
Dynamic State Restoration

Using Versioning Exceptions

V. Krishna Nandivada (nvk@cs.ucla.edu)
Department of Computer Science

University of California, Los Angeles

Suresh Jagannathan (suresh@cs.purdue.edu)
Department of Computer Science

Purdue University, West Lafayette

Abstract.

We explore the semantics and analysis of a new kind of control structure called
a versioning exception that ensures the state of the program, at the point when an
exception handler is invoked, reflects the program state at the point when the handler
is installed. Versioning exceptions provide a transaction-like versioning semantics
to the code protected by a handler: modifications performed within the dynamic
context of the corresponding handler are versioned, and committed to the store only
if the computation completes normally. Similar to the role of backtracking in logic
programming, this facility allows unwanted effects of computations to be discarded
when exceptional or undesirable conditions are detected.

We define a novel points-to analysis to efficiently track changes to the store within
handler-protected scopes. The role of the analysis is to facilitate optimizations that
minimize the number of locations which must be restored when a versioning excep-
tion is raised. The analysis is defined by a reachability approximation over locations
that indicates which objects have been potentially modified within a handler scope.
The analysis is defined for programs which support first-class procedures, locations,
and exceptions.

1. Introduction

cxceptions found in languages like SML, Java, or Haskell are a struc-
tured way of expressing non-local control-flow when unexpected con-
ditions arise. Exception mechanisms allow programs to exit gracefully
from error conditions without requiring the entire computation to halt.
The implementation of exceptions thus changes the control stack to
reflect the continuation in effect at the point where the handler is
defined. However, the store is usually left untouched. This means that
although control reverts to a meaningful program point, modifications
to the store performed between the installation of the handler and
the point where the exception is raised, are not undone. For many
real-world applications, the inability to restore modified locations au-
tomatically requires programmers to carefully inject such operations
manually, significantly complicating program structure.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

final.tex; 26/05/2005; 13:59; p.1



2

Logic programming languages such as Prolog provide a backtracking
mechanism that reverts program state to a consistent point; when the
unification of a clause and goal fails, backtracking occurs, discarding all
bindings established in the process of the failed unification. However,
backtracking occurs implicitly when unification fails, and users have
only a limited degree of control (e.g., using cut predicates) in influ-
encing backtracking decisions. In particular, while backtracking in the
logic programming context discards bindings established during goal
resolution, we are interested in selectively discarding store values for a
given location.

Languages like Argus [28] provide linguistic support for committing
critical data only when the transaction succeeds, by means of a guardian

structure. Although programmers have significantly more control than
in logic programming about when state changes should be committed,
guardians are heavyweight abstractions whose commit action is defined
in terms of a two-phase commit protocol.

We are interested in exploring the implications of enriching first-
class lightweight control-structures such as exceptions or continuations
found in SML, Scheme, or Java with a controlled form of versioning
that can be used to express robust computation of the kind available in
transaction-oriented or logic programming languages. While exceptions
are an expressive linguistic device to capture non-local control-flow,
transactions and backtracking are powerful mechanisms to revert com-
putation to well-defined states in response to unexpected or undesirable
conditions. By combining essential aspects of both features, programs
can respond to unexpected error or failure conditions by reverting con-
trol to a handler that can, among other actions, revert program state
to an earlier well-defined version.

This paper studies the semantics and analysis of a control structure
called a versioning exception that provides a transaction-like versioning
semantics to the code protected by an exception handler. A versioned
exception ensures that the content of the store at the point when the
exception is raised reflects the program state at the point when the
corresponding handler is defined. The data generated in code protected
by such exceptions are implicitly versioned. Each version is associated
with a particular generative exception value. When an exception is
raised, the version corresponding to the associated exception value is
restored. Handlers may choose to re-execute the protected code, or
revert control-flow to another program point. In either case, all effects
to the program store and environment made within the protected region
are undone. Thus, the semantics of a versioning exception is similar
to transactional models [26, 20, 37] in which raising an exception is
tantamount to an abort. However, unlike typical transaction systems

final.tex; 26/05/2005; 13:59; p.2



3

in which aborts occur due to the conflicts among multiple concurrent
threads accessing shared data or because of unexpected change in the
external environment (e.g., processor failure), state restoration using
versioning exceptions occur when a software exception signaling a non-
local transfer of control is raised.

2. Motivation

Fig. 1 gives an example of how versioned exceptions may be used to
simplify complex program structure. The procedure update traverses
a binary tree, updating the nodes of the tree, provided every visited
node satisfies a supplied predicate, compare . If the predicate fails, all
updates must be discarded, and the search retried, using an alternative
predicate. This function abstracts the functionality of many common
graph coloring and search algorithms.

The constructor vExn creates a new instance of a version exception
type, binding this instance to failure . Its argument is a procedure
which is applied when the exception is raised, and serves as the handler
for the exception. The result of evaluating the handler is supplied as
the argument to the continuation of the corresponding try expression
in which the expression was raised. Versioned exceptions are used to
capture the state of the tree immediately prior to the commencement
of the search and update procedure. The try expression protects the
dynamic context of the expression it encloses. When an update fails, an
exception is raised via restore , and control transfers to the exception
handler defined by the matching try expression. All modifications
done by the procedure from the point at which control entered the
try expression are discarded.

In this example, raising the failure exception while visiting and
updating nodes in function visit in the tree results in the state of the
tree being restored to its state extant at the point where the exception
scope was entered; this corresponds to the state at the point the call
to update was made within the try exception. Thus, raising a failure
exception results in control returning to the handler’s continuation.
Since the value supplied to the continuation is Fail , a new call to
attempt is performed, with a new comparison function.

This program uses versioned exceptions to reduce the overhead of
preserving the invariant that no node can be updated unless all nodes
in the tree satisfy the supplied predicate. Without them, the program
would either need to traverse the tree twice, checking the state of each
node in a prepass before performing updates, or would need to maintain
copies of original node values to restore in case the predicate ultimately

final.tex; 26/05/2005; 13:59; p.3



4

let fun handler(x) = x

val failure = vExn(handler)

fun update(compare,tree) =

let fun visit(n) =

(case n of

Node (data,left,right) =>

if compare(data)

then (modify!(n,f(data));

visit(left);

visit(right))

else restore(failure,Fail)

| Empty => Success)

in visit(tree)

end

fun attempt(compare) =

(case try(failure,update(compare,getTree())) of

Fail => attempt( new comparison function)

| Success => ())

in attempt(compare)

end

Figure 1. Versioning exceptions may be used to revert selected elements of the store
to a previous known state.

failed on some node during a traversal of some other portion of the tree.
Continuations found in Scheme or exception facilities found in Java or
Standard ML [30] would allow control to be transferred in interest-
ing ways as in the example, but do not support implicit restoration
of updates performed on heap-allocated objects. Transaction systems
maintain rollback logs that reflect updates which are committed only
if the transaction commits, but these mechanisms are not integrated
with exception-style control-flow operators; recent work by Shinnar et.

al. [35] is a notable counterexample that uses transaction-style undo
logs to restore program state modified within the scope of an exception
handler. Backtracking facilities found in logic programming languages
can be used to revert the environment to an earlier state, but do not
consider reverting the contents of the store. In this example, data

is a reference to a store location that is repeatedly modified by the
update procedure. A failed comparison does not result in discarding
the binding of data to its reference, but only discarding the contents
of that reference.

Of course, this simple example could presumably be rewritten in a
purely functional style to avoid the use of the store altogether allowing
the use of continuations or backtracking to restore bindings when the

final.tex; 26/05/2005; 13:59; p.4



5

comparison operation fails. For many real-world programs however,
such a translation may be impractical or infeasible.

We have discovered several examples in production-quality systems
code where versioned exceptions would be useful. One such example,
taken from Linux 2.4 kernel code is shown in Fig. 2(a). The program
fragment is a snippet of code taken from the implementation of the
do fork function, presented in pseudo-code form. This function invokes
a number of other procedures, all of whom modify various global data
structures; if any of these operations fail, modifications performed thus
far must be undone. Rollback is implemented via a complex set of
jumps to labels that implement restore code, of which only a few are
shown here. The full implementation is quite complicated and arguably
error-prone. Note that having traditional exceptions or continuations
would be of only marginal use here. They would eliminate the need for
having unstructured jumps, but would still require complex clean-up
code to be executed to restore proper values for modified globals.

In contrast, Fig. 2(b) shows the code for the do fork function using
versioned exceptions. The block of code to be protected is encapsu-
lated within a try block. The exception variable s is supplied as an
argument to the procedures called by this function; the handler returns
its argument to the continuation of the try block and is invoked by
a restore expression. When invoked, control will revert to the try

expression’s continuation, with all variables live at that point restored
to their values upon entry to this block. This code is not only arguably
more compact and modular, but also less liable to programming errors.

