70%
suppression in the amplitude of LCO in Rijke tube B.

Similar to experimental results, we also observe that
the LCO in Rijke tube B remains desynchronized with
the forcing signal through a large extent of the parameter
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FIG. 11. The amplitude response and overlapped Arnold tongue for identical, coupled Rijke tubes from the numerical model.
External forcing is applied to Rijke tube A. The synchronization boundaries are obtained through least-square-fit of points
where PLV = 0.98. For the green region around ff/fn0 = 1, values of ∆p′rms/p

′

0 vary in the range (-3.20, -1) in (a), and (-2.08,
-1) in (b). The coupling parameters are: Kd = 1.0, Kτ = 0.2 and τtube = 0.4.

plane. The region of quenching of LCO in Rijke tube A
(∆p′rms/p

′

0 ∼ 1) nearly coincides with the onset of forced
synchronization (PLV ∼ 1). The results shown in Fig.
10 are in qualitative agreement with the experimental
results indicated in Figs. 5a-d.

In Fig. 11, we depict the fractional change in the am-
plitude of LCO for each oscillator overlapped with the
Arnold tongue on the Af − ff plane, obtained from the
numerical simulations for the case where identical oscil-
lators are asymmetrically forced. The values of the cou-
pling constants are fixed at Kd = 1.0, Kτ = 0.20 and
τtube = 0.4. The normalized natural frequency of both
the oscillators is 0.5, and the normalized heater power
are maintained at K = 5.0.

We see that the amplitude dynamics observed during
the experiments, as depicted in Fig. 6, is well cap-
tured by the numerical model in Fig. 11. From the
numerical results, we observe larger magnitude of sup-
pression of LCO in Rijke tube B, as compared to that in
Rijke tube A. Also, the high magnitude of suppression
(∆p′rms/p

′

0 > 0.5) in Rijke tube B nearly coincides with
the boundary of Arnold tongue in Rijke tube A. The res-
onant synchronization region in Rijke tube B is smaller
in size compared to that in Rijke tube A. The model does
not adequately capture the phase dynamics as observed
in the experiments. Although the Arnold tongue is sim-
ilar for both the Rijke tubes, the PLV values observed
prior to the onset of forced synchronization is lower in
Rijke tube B than that in Rijke tube A. Also, the res-
onant amplification region (shown in green) is skewed
towards the left side of ff/fn0 = 1.00 value. This is dif-
ferent from the experimental results (Fig. 6), where the
resonant amplification region was almost symmetrically
located around the ff/fn0 = 1.00 value.

Finally, we use our model to characterize the re-

sponse of asymmetric forcing on the Arnold tongue and
amplitude characteristics of coupled non-identical Ri-
jke tubes. The coupling constants and non-dimensional
heater power values are kept same as those used to get
the results shown in Fig. 11,i.e., Kd = 1.0, Kτ = 0.2,
τtube = 0.4, and K = 5. This ensures the consistency of
initial and boundary conditions, as was ensured in the
experiments. In §IIID, to study the forced response of
coupled non-identical Rijke tube oscillators, the natural
frequencies of the LCO in Rijke tubes A and B were main-
tained at 150 Hz and 160 Hz, respectively, which equals a
frequency ratio of 160/150 = 1.067. Consistent with the
experiments, the value of r is kept as 1.066 to analyze
the reduced-order model given in Eqs. (7) and (8).

We observe that the effect of forcing is quite insignifi-
cant for forced synchronization of LCO in Rijke tube B,
consistent with the experimental results (Fig. 7). A sig-
nificant suppression of the amplitude of LCO is observed
at non-resonant conditions of forcing in Rijke tube A.
The region of resonant amplification is absent for Rijke
tube B, although we do observe amplification of the am-
plitude of LCO at higher values of Af in Fig. 12b. Some
differences are present between the experimental (Fig. 7)
and numerical results (Fig. 12). First, the forced syn-
chronization of Rijke tube B is observed for ff/f

B
n0 < 1

values during experiments, whereas, the pressure oscilla-
tions in Rijke tube B model oscillator undergo forced syn-
chronization for ff/f

B
n0 > 1 values. Second, the Arnold

tongue is spread over a larger extent of parameter val-
ues for a coupled non-identical oscillators system as op-
posed to that in a coupled identical oscillator system (Fig.
11). During experiments, an opposite behavior was ob-
served in Fig. 7c, where the size of the Arnold tongue
of Rijke tube A for a coupled non-identical system is less
when compared to that in the coupled identical system
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FIG. 12. The amplitude response and overlapped Arnold tongue for non-identical, coupled Rijke tubes from the numerical
model. External forcing is applied to Rijke tube A. The synchronization boundaries in are obtained through least-square-fit of
points where PLV = 0.98. Inside the green region in (a), ∆p′rms/p

′

0 varies in (-2.66, -1) range. The coupling parameters are:
Kd = 1.0, Kτ = 0.2 and τtube = 0.4.