A naive implementation of versioned exceptions is easily achieved:
we need simply to snapshot the store whenever a new handler is in-
stalled, copying back this saved version if the handler is invoked. Such
an implementation, however, scales poorly as the size of the store
increases and is costly in terms of the overhead incurred to save po-
tentially multiple versions of modified objects. Moreover since it is
probable that not all live locations may have changed in the code
protected by a versioned exception, implementations that do not incor-
porate such observations in their realization of the restore operation
are likely to be too inefficient in practice.

One might imagine an alternative strategy that only logs the original
values of updated locations. In the presence of complex control and
dataflow, and because locations are first-class, it will often not be pos-
sible to determine whether logging an update at a particular program
point is required by simple syntactic examination of the program. On
the other hand, delaying the decision about whether an update requires
logging to runtime is equally problematic, since the references accessed

final.tex; 26/05/2005; 13:59; p.5



6

do fork(...){
if (copy files(· · ·))

goto bad fork cleanup;

if (copy fs(· · ·))
goto bad fork cleanup files;

...

if any error

goto fork out;

...

goto fork out:

bad fork cleanup files:

exit files(p);

bad fork cleanup:

do some cleanup;

fork out:

}

(a)

fun do fork(...) =

let fun handler(x) = x

val s = vExn(handler)

val status =

try(s,

(copyFiles(s,...);

copyFs(s,...);

...

if error(...)

then restore(s,Fail)))

in (case status of

Fail => ...

| Success => ...)

end

(b)

Figure 2. Versioned exceptions may have utility in simplifying the structure for
systems programming code. (a) shows a snippet of function do fork found in the
Linux 2.4 kernel. (b) shows the same function rewritten to use versioned exceptions.

by a handler’s continuation will not be known at the time an update
in a handler-protected scope occurs.

In this paper we consider a program analysis that tracks the changes
to locations in the store within a block of code protected by a handler.
The analysis suggests restoration of only those locations that are mod-
ified within the dynamic context defined by the block at the point of
handler invocation and which might have some use in the continuation
of block. Our analysis provides a weak form of context sensitivity useful
in defining a reachability approximation defined over store locations to
produce an approximation to the set of values that must be saved
and restored when exceptions are raised. We propose a syntax-directed
translation derived from classical flow analysis, to capture the interac-
tions among locations of the store within handler protected regions to
permit versioned exceptions to be implemented efficiently.

3. Language

We define a simple higher-order language with first-class procedures,
references and exceptions. The syntax for programs is given in A-normal
form [12] and defined below. For simplicity, we omit recursive function
definitions and tail-call application; their addition poses no interesting

final.tex; 26/05/2005; 13:59; p.6



7

complications to the definition and analysis of versioning exceptions.
While the language is simple, it serves as a reasonable intermediate
representation for realistic call-by-value mostly-functional languages
like Scheme or ML [24, 3], and shares central aspects of the represen-
tations used in these implementations, namely, first-class procedures,
exceptions, and locations.

We also assume that variables are appropriately α-renamed. We use
w, x, y, z to range over variables, Pr to range over primitive functions,
and c to range over constants.

s ∈ Simp::= c | Pr(x1,. . . ,xn)| ref x | !x | λ x.e | x0(x1) | vExn(x)

e ∈ Exp::= x| let x=s in e| x1 := x2| if x then e1 else e2| try(x,e)| restore(x,y)

We define Prog to be the set of closed expressions. Constants, prim-
itive functions, reference constructors (defined by ref) dereferences (!),
abstraction, application, and exception constructors (vExn) define sim-
ple expressions. The argument to an exception constructor is a vari-
able bound to a procedure that defines the handler for the exception.
One can imagine a more sophisticated exception handling facility that
permits a given exception to be associated with different handlers in
different contexts, but such extensions do not affect the structure of
the analysis defined in the following sections, and are omitted here.
Expressions introduce local bindings via let, define variables, perform
assignments, define conditional test and branch, introduce try-blocks
or perform a restore operation.

The set of types for our language is generated by the following
grammar:

τ ::= Int |Bool |τ → τ |Ptr τ |Exn τ

where Ptr τ denotes the type of locations holding values of type τ ,
and Exn τ denotes the type of exception constructors whose handler is
of type τ . Types are used to establish and filter points-to information
as we describe in Section 5. The type system, which is standard, is
shown in Fig 3.

The expression “try(x,e)” evaluates x to an exception E and then
evaluates e (called the exception expression) in the context of E. Eval-
uating “restore(y,z)”, when the value of y is E, raises exception E and
control is transferred to the closest enclosing try expression for E in
the program’s dynamic context at the point where the raise occurs. E’s
handler is then evaluated with the value of z as its argument, and the
result is supplied to the continuation of the try expression that catches
the raised exception.

final.tex; 26/05/2005; 13:59; p.7



8

A ⊢ c : typeOf(c)

A ⊢ xi : τi

typeOf(Pr) = τ1 → τ2 → . . . → τn → τ

A ⊢ Pr(x1, . . . , xn) : τ

A ⊢ x : τ

A ⊢ ref x : Ptr τ

A ⊢ x : Ptr τ

A ⊢!x : τ

A[x 7→ τ1] ⊢ e : τ2

A ⊢ λx.e : τ1 → τ2

A ⊢ x1 : τ1 → τ2

A ⊢ x2 : τ1

A ⊢ x1(x2) : τ2

A ⊢ x : τ1 → τ2

A ⊢ vExn(x) : Exn (τ1 → τ2)

A ⊢ s : τ

A[x 7→ τ ] ⊢ e : τ ′

A ⊢ let x = s in e : τ ′

A ⊢ x1 : Ptr τ1

A ⊢ x2 : τ1

A ⊢ x1 := x2 : τ1

A ⊢ x : Bool
A ⊢ e1 : τ

A ⊢ e2 : τ

A ⊢ if x then e1 else e2 : τ

A ⊢ x : Exn (τ1 → τ2)
A ⊢ e : τ2

A ⊢ try(x, e) : τ2

A ⊢ v : τ1

A ⊢ x : Exn (τ1 → τ2)
A ⊢ restore(x, v) : τ2

Figure 3. Type System.

Our syntax and definition of try and restore is superficially similar
to the way exceptions are defined and used in Scheme or ML [24, 3],
but simplifies some key aspects. In particular, our definition binds an
exception to its handler at the point where the exception is defined,
rather than at the point where the exception is handled. Thus, when a
restore action is performed, the handler invoked is the one associated
with the raised exception. This simplification, while easily relaxed,
allows us to focus attention on the key contribution of versioning ex-
ceptions, namely, their support for capturing and restoring state within
a protected scope. The actual handler chosen to deal with an exception
is less significant in the context of this work than the mechanisms used
to identify and restore changes in state. For programs in which an
exception is associated with a unique handler, the expression,

let E = vExn (λ x.e2)

in e1

is equivalent to the Standard ML expression

let exception E of type of x

final.tex; 26/05/2005; 13:59; p.8



9

in e1

handle E x => e2

end

Unlike ordinary exceptions, however, the state in which the try ex-
pression’s continuation is evaluated after an exception is raised does not
reflect modifications performed on the store in the course of evaluating
e . Of course, if computation proceeds normally, and no exception is
raised, the continuation operates in a context where all side-effects to
the store performed by e are visible. Our semantics restores all locations
modified within an exception scope, and used in the scope’s continua-
tion. It is conceivable that applications may sometimes wish to prop-
agate information to the continuation even if an exception is thrown.
Linguistic extensions that provide such fine-grained discrimination of
locations fall outside the scope of this paper.

4. Operational Semantics

We define a small-step semantics for the language in the style of the
CESK-machine [11]. The machine is specified in terms of states and a
transition relation −→ on states:

CE2SK = 〈State× −→〉

Every evaluation step in the machine1 yields a new state that reflects
the contents of the store, environment, continuation, and exception
stack. In the following, we write X+Y and X×Y to mean the cartesian
sum and product of sequences (ordered sets) X and Y , respectively.
We write X → Y to denote the set of partial functions from X to
Y . The notation f [x 7→ v] denotes the function that is identical to
f on all elements except x for which it returns v. We write X∗ to
denote the finite sequences of elements of X, X ⊕ Y to denote the
append of sequence X onto sequence Y . We also write State −→ State′

to reflect a transition from state State to State′. For functions f and
g, (f + g)(x) = g(x) if x ∈ Dom(g) and f(x) otherwise; similarly,
(f − g)(x) = f(x) if x ∈ Dom(g) and f(x) 6= g(x), and is undefined
otherwise.

Given CE2SK, we define a partial function eval :

Prog → 〈Env,Store,halt 〈v〉〉

that defines the semantics of all terminating programs P ∈ Prog under
the evaluation rules defined by CE2SK.

1 The E
2 corresponds to Environment and Exception-stack.

final.tex; 26/05/2005; 13:59; p.9



10

s ∈ State = ReturnState + ControlState

+ExnState + HaltState

returnState ∈ ReturnState = Cont × Value × Store × ExnStack

controlState ∈ ControlState = Exp × Env × Store ×Cont × ExnStack

exnState ∈ ExnState = Cont × Store × ExnStack

k ∈ Cont = Frame∗

Σ ∈ ExnStack = (ExnVal × Cont × Store)∗

frame ∈ Frame = ret 〈Var,Exp,Env〉 + exn 〈Int ,Value〉
+sto 〈Store〉

ρ ∈ Env = Var → Value

σ ∈ Store = Loc → Value

clo 〈λx.e, ρ〉 ∈ Closure = Lambda Exp × Env

exnVal 〈n, v〉 ∈ ExnVal = Int × Value

halt 〈v〉 ∈ HaltState = Value

v ∈ Value = Constant + Closure + Loc + ExnVal

Figure 4. Domain Equations.

State domains for the machine are defined in Fig. 4. The seman-
tics for the non-exception core is standard and given in Fig. 5. Let

expressions are used to augment the environment. Here, abstractions
evaluate to closures that capture the lexical environment, application
is expressed as a non-tail call that builds a new continuation frame,
references are created and dereferences. Assignments and conditional
statements manipulate the store and control respectively in the obvious
way.

Rules for exception constructors, try, and restore expressions are
presented in Fig. 6. Constructors for versioning exceptions create a
new exception (generative) value that includes a unique identifier for
the exception, and the closure that defines its handler. Evaluating a
try expression pushes onto the current exception stack a structure that
contains the expression’s exception argument, the expression’s contin-
uation, and the current store. When an exception is raised, the stack
is traversed to find an entry for the raised exception; the handler for
the exception is evaluated in the context of the current store, a frame
consisting of saved store and continuation, and an exception stack in
which all frames between the point when the handler was defined and
the exception raised have been discarded. If the execution of the handler
finishes successfully, then the continuation is executed with the restored
store. The critical observation here is that the store is preserved when
the expression e protected by a try block (e.g., try(E,e)) begins evalu-

final.tex; 26/05/2005; 13:59; p.10



11

〈x, ρ, k, σ,Σ〉 −→ 〈k, ρ(x), σ,Σ〉
〈let x = c in e, ρ, k, σ,Σ〉 −→ 〈e, ρ[x 7→ c], k, σ,Σ〉
〈let x = Pr(x1,. . . ,xn) in e, ρ, k, σ,Σ〉 −→

〈e, ρ[x 7→ Pr(ρ(x1), ρ(x2), . . . , ρ(xn))], k, σ,Σ〉
〈let x = ref y in e, ρ, k, σ,Σ〉 −→ 〈e, ρ[x 7→ l], k, σ[l 7→ ρ(y)],Σ〉

for fresh l

〈let x = !y in e, ρ, k, σ,Σ〉 −→ 〈e, ρ[x 7→ σ(ρ(y))], k, σ,Σ〉
〈let x = λ y.e′ in e, ρ, k, σ,Σ〉 −→ 〈e, ρ[x 7→ clo 〈λ y.e′, ρ〉], k, σ,Σ〉
〈let x = y(z) in e, ρ, k, σ,Σ〉 −→

〈e′, ρ′[w 7→ ρ(z)], {ret 〈x, e, ρ〉} ⊕ k, σ,Σ〉
provided ρ(y) = clo 〈λ w.e′, ρ′〉

〈x1 := x2, ρ, k, σ,Σ〉 −→ 〈k, ρ(x2), σ[ρ(x1) 7→ ρ(x2)],Σ〉
〈if x then e1 else e2, ρ, k, σ,Σ〉 −→ 〈e1, ρ, k, σ,Σ〉

provided ρ(x) = true
〈if x then e1 else e2, ρ, k, σ,Σ〉 −→ 〈e2, ρ, k, σ,Σ〉

provided ρ(x) = false
〈{ret 〈x, e, ρ〉} ⊕ k, v, σ,Σ〉 −→ 〈e, ρ[x 7→ v], k, σ,Σ〉

Figure 5. Small-step exact semantics for core language.

ation. Any exception raised by e will cause all modifications made to
the store to be discarded when control reverts to the try expression’s
continuation.

Note that the semantics executes the exception handler in the con-
text of the store present at the point the restore expression is evaluated.
However, when an exception is thrown, the continuation of the try

expression is evaluated in the context of the store present at the point

〈let x = vExn(y) in e, ρ, k, σ,Σ〉 −→ 〈e, ρ[x 7→ exnVal 〈n, ρ(y)〉], k, σ,Σ〉
for fresh n

〈try(x, e), ρ, k, σ,Σ〉 −→ 〈e, ρ, k, σ, {〈ρ(x), k, σ〉} ⊕ Σ〉
〈restore(x, y), ρ, k, σ,Σ〉 −→ 〈{exn 〈n, ρ(y)〉} ⊕ k, σ,Σ〉

provided ρ(x) = exnVal 〈n, v〉
〈{exn 〈n, v〉} ⊕ k, σ,Σ〉 −→ 〈e, ρ[x 7→ v], {sto 〈σ′〉} ⊕ k′, σ,Σ′′〉

provided Σ = Σ′ ⊕ {〈exnVal 〈n, clo 〈λ x.e, ρ〉〉, k′, σ′〉} ⊕ Σ′′

and 〈exnVal 〈n, v〉, k′, σ′〉 6∈ Σ′

〈{sto 〈σ′〉} ⊕ k, v, σ,Σ〉 −→ 〈k, v, σ′,Σ〉

Figure 6. Small-step semantics for exceptions.

final.tex; 26/05/2005; 13:59; p.11



12

when the exception handler was installed. That is, changes made to
the store in the exception handler are not visible in the continuation.
By changing the definition of handler invocation slightly, we derive an
alternative semantics in which modifications done in the handler are
visible in the continuation. This can be useful if updates performed in
the handler are to be visible in its continuation.

〈{exn 〈n, v〉} ⊕ k, σ,Σ〉 −→ 〈e, ρ[x 7→ v], {sto 〈σ〉} ⊕ {sto 〈σ′〉} ⊕ k′, σ,Σ′′〉
provided Σ = Σ′ ⊕ {〈exnVal 〈n, clo 〈λ x.e, ρ〉〉, k′, σ′〉} ⊕ Σ′′

and 〈exnVal 〈n, v〉, k′, σ′〉 6∈ Σ′

〈{sto 〈σ′′〉} ⊕ {sto 〈σ′〉} ⊕ k, v, σ,Σ〉 −→ 〈k, v, σ′ + (σ − σ′′),Σ〉

In this paper, we use the semantics shown in Fig. 6. The alternative
interpretation does not pose any interesting challenges for our analysis.

Example

To illustrate the semantics, consider the program shown in Fig. 7.
Some of the expressions are annotated with labels, as superscripts over
the expressions enclosed in square brackets. For readability, we use
syntactic sugar where appropriate; e.g. sequencing expressed using a
semicolon(;) separator, is shorthand for nested let expressions.

After declaring variables s, x1, x2, x3, p1 and f , the program wraps a
call to f (with argument x3) inside an exception-protected scope. The
function f raises an exception using restore after modifying various store
locations. There is a dereference of x1 in the try block’s continuation.

Note that x1 and x′
1 are aliases and hence the assignment to x′

1 at
expression 7 affects x1 as well. In addition, function f actually only
modifies locations x1 (via the call to procedure g) and p1 within its
definition. However, only x1 is live in the continuation of the try block.
Hence, only x1 needs to be saved and restored upon entry and exit
from the try block at label 15. Since the language supports first-class
locations and procedures, these inferences are not easily derived by
simple syntactic examination of the program. Instead, a static analysis
capable of recording assignments within exception-protected regions is
required. The following section defines such an analysis.

5. Analysis

The exact semantics naively implements versioning exceptions by sav-
ing the complete store at a try block and restoring it when an exception
is raised. Another naive implementation would be to log all assignment
statements. However both of these are excessively conservative since

final.tex; 26/05/2005; 13:59; p.12



13

[let s = vExn(λz.z) in

[let x1 = [ref 0]1 in

[let x2 =[ref x1]
3 in

[let x3= [λp. [let x′
1 =!x2 in [x′

1:=1]7; [p]8]6]5 in

[let p1=[ref 2]10 in

[let f=[λg.let p2=g(4)
in p1 := p2; restore(s,100)]12

in [try(s, [f(x3)]
14)]15; [!x1]

16

]13 ]11 ]9 ]4 ]2 ]0

Figure 7. Example program.

not all store locations may be modified and not all of these may be
live in the continuation. We want to save/restore only those locations
that are modified in the sub-expression of the try block and are used
in its continuation. A try expression may have many continuations
since it may occur within a procedure invoked from different call-sites.
Thus, an interprocedural program analysis is required to approximate
the continuation set and the set of locations modified in the dynamic
context of the expression the try expression protects.

To do so, our analysis builds the abstract maps defined in Fig. 8. To
simplify the presentation we assume that every expression in program
P is uniquely labeled.

v̂ ∈ V̂ alue = Int | Bool | ALamExp AExcpn = Êxcpn〈l〉

| ARefExp | AExcpn ALamExp = ̂LamExp〈l〉

ARefExp = R̂efExp〈l〉

F ∈ Flowset = Var +Label → P(V̂ alue) K∈ ContMap = Label→ P(Exp)

U ∈ Useset = Label → P(Var) M∈ Defset = Label → P(Var)

A ∈ IMap = Var → P (Var{−1,+1})

Figure 8. Abstract maps.