(Fig. 6c). The qualitative differences between the re-
sults can be attributed to the various assumptions used
while deriving the reduced-order model, such as absence
of mean flow, zero temperature gradient, non-heat con-
ducting gas, etc. A more detailed study is needed to ex-
amine the effects of such assumptions on the numerical
results.

V. CONCLUSIONS

In this proof-of-concept study, we investigated the
phase and the amplitude dynamics of coupled thermoa-
coustic oscillators under asymmetric forcing, and pre-
sented a model which satisfactorily captured the exper-
imental results qualitatively. In particular, we discuss
the viability of simultaneous coupling and forcing as a
method for controlling thermoacoustic instability in a
system of multiple combustors.

The forced response of limit cycle oscillations (LCO)
in a single oscillator (Rijke tube) shows the presence of
Arnold tongue along with the region of asynchronous
quenching for the parametric range of ff < fn0. The
region of asynchronous quenching coincides with the
boundary of forced synchronization of the acoustic pres-
sure fluctuations in the system [16]. The presence of
Arnold tongue and asynchronous quenching are consis-
tent with the results observed in previous studies con-
ducted on Rijke tubes [16] and laminar combustors [31–
33]. We notice that the characteristics of forced synchro-
nization of LCO are dependent on the amplitude of LCO
in the unforced state. In particular, the region of forced
synchronization (or Arnold tongue) of the oscillator gets
narrower as the amplitude of LCO is increased. In addi-
tion, the coupled response of two Rijke tube oscillators
(A and B) show the occurrence of two different states

of oscillation quenching, i.e., amplitude death and par-
tial amplitude death. These states occur only when a
finite frequency detuning is present between the oscilla-
tors, and the length of the coupling tube lies within a
specific range.

To expand the parametric range of oscillation quench-
ing in two mutually coupled Rijke tube oscillators, we
acoustically force Rijke tube A. We observe that the
suppression of LCO in coupled identical Rijke tube os-
cillators is possible through the combined effect of mu-
tual coupling and asynchronous quenching. A signifi-
cantly larger value of forcing amplitude is required to
synchronize and quench the large amplitude LCO in the
coupled thermoacoustic oscillators. This behavior is de-
picted through the increase in the steepness of the bound-
aries of Arnold tongue as the amplitude of LCO is in-
creased. Suppression of LCO is observed predominantly
for ff < fn0 in Rijke tube A, while it is observed on
both sides of fn0 in Rijke tube B. We notice that ex-
ternal forcing widens the region of coupling and forcing
parameters over which the oscillation quenching states
are observed in both the oscillators than when only one
of the two mechanisms of control are applied on its own.
Most importantly, although Rijke tube A is forced, the
suppression of LCO is more significant in Rijke tube B in
comparison with that in Rijke tube A. We also studied
the coupled behavior of two non-identical thermoacous-
tic oscillators under asymmetric forcing. We witness that
because of direct influence of forcing, Rijke tube A ex-
hibits the features of forced synchronization, while Rijke
tube B (not directly forced) remains desynchronized with
the forcing signal. As a result, we observe a significant
suppression of LCO in Rijke tube A and not in Rijke tube
B, which is opposite to the behavior of forced response of
coupled identical thermoacoustic oscillators. Finally, we
qualitatively capture the experimental results through a
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reduced-order model of two coupled Rijke tubes. A good
agreement is obtained between the experimental and nu-
merical results.