Abstract values include abstract base types, closures, locations, and
exception values. An abstract closure ALamExp is the label of the λ-
expression of its exact counterpart, and an abstract location ARefExp

is the label of the ref expression that creates the corresponding exact
location, while AExcpn abstracts exception values by approximating
all exceptions created at label l. (We use ̂constructor to denote that
the constructor generates abstract values.)

F is a flow function that abstracts the environment, and produces
control and data flow information: for any variable x, F(x) returns the

final.tex; 26/05/2005; 13:59; p.13



14

abstract values that x may acquire; for any label l, F(l) returns the
abstract values produced by the expression with label l.

Four maps are used to produce necessary reachability information:

1. For any expression [e]l, the continuation map K(l) returns the set
of e’s continuations.

2. For any expression [e]l, the use map U(l) gives the set of variables
referenced in e.

3. For any expression [e]l, the def map M(l) gives the list of vari-
ables bound to locations that are modified in this expression by an
assignment statement.

4. Map A defines points-to and pointed-by relations for each vari-
able. These help in capturing data dependencies among store loca-
tions, which allows us to inductively build reachability information
through elements in the store. The integer superscript is used to
differentiate between points-to and pointed-by relations.

We elaborate on the structure of these maps below.

Flow Function

The specification of the flow function is defined in terms of subset
constraints for a typical monovariant (flow- and context-insensitive)
flow analysis [19, 31]. Its specification relies on a helper function last :
Exp → P(Exp) that returns the set of the last sub-expression(s) of an
expression. The function is defined as follows:

last(let x=s in e) = last(e)

last(try(x,e)) = last(e)

last(if x then e1 else e2) = last(e1) ∪ last(e2)

last(x1 := xl
2) = {xl

2}

last(restore(x, y)) = ∪
Excpn〈l〉∈F (x),[vExn(z)]l∈P,λw.e∈F(z) last(e)

otherwise last(el) = {el}

Note that for the restore expression, last returns the last subexpres-
sion(s) of the set of exception handlers that could be called.

To avoid enforcing constraints on dead code, we only require con-
straints to hold on initialized expressions, where InitF is the smallest
set of subexpressions of P that includes P and is closed under the
following rules:

1. If let x = s in e ∈ InitF and s 6= y(z), {s, e} ∈ InitF .

final.tex; 26/05/2005; 13:59; p.14



15

If e ∈ InitF and e is

− let x = c in e′, then typeOf(c) ∈ F(x).

− let x = Pr(x1,. . . ,xn) in e′, then typeOf(Pr(x1,. . . ,xn)) ∈ F(x).

− let x = [λw.e′]l in e, then LamExp〈l〉 ∈ F(x).

− let x = [ref y]l in e′, then RefExp〈l〉 ∈ F(x), and F(y) ⊆ F(l).

− let x = !y in e′, then ∀RefExp〈l〉 ∈ F(y), F(l) ⊆ F(x).

− let x = [vExn(y)]l in e′, then Excpn〈l〉 ∈ F(x) and F(y) ⊆ F(l).

− let x = y(z) in e′, then ∀LamExp〈l〉 ∈ F(y),∀[λ w.e′′]l ∈ P , F(z) ⊆
F(w), and if last(e′′) ∈ InitF , and last(e′′) = el′

b , then F(l′) ⊆ F(x).

− x1 := x2, then ∀RefExp〈l〉 ∈ F(x1), F(x2) ⊆ F(l).

− [try(x, e′)]l, then
(a) if last(e) ∈ InitF and last(e) = el′

b , then F(l′) ⊆ F(l)

(b) ∀[restore(y, z)]l
′′

∈ P such that F(x)∩F(y) 6= φ, F(l′′) ⊆ F(l).

− [restore(x, y)]l, then
∀Excpn〈l′〉 ∈ F(x), [vExn(z)]l

′

∈ P , ∀[λw.eb]
l′′ ∈ F(z)

(a)F(y) ⊆ F(w)
(b) if last(eb) ∈ InitF and last(eb) = el′′′

t , then F(l′′′) ⊆ F(l).

Figure 9. Flow analysis constraints.

2. If let x = y(z) in e ∈ InitF and λ w.e′ ∈ F(y) then:
(a) e′ ∈ InitF .
(b) if last(e′) ∈ InitF , then e ∈ InitF .

3. If if x then e1 else e2 ∈ InitF then {e1,e2} ∈ InitF .

4. If try(x, e) ∈ InitF , then e ∈ InitF .

5. If restore(x, y) ∈ InitF , Excpn〈l〉 ∈ F(x), [vExn(z)]l ∈ P, λw.e ∈
F(z) then e ∈ InitF .

The flow constraints for the language are given in Fig 9. Most of
the rules are standard. The flow analysis associates an abstract excep-
tion value with exception constructors; this value contains the program
label of the constructor expression. A try block results in flows being

final.tex; 26/05/2005; 13:59; p.15



16

computed for both the label of the block that stem from the expression
protected by the block as well as the results of any handler for its
exception argument that could be raised within its body. These abstract
values are recorded in the expression’s associated label. The computed
flow for a restore expression establishes two subset constraints. The first
propagates the argument value for handlers to the handler parameter.
The second propagates the result of the handler to the expression’s
label. Constraints between try and restore expressions ensure that these
values are propagated to the result label of the appropriate try block.

The Continuation Map

In order to make versioning exceptions practical, it is necessary to min-
imize the set of locations saved on entry to a try expression. Informally,
only those locations that are both live in the expression’s continuation
and modified in the protected expression need to be preserved. To com-
pute this intersection, we must determine the set of return points (or
continuations) for expressions in the program. Because the language
supports higher-order procedures and first-class exceptions, this set
cannot be determined by simple syntactic examination of the program.

Instead, we build a continuation map that associates with every
expression el, the set of expressions that constitutes e’s continuations,
K(l). This map is built in two steps. First, the original program is
transformed into CPS (continuation-passing style) [12]. The transla-
tion to CPS given an input program in A-normal form is straight-
forward [12]. This transformation inserts continuation procedures and
variables for all non-trivial expressions. In particular, the CPS conver-
sion of a try expression of the form try(x,e) with continuation variable k

will be translated into try(x, e′) where every subexpression e′′ ∈ last(e)
is transformed into a call to k. Second, we apply flow analysis on this
transformed program to compute the continuation procedures bound to
continuation variables. For example, the CPS transform of a procedure
p = λ x.e with continuation k is λ〈x, k〉.CPS[[e]]k. Each distinct call to
p supplies a new continuation procedure argument for k. Thus, given
try(x, e), e’s continuation set represents the return points where control
is transferred upon completion of the try expression.

The Variable Use Map

For any expression [e]l ∈ InitF , U(l) contains the set of variables refer-
enced in e. In the case of restore expressions, all variables referenced in
the handler belong to the set of variables that are used by the restore

expression.

final.tex; 26/05/2005; 13:59; p.16



17

For all el
0 ∈ InitF , if e0 is

− let x = el1
1 in e

lb
b , then U(l1) ∪ U(lb) ⊆ U(l).

− vExn(x), then {x} ∈ U(l).
− x0(x1), then {x0, x1} ∈ U(l) and ∀LamExp〈l′〉 ∈ F(x0), U(l′) ⊆ U(l).
− x or e0 = ref x or e0 = !x, then {x} ∈ U(l).
− Pr(x1,. . . ,xn), then {x1, . . . , xn} ∈ U(l).
− x0 := x1, then {x1} ∈ U(l).
− restore(x,y), then {x,y} ∈ U(l) and

∀Excpn〈l1〉 ∈ F(x), ∃[vExn(z)]l1 ∈ P , ∀[λw.[eb]
l3 ]l2 ∈ F(z), U(l3) ∈ U(l)

− if x then elt
t else e

lf
f , then ({x} ∪ U(lt) ∪ U(lf )) ⊆ U(l).

− try(x, el′), then U(l′) ⊆ U(l).

The Def Map and Points-to Map

Besides determining the continuations and references of expressions,
the analysis also requires information about where locations and bind-
ings are defined, how they are dereferenced and related. The variable
definition map M and the points-to map A provide this information.

A tracks both points-to and pointed-by information. To illustrate,
if A(x) has a member

y−1 then x points-to y.

If typeOf(y) is τ then typeOf(x) would be Ptr τ .

y+1 then x is pointed-by y.

If typeOf(y) is Ptr τ then typeOf(x) would be τ .

If dereferencing variable x returns the content of the variable y then
we say x points-to y and y is pointed-by x. Note that map A is a
weighted directed graph. If yw ∈ A(x) then there is an edge from x to
y, and the weight of the directed edge (x, y) is w.