Thus, periodic forcing aids the mitigation of ther-
moacoustic instability observed in coupled identical os-
cillators. We believe that the present investigation on
the asymmetrically forced prototypical coupled thermoa-
coustic oscillators would prove to be a benchmark specif-
ically for the control of thermoacoustic oscillations ob-
served in can combustors with multiple cans, and for cou-
pled nonlinear oscillators subjected to external forcing in

general nonlinear dynamics literature.
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I. R2 VALUES FOR SYNCHRONIZATION BOUNDARIES

Rijke tube A Rijke tube B

Figures p′0 R2
l R2

r R2
l R2

r

Fig. 2 120 Pa 0.98 0.96 - -

200 Pa 0.96 0.85 - -

Fig. 6 120 Pa 0.99 0.88 0.96 1.00

200 Pa 0.95 0.89 0.94 0.81

Fig. 7 120 Pa 0.98 0.93 0.94 -

200 Pa 0.97 0.99 - -

Fig. 8 0.98 0.98 - -

Fig. 11 0.91 0.98 0.98 0.99

Fig. 12 0.98 0.98 - 0.98

TABLE S1. R2 values of least-square-fitted boundaries of the Arnold tongue. The subscripts l,r denote the

left and right boundaries, respectively.

Table S1 shows the R2 values obtained when a linear fit is applied to the data points on the

forced synchronization boundaries in the Ā f − f f plane. Figures 2, 6 and 7 refer to experimental

results shown in the main manuscript, whereas Figs. 8, 11 and 12 refer to results obtained from

the mathematical model. An R2 = 1 indicates that the linear regression predictions perfectly fit the

data.

∗ Corresponding Author: ankitsahay02@gmail.com
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II. PERIOD-3 OSCILLATIONS EXHIBIT BY A SINGLE RIJKE TUBE OSCILLATOR UNDER

EXTERNAL FORCING

FIG. S1. Time series of (a) the acoustic pressure fluctuations and (b) instantaneous phase difference

between the pressure and the forcing signal. (c) The power spectrum, (d) the reconstructed phase portrait,

and (e) the first return map of the forced acoustic pressure oscillations in a single Rijke tube exhibiting LCO

of amplitude p′0 = 200 Pa. The forcing is applied at f f / fn0 = 0.69 and Ā f = 0.65. As a result, the acoustic

pressure fluctuations show period-3 oscillations and, hence, remain desynchronized with the forcing signal,

causing a lower value of PLV. The period-3 oscillations are confirmed from the presence of three-looped

attractor in the phase space and three fixed points in the return map.

During experiments in a single Rijke tube oscillator, we observe period-3 behavior in p′ for

high values of Ā f in f f / fn0 = 0.62−0.70 range, which leads to low PLV calculated between the

p′ and forcing signal. In Fig. S1a, we show the acoustic pressure fluctuations exhibited by the

Rijke tube at f f / fn0 = 0.69 and Ā f = 0.65. The unforced amplitude of the LCO exhibited by the

3



Rijke tube is p′0 = 200 Pa. The period-3 behavior can be observed from the time series in Fig.

S1a, as well as the spectral peaks in Fig. S1c, where we notice the presence of spectral peaks

of approximately same magnitude at f f ,2 f f and 3 f f locations. Correspondingly, in Fig. S1d,

the structure representative of the system dynamics (referred to hereinafter as the attractor) is a

triple-looped attractor, i.e., the trajectories need to loop thrice before coming back to the initial

point. Because the orbit is periodic, we get three distinct dots in the single-sided return map for

the acoustic pressure time series in Fig. S1e.
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III. EFFECT OF VARYING COUPLING TUBE PARAMETERS ON THE AMPLITUDE DY-

NAMICS OF AN IDENTICAL RIJKE TUBES COUPLED SYSTEM

FIG. S2. Experimental two-parameter bifurcation plots showing the variation of ∆p′rms/p′0 for different

values of coupling tube length L and internal diameter d in identical Rijke tubes (∆ fn0 = 0 Hz). The

maximum suppression obtained is around 50% in Rijke tube A for L = 100 cm and d = 10 mm.