Fig. 10 shows the definition of A and M. Consider rule 3. The set of
locations modified by a restore expression includes all the modifications
performed by all the exception handlers that can be invoked by the
restore expression.

To illustrate the construction of the points-to map, note that as
an effect of the assignment expression (Rule 5) x1 points-to x2 and
x2 is pointed-by x1. In rules (5 – 8) we insert the points-to/pointed-
by constraints only if both variables are bound to locations. This is
accomplished by ensuring the type of the variable is Ptr τ .

In the let expression (8), for each possible procedure λx.e1 that can
flow into x0, x3 (the argument) and x will share the same location.

final.tex; 26/05/2005; 13:59; p.17



18

(1)
[if x then [e1]

l1 else [e2]
l2 ]l

−M(l1)∪M(l2) ⊆ M(l)

(2) [try(x, [e1]
l1)]l

− M(l1) ⊆ M(l).

(3) [restore(x, y)]l

− ∀Excpn〈l1〉 ∈ F(x),
s.t. [vExn(z)]l1 ∈ P ,

∀[λw.[eb]
l3 ]l2 ∈ F(z),

M(l3) ∈ M(l)

(4) [let x = s in [e]l1 ]l

if s ≡ c or s ≡ Pr(x1,. . . ,xn)
or s ≡ λ y.e′ or s ≡ vExn(y)
− M(l1) ⊆ M(l).

(5) [x1 := x2]
l

− {x1} ∈ M(l).
− if typeOf(x2)=Ptr τ

. {x1
+1} ⊆ A(x2)

. {x2
−1} ⊆ A(x1)

(6) [let x1 = !x2 in [e]l1 ]l

− M(l1) ⊆ M(l).
− if typeOf(x1)=Ptr τ

. {x2
+1} ⊆ A(x1)

. {x1
−1} ⊆ A(x2)

(7) [let x1=ref x2 in [e]l1 ]l

− M(l1) ⊆ M(l).
− if typeOf(x2)=Ptr τ

. {x2
−1} ⊆ A(x1)

. {x1
+1} ⊆ A(x2)

(8) [let x1=x0(x3) in [e]l1 ]l

− M(l1) ⊆ M(l).
− ∀[λx.[e1]

l2 ]l3 ∈ F(x0)
. M(l2) ⊆ M(l).
. if typeOf(x) = Ptr τ

Unify(A(x),A(x3))
(a) if x2 ∈ last(e1) and

typeOf(x2)=Ptr τ

Unify(A(x1),A(x2))
(b) if !x2 ∈ last(e1) and

typeOf(x1)=Ptr τ

{x2
+1} ⊆ A(x1)

{x1
−1} ⊆ A(x2).

(c) if ref x2 ∈ last(e1) and
typeOf(x2)=Ptr τ

{x2
−1} ⊆ A(x1)

{x1
+1} ⊆ A(x2).

Figure 10. Constraints for Abstract Def Map and Points-to map.

Hence we unify their points-to maps. The procedure Unify(a, b) gen-
erates two constraints: a ⊆ b and b ⊆ a. The unification of points-to
information between the argument and the formal parameter is essen-
tial. Within the function body, these variables effectively serve as aliases
for the same location; thus, updates to one must be propagated to the
other.

Different constraints are generated depending on the members of
last(e). For example, if x2 = last(e) is bound to a location, we unify
the points-to map for x2 and the map for the result; this allows effects
to be propagated bi-directionally between caller and callee. As before,

final.tex; 26/05/2005; 13:59; p.18



19

F(s) = {Excpn〈0〉} F(1) = {Int }

F(x1) = {RefExp〈1〉} F(10) = {Int }

F(x′
1) = {RefExp〈1〉} M(14) = {x′

1, p1}

F(x2) = {RefExp〈3〉} M(6) = {x′
1}

F(x3) = {LamExp〈5〉} U(16) = {x1}

F(f) = {LamExp〈12〉} A(x1) = {x2
+1}

F(g) = {LamExp〈5〉} A(x2) = {x1
−1, x′

1
−1}

F(p1) = {RefExp〈10〉} A(x′
1) = {x2

+1}

F(p) = {Int } K(15) = {!x1}

F(p2) = {Int }

F(z) = {Int }

Figure 11. Abstract maps for the program shown in Fig. 7.

note that we cannot simply establish uni-directional constraints be-
cause there is a chance that both x1 and x2 maybe live simultaneously
after the alias is created. The constraints generated for the other cases
are analogous to the ones for the previous let expressions(6, 7).

Example revisited

In Fig. 11 we show the effect of applying these constraints to the
example shown in Fig. 7. We first compute the maps F ,U ,M and
K. We then build the points-to-map A.

Consider the map A. A(x1) is {x2
+1}. This suggests that x1 is

pointed-by x2 and hence modifications done to the contents of the
location bound to x1 can affect the evaluation of the binding expression
for x2. As another example, A(x2) is {x1

−1, x′
1
−1}. This suggests that

x2 points-to x1 and x′
1, and hence modifications to the store performed

through an access of x2 may affect the value of x1 and x′
1.

We can interpret the points-to map pictorially as a directed graph
as shown in Fig. 12. For example, it shows that, x1 and x′

1 can be
modified by dereferencing x2 (due to the −1 edges) and modifying x1

or x′
1 can affect a variable that is obtained by dereferencing x2 (due to

the +1 edges).
The graph also gives alias information: From node x1 we can reach

node x′
1 at cost (−1 + 1 = 0). Hence x1 and x′

1 are potential aliases.

final.tex; 26/05/2005; 13:59; p.19



20

+1

−1

 −1

  +1

� ✁ � ✂✁� ✄

Figure 12. A points-to map can be depicted graphically with weights as edge labels.

Algorithm

The structure of the maps allow us to compute the subset of locations
whose contents need to be saved upon entry to a try block protecting
an expression which may raise a versioning exception.

For each try block of the form [try(x, [e1]
l1)]l we define Γ(l) to be a

subset of expressions that evaluate to locations whose contents need
to be saved at the try expression. Let variable u be used in some
continuation of the try block, i.e. u ∈ U(l′) and el′ ∈ K(l); assume
further that u is also live in the exception expression e1. If there is a
variable v that is modified in e1 and there exists a path from v to u in
the points-to graph A, then we need to save the location denoted by v.
In other words, for each try expression, we want to save all locations
which will be referenced in the continuation and may be modified in
the exception expression. We can define this intuition formally thus:

DEFINITION 1. Path: Define path ⊆ Path: (Var,Var) → (P(Var), Int )
as follows:

path(x1,x1) = {{x1},0}
path(x1,x2) = ∀ xw ∈ A(x1), { (p ∪ {x1}, j +w) | (p, j) ∈ path(x,x2) }

path(x1, x2) computes a transitive points-to relation in terms of the
path between the two variables and returns along with the path, the
sum of weights on all the edges, indicating the total number of deref-
erences that need to be done to reach x2 from x1.

DEFINITION 2. (Save/Restore). Let e = [try(x, e
lb
b )]l1 , and let

elk ∈ K(l). Then,
If u ∈ U(lk) ∩ Live(lb), u is used in continuation and visible in eb,

and ∃v ∈ M(lb) and if v is modified in eb,

and path(v, u) = (p, i), and there is a transitive path from v to u

where p 6= φ and i = 0 such that v and u may be aliases

then Γ(l) = {α|α = deref(u, i)} then restore back v = deref(u, i)

The function deref(u, i) returns an expression which dereferences the
variable u, i number of times. e.g. deref(u, 2) =!(!(u)). Note that, for

final.tex; 26/05/2005; 13:59; p.20



21

any location v of the store, that need to be saved/restored by versioning
exceptions, has to be accessible from some variable u, which is live in
the exception expression and is referenced in the continuation. If no
such u exists we need not save/restore v.

For the example shown in Fig. 7, Γ(15) is {x1}. Hence the contents
of location x1 upon entry to the try block must be saved.

A simple implementation of versioning exceptions would prepend
bindings that capture the state preserved by Γ to each try block; and,
would insert code at the end of the handler to restore the prepended
state, and to transfer control to the continuation. Restore expressions
would simply jump to the appropriate handler by raising the appropri-
ate exception.

Precision and Limitations

Although our discussion thus far has focussed on the incorporation
of versioning exceptions into a mostly functional language, the core
language used in our study is sufficiently expressive to generalize our
conclusions to other important (non-functional) languages like Java.
While the addition of object-oriented features such as inheritance re-
quires obvious extensions to our core semantics, these additions are
completely orthogonal to the design of versioning exceptions. Indeed,
the specification of such features within a lambda-calculus framework
such as the one given here has been well-studied [13]. There are, how-
ever, three central features of Java that do impact the specification
of versioning exceptions. The first has to do with the ability to invoke
native methods; a native method call used within a versioning exception
scope may modify shared locations accessible from Java methods. Since
we cannot assume the ability to track control and dataflow through
native methods, our reachability analysis can make no conclusion on
the set of locations possibly modified therein. The second issue concerns
dynamic class loading; if new class definitions can be loaded during
program execution, then a whole-program interprocedural analysis of
the kind presented here must be delayed until link-time when all class
definitions are known. If performed earlier, the analysis may mistakenly
assert reachability constraints that are violated by class and method
definitions that are subsequently loaded and invoked. Finally, Java’s
support for multi-threading brings other issues to the forefront, some
of which are discussed later in this section.