Here, we explore experimentally the suppression of LCO in coupled Rijke tubes for connecting

tubes of varying lengths and internal diameters. Figure S2 shows the reduction in the amplitude of

LCO for different combinations of L and d for identical Rijke tubes. We notice that for d = 10 mm,

we obtain maximum suppression of about 50% in the acoustic pressure fluctuations for L ∼ 100

cm, in Rijke tube A. Thus, we keep d = 10 mm for all our experiments. Large diameter connecting

tubes may not be feasible for real-time combustors as it will require significant modification to

engine hardware, whereas smaller diameters of connecting tube, such as the one used in the present

study, can be very easily implemented.
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IV. MATHEMATICAL MODEL

Here, we derive a reduced-order model for the coupled horizontal Rijke tubes subjected to

asymmetric forcing. The model is based on Balasubramanian and Sujith [1]. We neglect the

effects of mean flow and mean temperature gradient in the duct. For two Rijke tubes A & B,

the acoustic momentum and energy equations for a medium with a perfect, inviscid and non-heat

conducting gas are then given as [1]:

ρ̄
∂ ũa

′

∂ t̃
+

∂ p̃a
′

∂ x̃
= 0, (S1)

∂ p̃a
′

∂ t̃
+ γ p̄

∂ ũa
′

∂ x̃
= (γ −1) ˙̃Q′δ (x̃− x̃ f ), (S2)

ρ̄
∂ ũb

′

∂ t̃
+

∂ p̃b
′

∂ x̃
= 0, (S3)

∂ p̃b
′

∂ t̃
+ γ p̄

∂ ũb
′

∂ x̃
= (γ −1) ˙̃Q′δ (x̃− x̃ f ). (S4)

where, p̃′ and ũ′ are the acoustic pressure and velocity fluctuations, respectively. γ is the ratio

of specific heats of air at ambient conditions. x̃ is the distance along the axial direction in the

duct, t̃ is the time, ρ̄ and p̄ are the ambient density and pressure, respectively. Subscripts a and b

indicate the quantities correpsonding to Rijke tube A & B, respectively. For a general system of

non-identical oscillators, we define a quantity r as:

r =
Lb

La

=
ωb

ωa

, (S5)

where, La and Lb are lengths of the Rije tube ducts A & B, respectively. ωa and ωb are the natural

frequencies of the Rijke tubes A and B, respectively.

We non-dimensionalize Eqs. (S1) and (S4) using the following transformations:

x =
x̃

La

; t =
c0

La

t̃; u′a =
ũa

′

u0
; p′a =

p̃a
′

p̄
; M =

u0

c0
; u′b =

ũb
′

u0
; p′b =

p̃b
′

p̄
; Q̇′ =

˙̃Q′

c0 p̄
. (S6)

Here, variables with tilde are dimensional and variables without tilde are non-dimensional. u0 and

p̄ are the steady state velocity and pressure of the flow, respectively. c0 is the speed of sound,

and M is the Mach number of the mean flow. x and t are the non-dimensional axial distance and
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time, respectively. Using the above transformations, we obtain the following non-dimensionlized

acoustic momentum and energy equations:

γM
∂u′a
∂ t

+
∂ p′a
∂x

= 0, (S7)

∂ p′a
∂ t

+ γM
∂u′a
∂x

=
(γ −1)LaQ̇′

p̄c0
δ [La(x− x f )], (S8)

γM
∂u′b
∂ t

+
∂ p′b
∂x

= 0, (S9)

∂ p′b
∂ t

+ γM
∂u′b
∂x

=
(γ −1)LaQ̇′

p̄c0
δ [La(x− x f )]. (S10)

The heat release rate Q̇′ is modeled using a modified form of King’s law [2, 3] which correlates

the quasi-steady heat transfer from a heated cylinder to the flow around it. The expression for

normalized heat release rate fluctuations is written in terms of the acoustic velocity fluctuations,

observed at the heater location x f after time delay τ as:

Q̇′ =
2Lw(Tw − T̄ )

S
√

3

√

πλCvρ̄
dw

2

[√∣
∣
∣
u0

3
+u′f (t − τ)

∣
∣
∣−

√
u0

3

]

, (S11)

where, dw, Lw and Tw are the diameter, length and temperature of the heater wire, respectively. T̄

is the steady state temperature of the flow, S is the cross-sectional area of the duct, Cv & λ are the

specific heat at constant volume and thermal conductivity, respectively, of the medium within the

duct. τ quantifies the thermal inertia of the heat transfer from the heating element to the medium.