For the analysis presented here to be used in the context of a real pro-
gramming language, it is required that we need to be able to translate
all the semantic features of the language to an intermediate language
similar to the language presented here. As a case study let us look at

final.tex; 26/05/2005; 13:59; p.21



22

Java. It can be observed that one main difference between Java and our
language is the absence of high level data structures (objects, classes
etc.) in the later. However such data structures can be easily abstracted
out and the program can be translated to a intermediate form similar
to the language present in the current paper. There are issues however.
Somple simple ones are the absence of base types, absence of loop
constructs, absence of control exceptions and so on. These things can
be easily handled by adding new structures and types to our langaugage
and the analysis would still apply with very little obvious modifications.
There are also some issues like type casting, dynamic dispatching etc.

that would require some fundamental additions to our language and
possibly some latent changes to the computation of flow information in
our analysis.

Most of the limitations of the analysis stem from its flow- and
context-insensitive nature. For example, it critically relies on flow anal-
ysis to track dataflow through the dynamic context of a handler-protected
scope. More accurate flow analyses would lead to more accurate re-
finement of the points-to sets it computes. Adding flow- or context-
sensitivity is likely to improve the precision. Like other points-to anal-
yses [2, 14], the accuracy of our approach depends on the accuracy
of the underlying control-flow analysis. Loss of precision in accurately
identifying the set of procedures that can be invoked at a call-site, or
the set of continuations (i.e, return-points) of a procedure may lead to
imprecise points-to information, resulting in more locations tagged for
restoration when a versioning exception is raised than necessary.

Fig. 13 presents two cases that illustrate the imprecision caused by
the context- and flow-insensitive nature of our analysis. The program
fragment on the left defines two locations x1 and x′

1, calls procedure
f on these locations, assigns to x1, and raises versioning exception s.
Since the two calls to f are not disambiguated, the rules in Fig. 10
establish an unneeded alias among x1 and x′

1. The program fragment
on the right exhibits similar characteristics. The fourth let expression
and the following assignment statement generates a graph as shown
in 12. To see why, observe that the binding of x2 to ref x1 by Rule
7 in Fig. 10 induces a points-to constraint from x2 to x1. Now, when
x2 is subsequently modified by the assignment statement, x2 := x′

1, a
points-to constraint is also established from x2 to x′

1. Because a path is
established between x1 and x′

1 (via x2), both x1 and x′
1 end up getting

saved and restored even though neither need to be.
Because alias analysis is not integrated into our formulation, the

analysis does not distinguish among references that are potential aliases
for one another. To illustrate, consider references r1 and r2 created
within the same exception scope, with each being assigned the contents

final.tex; 26/05/2005; 13:59; p.22



23

let s = vExn(λ z.z) in

let f = λ y.1 in

let x1 = ref 0 in

let x′
1 = ref 1 in

try(s,

f(x1);

f(x′
1);

x1 := 2;
restore(s, 5));

!x′
1

(a)

let s = vExn(λ z.z) in

let x1 = ref 0 in

let x′
1 = ref 1 in

let x2 = ref x1 in

x2 := x′
1;

try(s,

x1 := 3;
restore(s, 5));

!x′
1

(b)

Figure 13. Analysis restores x
′

1 because of context insensitivity in (a) and flow
insensitivity in (b)

of variable v. Consider a use of v in the continuation of the try block
under consideration. Our analysis would recommend the restoration
of both r1 and r2, even though restoration of either one is suffficient.
However, unlike unification-based points-to analyses [36], our analysis
preserves full paths in the points-to maps, which would otherwise be
lost because of path unification. As an example, for the program shown
below, an alogrithm like [36] would suggest restoration of both x1 and
x′

1 because of path unification: That analysis would compute that x1

may point to either of the two references RefExp〈1〉 or RefExp〈2〉. And
hence to restore conservatively we have to restore both x1 and x′

1.
However our analysis would restore x1 only.

let s = vExn(λ z.z) in

let x1 = [ ref 0]1 in

let x′
1 = [ ref 1]2 in

let x2 = ref x1 in

x2 := x′
1;

try(s, x1 := 3; restore(s, 5));
!x1

The analysis presented here has the obvious limitations for mul-
tithreaded applications that use shared variables. For example, say
thread A changes location X within a try block, thread B reads X

and changes it’s state. Now, if X is restored in thread A, it is un-
clear whether B’s state is still valid since it may be in the midst of
performing computation that depends on the old, discarded value of
X . One simple solution would be to copy all shared locations and
variables to local structures just before the outermost try block and
copy the updated local variables at the end of the try block. This

final.tex; 26/05/2005; 13:59; p.23



24

method preserves sequential consistency, but is arguably inefficient. As
part of our future work, we plan to examine extensions of our analysis
to handle multi-threaded programs.

The semantics for versioning exceptions presented here are interest-
ing in only those states of the program that can be ‘undone’. For states
like I/O it is not possible to restore the state in the absence of an agreed
upon ‘restore’ definition. Recent work by Harris et al [17] formalize
the separation between irrevocable actions such as I/O from revocable
transactional behavior by generalizing the Haskell type system. Such
an approach could be used to check the validity of raising a versioning
exception in the presence of I/O.

Proof of safety

We show that saving and restoring the elements in Γ is safe. Our notion
of safety captures the intuition that no modifications to the store in an
exception expression are visible in the continuation of a try-block if
a versioning exception is raised in the dynamic context of the block.
We use two auxilary functions Live and locs in the safety theorem.
Live:Label → P(Var) that associates an expression label to the set of
live variables at the beginning of that expression. For each expression
present in the input set, locs returns the set of all the possible locations
that could be returned by the evaluation of that expression. We state
this safety property formally:

THEOREM 1. Let [try(x,[e1]
l1)]l ∈ P , K(l) = {k

lk1

1 , . . . , k
lkn
n }, and let

eval(P ) = 〈ρ, σ,halt 〈v〉〉 Then,
1. locs(Γ(l)) ⊆ Dom(σ)
2. locs(Γ(l)) ⊇ locs(Live(l1))∩locs(U(lki

))∩locs(M(l1)), for 1 ≤ i ≤ n.
Proof. The first part of the theorem is trivial because the locations

obtained in path are always in the store σ. We prove the second part
of the theorem, by induction on the structure of expressions.

The only interesting case to consider is assignment. Say the assign-
ment expression is given by x1 := x2. There are two cases:

1. x1 ∈ U(lki
): Due to the constraints added, for the assignment state-

ment (Rule 5 in Fig. 10) and the definition of Γ, it is ensured that
the location of x1 is restored.

2. x′
1 ∈ U(lki

) where x′
1 is an alias of x1: There are three subcases

depending on the way in which the alias is created:

a) The alias is created by expressions related to the rule 8(a) in
Fig 10: The Unify procedure ensures in path(x1, x

′
1) = (p, i), p

is not null and i is 0.

final.tex; 26/05/2005; 13:59; p.24



25

b) The alias is created by the presence of an even number of let
expressions corresponding to the rules 6 and 8(b) in Fig 10 (e.g.
let x1 =!x2 . . . let x′

1 =!x2...): The constraints added ensures
that in path(x1, x

′
1) = (p, i), p is not null and i is 0(−1 + 1 −

1 + 1 · · · even number of times).

c) The alias is created because of interaction among expressions
corresponding to rules 5−8 in Fig 10: This type of alias gets cre-
ated due to expressions 5 and 6, 6 and 7, 5 and 8(b), and 6 and
8(c). As in the previous case, we can see that in path(x1, x

′
1) =

(p, i), p is not null and i is 0.

In all these cases (individually or a combination locs(Γ(l)) ⊇ locs(Live(l1))∩
locs(U(lki

)) ∩ locs(M(l1)).

Hence the theorem holds and the analysis is safe. ✷

6. Complexity

We now consider the asymptotic running time of our analysis. The cost
of computing Γ is the sum over the cost of computing last, InitF , F ,
U , M, K, and A.

The following table shows the time and space complexity of our
analysis for building each of these maps, in terms of the number of
program labels n.

Set last InitF F U M K A Γ

Time O(n2) O(n2) O(n3) O(n2) O(n2) O(n) O(n2) O(n3)

Space O(n2) O(n) O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

The constraints for last, InitF , U , M, and A yield a complexity
measure of O(n2), if the flow map is already computed. The rule for
restore in the definition of the last function is recursive. Because the
max size of the flow set is bound by program size n, which gives a
bound on the number of the recursive calls, last takes O(n2) time. A
similar argument gives InitF , U and M a time complexity of O(n2).
Careful observation of the algorithm for building the points-to map
(Fig 10) shows that the LetApply rule (8) is recursive; this is similar to
the restore rule in the algorithm for building last. Again, the number
of such calls is limited by the size of the flow set O(n). Hence we get

final.tex; 26/05/2005; 13:59; p.25



26

the complexity of O(n2) for A. The cost of building the continuations
is linear in the program size. The constraints for building the flow sets
are standard and lead to O(n3) complexity.