The non-dimensionalized set of PDEs in Eqs. (S7)-(S10) is reduced to a set of ordinary differ-

ential equations using the Galerkin technique [4]. To that end, the non-dimensional velocity u′ and

non-dimensional pressure p′ fluctuations in the model are written in terms of the Galerkin modes:

p′a(x, t) =
N

∑
j=1

−γM

jπ
η̇a

j (t) sin( jπx), (S12)

u′a(x, t) =
N

∑
j=1

ηa
j (t) cos( jπx), (S13)

p′b(x, t) =
N

∑
j=1

−γMr

jπ
η̇b

j (t) sin

(
jπx

r

)

, (S14)
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u′b(x, t) =
N

∑
j=1

ηb
j (t) cos

(
jπx

r

)

, (S15)

Here, η j and η̇ j represent the time-varying coefficients of the jth mode of the acoustic velocity

u′ and acoustic pressure p′, respectively. a and b correspond to the acoustic variables in Rijke

tubes A and B, respectively. We can verify that the particular form of Galerkin modes satisfies the

acoustically open-open boundary conditions: p′a(x = 0, t) = 0, p′a(x = 1, t) = 0, p′b(x = 0, t) = 0

and p′b(x = r, t) = 0 . N represents the number of Galerkin modes considered. Substituting Eqs.

(S12)-(S15) in Eqs. (S7)-(S10) with a damping term included [5], and projecting the resultant

equations along the basis functions, we obtain the following set of first-order ordinary differential

equations:
dηa

j

dt
= η̇a

j , (S16)

dη̇a
j

dt
+2ξ jω jη̇

a
j + k2

j η
a
j =−2 jπK

[√∣
∣
∣
∣

1

3
+u′af (t − τ)

∣
∣
∣
∣
−
√

1

3

]

sin( jπx f ), (S17)

dηb
j

dt
= η̇b

j , (S18)

dη̇b
j

dt
+2ξ j

(ω j

r

)

η̇b
j +

(
k j

r

)2

ηb
j =−2 jπK

r2

[√∣
∣
∣
∣

1

3
+u′bf (t − τ)

∣
∣
∣
∣
−
√

1

3

]

sin

(
jπx f

r

)

, (S19)

where, k j = jπ refers to the non-dimensional wave number and ω j = jπ refers to the non-

dimensional angular frequency of the jth mode. The coefficient ξ j appearing in the second term of

Eqs. (S17) & (S19) represents the frequency-dependent damping [5], and is given by the following

ansatz [6]:

ξ j =

c1

ω j

ω1
+ c2

√
ω1

ω j

2π
(S20)

Here, c1 and c2 are the damping coefficients which determine the amount of damping. We choose

the values c1 = 0.1 and c2 = 0.06 based on [6] for all simulations.

To formulate a model for the coupled system, we assume that the two Rijke tubes are coupled

through time-delay and dissipative couplings. Based on Eqs. (S16)-(S19), the governing equations

for non-identical, coupled Rijke tubes with asymmetric sinusoidal forcing can be written as:

dηa,b
j

dt
=

˙
ηa,b

j , (S21)
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dη̇ j
a,b

dt
+2ξ j

( ω j

ra,b

)
˙

ηa,b
j +

(
k j

ra,b

)2

ηa,b
j =−2 jπK

ra,b2

[√∣
∣
∣
∣

1

3
+u

′a,b
f (t − τ)

∣
∣
∣
∣
−
√

1

3

]

sin

(
jπx f

ra,b

)

+ Kd(η̇ j
b − η̇ j

a)
︸ ︷︷ ︸

Dissipative coupling

+Kτ(η̇ j
b(t − τtube)− η̇ j

a(t))
︸ ︷︷ ︸

Time-delay coupling

+[A f sin(2π f f t)]
a

︸ ︷︷ ︸

Forcing term

,

(S22)

where, ra,b is defined as the ratio of the length of the duct to a reference length, La,b/Lre f . We

consider La to be the reference length. For identical oscillators, ra = rb = 1. For non-identical

oscillators, ra = 1 and rb = Lb/La = ωa/ωb.

The second and third terms on the right-hand side of Eq. (S14) are the dissipative and time-

delay coupling terms, respectively. Dissipative coupling encapsulates the interaction that arises

from the mass transfer between the two ducts [7]. Time-delay coupling quantifies the time taken

by acoustic waves to propagate through the coupling tube connecting the two Rijke tubes. Thus,

τtube denotes the time-delay in the response induced by one Rijke tube on the other. The fourth

term is the sinusoidal forcing term with amplitude A f and frequency f f . The external forcing is

applied only to Rijke tube A.
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