Including the cost of flow analysis, building the various maps used
in the analysis requires O(n3) time. The computation of Γ takes only
O(n2) time, for each try expression, after other helper maps are com-
puted. Since the number of try expressions is bounded by n, the com-
plexity for Γ is cubic in the program size. Since the complexity of the
helper maps and Γ is bound by O(n3), the total time required by our
analysis is bound by O(n3).

The space complexity shown is the space required for each individ-
ual maps. The total number of initialized expressions is bound by the
program size n and hence we get a space complexity of O(n). For each
expression the number of last expressions is bound by the program size.
Because the total number of expressions is also bound by O(n), we get
the space complexity for last as O(n2). Similar argument gives for each
of F , U , M, K, A, and Γ a space complexity of O(n2).

7. Related Work

There has been much work in defining expressive notions of persistency
in high-level languages [4, 5] and devising algorithms to exploit persis-
tent data structures [8, 9]. Versioning exceptions are inspired from both
efforts. Peyton Jones et al [29, 25] present different extensions to simple
exceptions in higher-order functional languages.

Our work bears obvious similarity to transaction models [26, 20, 37],
but the idea of aborting modifications to the program store and environ-
ment in a higher-order language is novel. There has been recent interest
in using transactional techniques for defining scalable and robust con-
current programs [18, 47]. These approaches rely on either language
constructs that allow multiple threads of control to execute concur-
rently within a critical section [48, 49], or define hardware-supported
mechanisms that track modifications to shared data [50]. When a se-
rializability violation is detected, the changes made by the offending
thread are discarded, and the thread must reexecute its changes. The
rollback facility found in versioning exceptions bear obvious similarities
to the logging mechanism used in transactional memory and optimistic
concurrency implementations. However, the decision about when to
abort a computation in a versioning exception context is determined
by exceptional conditions that arise during program execution; in the
case of transactional memory, aborts occur when serialization viola-
tions within a critical section are detected. In both cases, however,

final.tex; 26/05/2005; 13:59; p.26



27

non-revocable actions such as I/O require alternative solutions. For
example, an I/O or network operation performed within the scope of a
versioning exception handler cannot be simply revoked. Realistic imple-
mentations must either require applications to provide compensation
code to redress the effects of these actions, or raise an error or warning
when such situations arise. Versioning exceptions also share similar
goals as dynamic checkpointing schemes [1] which provide VM support
to efficiently save and restore system state, although the techniques
employed differ in obvious ways.

There have been other programming paradigms that provide ab-
stractions similar to versioning exceptions. For example, goal evaluation
in Prolog is expressed via backtracking that allows bindings established
during clause evaluation to be revoked if unification of subsequent
clauses fails. There have also been attempts to combine aspects of logic
languages and other general purpose languages [44, 45]. Oz [44] is a
high-level concurrent programming language that bridges aspects of
logic and object oriented programming. In Curry [45] when a formal
argument is evaluated with a logical variable as its actual value, a
search takes place. During this search, the computation may follow
different branches with different substitutions applied to the current
goal. When the search operator realizes a non-deterministic solution,
computation is halted and all the possible transitions are presented to
the programmer. Depending on the choices provided, execution may
proceed further. These techniques bear some similarity to our notion
of versioning exceptions in the absence of side effects to the store.
However, we are unaware of other work that exploits this notion to
define new exception models in a non-logic programming context, and
which present program analyses to enable efficient implementation.

Perhaps closest to our work is the tryall abstraction described by
Shinnar et. al. [35] that integrates automated memory recovery with
exception handling for C#. The goals of our two efforts are extremely
similar: both address the question of how to restore program state
and invariants when an exception is raised. We differ primarily in
the techniques chosen. Their approach leverages runtime logging data
structures to register old values of modified memory locations within
a tryall block, restoring these values if an exception is thrown. In con-
trast, our focus has been on program analyses that achieve the same
purpose. Our analysis could be used to minimize the amount of data
their runtime data structures must support.

Points-to analysis is a very widely studied area. A fast context-
insensitive pointer analysis is presented by Steensgaard [36] that con-
verges more quickly, but is also more imprecise, than earlier work
developed by Andersen [2]. Some optimizations that trade off between

final.tex; 26/05/2005; 13:59; p.27



28

these two approaches are discussed by Shapiro and Horowitz [34]. Fos-
ter et al [14] discuss experimental results that explore tradeoffs be-
tween various points-to analysis frameworks. Context sensitive points-
to-analyses exhibiting exponential complexity are presented by Emami
et al [10, 43]. These analyses support first class function pointers. An
alias analysis with the length of access paths being k-limited is given
by Landi and Ryder [27]. While broadly similar to these other efforts,
the work described here integrates points-to analyses with an inter-
procedural control-flow analysis that deals with first-class functions,
references and generative exceptions. Moreover, we preserve full paths
in the points-to map without loss of precision due to path unification.
Nevertheless, the space cost we incur is quadratic in the size of the
program.

Program analysis using shape analysis is discussed by Chase et al

in [6]. Some improvements are given by Sagiv et al in [32, 33]. Ef-
fect and region analysis also share similar goals to ours. To resolve
questions about the scope of possible effects, Talpin and Jouvelot [39]
and Talpin [38] present a type-and-effects analysis for functional pro-
gramming languages. Their results (calculated in conjunction with type
reconstruction) partitions the store into regions that are initialized,
read or written. Region analysis helps in analyzing memory allocation,
by identifying dynamically allocated variables with syntactically scoped
regions of a program allowing potentially mutable variables to be allo-
cated and deallocated in a stack discipline [41, 40, 16]. We believe the
precision of the points-to analysis developed here can be improved by
incorporating extensions that use region and effect inference techniques.

There has been significant work describing the hardness of the pointer
analysis problem [15, 21, 42]. We give an approximate solution for
the points-to-analysis applicable to our domain. Nevertheless, we can
improve upon our analysis in many ways. Instead of the simple mono-
variant analysis, a polyvariant analysis [23, 7] would help in reducing
the sizes of the abstract points-to-maps. Strong updates [6, 22], which
are not incorporated into the analysis defined here, would also help in
improving overall precision.

Versioning exceptions and the accompanying points-to analysis de-
veloped here have use in a number of important applications. A recent
study by Weimer and Necula [51] examine a large number of Java
programs, and observe that failure to provide appropriate cleanup code
to restore resource invariants when an exception is raised is the cause
of many runtime errors. They present a sophisticated program analysis
to detect when this situation occurs. In one case study, their tool
detected 800 such errors in roughly 4 million lines of code. The er-
rors are often subtle and not immediately apparent by mere syntactic

final.tex; 26/05/2005; 13:59; p.28



29

examination of the source text. Versioning exceptions obviate the need
for such a tool. All effects performed within the dynamic context of
the code protected by a versioning exception, including resource state
changes, are implicitly restored to their state extant at the point the
protected scope was entered. The analysis developed here is critical to
the effectiveness and feasibility of these exceptions. Without it, a naive
implementation would unlikely be able to support realistic programs of
the kind examined in [51] where manual tracking of effects and state
changes is infeasible.

8. Conclusion

This paper presents a novel exception mechanism and an associated
static analysis. The mechanism allows the state of the program at the
point where an exception handler is invoked to be restored to the point
at which the handler is installed. The analysis developed analyzes the
dynamic context of a handler-protected scope to identify those locations
that need to be restored when an exception is raised.

The language we use for this paper is quite extensible as is the basis
of the given analysis. Extending the language with features like complex
data structures would actually make the construct of versioning excep-
tions much more useful. As we discuss in section 5, in the presence
of multiple threads and shared variables, things need to be handled in
a overly conservative manner in the current setting. We have plans to
extend our current work to a setting with multiple threads and leave
it as future work for this paper.

The analysis has multi-faceted applications. We show that it pro-
vides points-to and alias information. It can also be easily extended to
provide escape information. For example, if in the points-to graph, a
variable v in function f is only reachable by variables present in f , the
references pointed by v do not escape f .

Due to its similarities with concepts found in logic programming
and transactional systems, we believe the work presented here can be
useful in defining efficient implementations of speculative or optimistic
programming paradigms that require safe and effective revocation of
state changes made to the global store.

9. Acknowledgments

We are grateful to Julian Padget, Olivier Danvy and the anonymous
reviewers for their many helpful suggestions and comments.

final.tex; 26/05/2005; 13:59; p.29



30

References

1. Adnan Agbaria and Roy Friedman. Virtual-machine-based Heterogeneous
Checkpointing. Software Practice and Experience, 32(12):1175–1192, 2002.

2. Lars O. Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen, 1994.
3. Andrew Appel. Compiling with Continuations. Cambridge University Press,

1992.
4. Malcolm Atkinson, Ken Chisholm, and Paul Cockshott. PS-ALGOL: An Algol

with a Persistent Heap. SIGPLAN Notices, 17(7):24–31, July 1982.
5. Malcolm P. Atkinson, Laurent Daynes, Mick J. Jordan, Tony Printezis and

Susan Spence, An Orthogonally Persistent Java. ACM SIGMOD record,
25(4):68–75, December 1996.

6. David Chase and Mark N. Wegman and F. Kenneth Zadeck. Analysis of
Pointers and Structures. In Proceedings of the Conference on Programming

Language Design and Implementation, 25(6):296–310, Jun 1990.
7. Charles Consel. Polyvariant Binding-time Analysis for Applicative Languages.

In Proceedings of the symposium on Partial evaluation and semantics-based

program manipulation, pages 66–77, Jun 1993.
8. James R. Driscoll, Daniel D. Sleator and Robert E. Tarjan. Making Data

Structures Persistent. Journal of Computer and System Sciences, 38(1):86–124,
1989.

9. James R. Driscoll, Daniel D. Sleator, and Robert E. Tarjan. Fully persistent
lists with catenation. Journal of ACM, 41(5):943–959, Sep 1994.

10. Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
Interprocedural Points-to Analysis in the Presence of Function Pointers.
In Proceedings of the Conference on Programming Language Design and

Implementation, 29(6):242–256, Jun 1994.
11. Matthias Felleisen and Daniel P. Friedman. A Calculus for Assignments in

Higher-order Languages. In Proceedings of the Symposium on Principles of

Programming Languages, 314–325, Jan 1987.
12. Cormac Flanagan, Amr Sabry, Bruce F. Duba and Matthias Felleisen The

Essence of Compiling with Continuations. In Proceedings of the Conference on

Programming Language Design and Implementation, 28(6):237–247, Jun 1993.
13. Matthew Flatt, Shriram Krishnamurthi and Matthias Felleisen A Program-

mer’s Reduction Semantics for Classes and Mixins. In Proceedings of the

Sysposium on on Formal Syntax and Semantics of Java. Springer LNCS 1523,
241-269, 1999.

14. Jeffrey S. Foster and Manuel Fähndrich and Alexander Aiken Polymorphic
versus Monomorphic Flow-Insensitive Points-to Analysis for C. In International

Symposium on Static Analysis, pages 175–198, Apr 2000.
15. Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NPCompleteness. Freeman, 1979.
16. David Gay and Alexander Aiken. Language Support for Regions. In Proceed-

ings of the Conference on Programming Language Design and Implementation,
36(5):70–80, May 2001.

17. Tim Harris, Simon Marlow, Simon Peyton Jones and Maurice Herlihy. Com-
posable Memory Transactions. In ACM Conference on Principles and Practice

of Parallel Programming. Jun 2005.

final.tex; 26/05/2005; 13:59; p.30



31

18. Tim Harris and Keir Fraser Language Support for Lightweight Transac-
tions. ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 338–402, 2003.
19. Nevin Heintze. Set-based Analysis of ML Programs. In Proceedings of ACM

Conference on LISP and Functional Programming, pages 306–317, Jun 1994.
20. Maurice Herlihy. Apologizing Versus Asking Permission: Optimistic Concur-

rency Control for Abstract Data Types. ACM Transactions on Database

Systems, 15(1):96–124, 1990.
21. Susan Horwitz. Precise Flow-insensitive May-alias Analysis is NP-hard. ACM

Transactions on Progamming Languages and Systems, 19(1):1–6, January 1997.
22. Suresh Jagannathan, Peter Thiemann, Stephen Weeks and Andrew Wright.

Single and loving it: Must-alias analysis for higher-order languages. In Pro-

ceedings of the Symposium on Principles of Programming Languages, pages
329–341, Jan 1998.

23. Suresh Jagannathan and Stephen Weeks. A Unified Treatment of Flow Anal-
ysis in Higher-Order Languages. In Proceedings of the ACM Symposium on

Principles of Programming Languages, pages 393–407, 1995.
24. Richard Kelsey and Paul Hudak. Realistic Compilation by Program Transfor-

mation. In Proceedings of the ACM Symposium on Principles of Programming

Languages, pages 281–293, 1989.
25. Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, Tony Hoare, and

Simon Marlow. A Semantics for Imprecise Exceptions. In Proceedings of the

Conference on Programming Language Design and Implementation, pages 25–
36, 1999.

26. H. T. Kung and John T. Robinson. On Optimistic Methods for Concurrency
Control. ACM Transactions on Database Systems, 6(2):213–226, 1981.

27. William Landi and Barbara G. Ryder. A Safe Approximate Algorithm for Inter-
procedural Pointer Aliasing. In Proceedings of the Conference on Programming

Language Design and Implementation , 27(7):235–248, 1992.
28. Barbara Liskov and Robert Scheifler. Guardians and actions: Linguistic Sup-

port for Robust Distributed Programs. ACM Transactions on Progamming

Languages and Systems, 5(3):381–404,1983.
29. Simon Marlow, Simon Peyton Jones, Andrew Moran and John Reppy Asyn-

chronous Exceptions in Haskell. In Proceedings of the Conference on

Programming Language Design and Implementation, pages 274–285, 2001.
30. Robin Milner, Mads Tofte, Robert Harper and David MacQueen. The

Definition of Standard ML. MIT Press, 1997.
31. Jens Palsberg. Closure Analysis in Constraint Form. ACM Transactions on

Progamming Languages and Systems, 17(1):47–62, January 1995.
32. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving Shape-analysis

Problems in Languages with Destructive Updating. Transactions on Progam-

ming Languages and Systems, 20(1):1-50, Jan 1998.
33. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric Shape Anal-

ysis via 3-valued Logic. ACM Transactions on Progamming Languages and

Systems, 24(3):217–298, May 2002.
34. Marc Shapiro II and Susan Horwitz Fast and Accurate Flow-insensitive

Points-to Analysis. In Proceedings of the 24th Symposium on Principles of

Programming Languages, pages 1–14, Jan 1997.
35. Avraham Sinnar, David Tarditi, Mark Plesko and Bjarne Steensgard. Integrat-

ing Support for Undo with Exception Handling. Microsoft Research Technical
Report MSR-TR-2004-140, Dec. 2004.

final.tex; 26/05/2005; 13:59; p.31



32

36. Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings

of 23nd Annual Symposium on Principles of Programming Languages, pages
32–41, 1996.

37. Michael Stonebraker and Joseph Hellerstein. Readings in Database Systems,

Third Edition. Morgan-Kaufmann, 1998.
38. Jean-Pierre Talpin. Theoretical and Practical Aspects of Type and Effect

Inference. PhD thesis, University of Paris, 1993.
39. Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic Type, Region and Effect

Inference. Journal of Functional Programming, 2(3):245–271, 1992.
40. Mads Tofte and Lars Birkedal. A Region Inference Algorithm. ACM

Transactions on Progamming Languages and Systems, 20(4):724–767, July
1998.

41. Mads Tofte and Jean-Pierre Talpin. Region-Based Memory Management.
Information and Computation, 132(2):109–176, 1997.

42. Venkatesan T. Chakaravarthy and Susan Horwitz. On The Non-
Approximability of Points-to Analysis. Acta Informatica, 38(8):587-598, June
2001.

43. Robert P. Wilson and Monica S. Lam. Efficient Context-Sensitive Pointer
Analysis for C Programs. In Proceedings of the Conference on Programming

Language Design and Implementation, 30(6):1–12, Jun 1995.
44. Gert Smolka. The Oz Programming Model. In Current Trends in Computer

Science. Springer LNCS 1000, 1995.
45. M. Hanus and H. Kuchen and J.J. Moreno-Navarro. Curry: A Truly Functional

Logic Language. In Proc. ILPS, Workshop on Visions for the Future of Logic
Programming, 1995.

46. Nir Shavit and Dan Touitou Software Transactional Memory ACM Symposium

on Principles of Distributed Computing, pages 204-213, 1995
47. Adam Welc, Suresh Jagannathan, and Antony L. Hosking Transactional

Monitors for Concurrent Objects European Conference on Object-Oriented

Programming, pages 519–542, 2004.
48. Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L. Hosking A

Semantic Framework for Designer Transactions European Symposium on

Programming, pages 249–263, 2004.
49. Corman Flanagan and Shaz Qadeer A Type and Effect System for Atom-

icity ACM SIGPLAN Confererence on Programming Language Design and

Implementation, 2004
50. Ravi Rajwar and James R. Goodman Transactional Lock-free Execution

of Lock-Based Programs ACM Conference on Architectural Support for

Programming Languages and Systems, 37(10):5–17, Oct 2002
51. Westley Weimer and George C. Necula Finding and Preventing Run-Time

Error Handling Mistakes 19th Annual ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 419–431, 2004.

final.tex; 26/05/2005; 13:59; p.32


