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Abstract

A criterion for ductile rupture is derived using Rice’s theory for macroscopic strain lo-
calization, and a constitutive relation for porous plastic solids that accounts for inhomo-
geneous yielding at the mesoscale. At the microscopic scale, it is assumed that failure
occurs by void coalescence along a band of voids. An approximate, parameter-free closed
form expression for the failure criterion is derived as a function of a single scalar dam-
age variable –the porosity– and the macroscopic stress state, characterized by the stress
triaxiality and Lode parameters. For practical applications, an uncoupled approach is
developed whereby the failure criterion is supplemented with a damage-free plasticity
model and a loading path dependent damage evolution law. The predictive capabilities
of the approach are illustrated by comparisons with finite element cell model studies. In
particular, the influence of strain hardening is investigated in some detail.

1. Introduction

Whether ductile failure occurs by instability or by the impingement of void-like defects
has long been debated (Needleman and Rice, 1978; Tekoğlu et al., 2015). It would be
fair to state that, for most practical cases, the answer is still unknown, and may be scale-
dependent. Plastic instability may follow from a variety of mechanisms, some of which
do not involve microvoids (Benzerga et al., 2019). The focus of this paper is on void-
mediated ductile failure. Under such circumstances, when failure occurs subsequent to a
plastic instability, a key question is that of what constitutive relation best represents the
behavior of the material at hand, which is de facto porous, up to the point of macroscopic
strain localization (Rice, 1976).

The behavior of porous plastic solids has been analyzed from first principles by con-
sidering elementary cells subjected to mesoscopically homogeneous deformation, along
with the theory of limit analysis for rigid–plastic bodies (Gurson, 1977; Benzerga and
Leblond, 2010; Madou and Leblond, 2012). In this class of models, the locations x of
surface points, originally having locations X, are prescribed as: x = FX with F spatially
constant, obviously to be interpreted as the mesoscopic deformation gradient. By def-
inition, such boundary conditions preclude strong strain concentrations within the cell,
as would arise should elastic unloading occur in parts of the cell (Koplik and Needle-
man, 1988). This essential limitation of Gurson-like models can be relaxed by employing

Preprint submitted to Elsevier October 20, 2020

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license

https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022509620301538

Manuscript_93b7899d57c0b504b8e061bd969cdf35



boundary conditions that allow for mesoscopically inhomogeneous deformation, such as
periodic boundary conditions. This is precisely what has been achieved in more recent
analyses, initiated by Benzerga and Leblond (2014) and further developed by others; see
Keralavarma and Chockalingam (2016) and references therein. This new class of models
represents the potentially inhomogeneous yielding of porous solids.

The significance of inhomogeneous yielding models is obvious. First, the strain soften-
ing inherent to these models can be orders of magnitude larger than models that assume
homogeneous yielding, such as Gurson’s. This in itself may lead to macroscopic strain
localization under circumstances where the porosity-induced softening of homogeneous
yielding models would still be subcritical. Alternatively, in an evolution problem, the
transition from homogeneous to inhomogeneous yielding may lead to an abrupt drop in
the load carrying capacity thus leading to fracture before localization even sets in. Fur-
thermore, inhomogeneous yielding may set in while the global response does not exhibit
any softening, as recently studied by Torki and Benzerga (2018) for shear-dominated
loadings.

The connection between void coalescence and strain localization was recently discussed
by Morin et al. (2016) (see their Appendix A). Coalescence has often been interpreted
as a localization occurring at the scale of some homogenized model of porous material
plasticity. Perrin (1992) investigated this by applying the results of Rudnicki and Rice
(1975) on localization in pressure-sensitive materials, as specialized by Yamamoto (1978),
to Gurson’s constitutive relation. He found that Gurson’s model did predict strain local-
ization within planar layers parallel to the intervoid ligaments, in agreement with the cell
model studies of Koplik and Needleman (1988), but for values of the porosity far greater
than those reported by these authors at the onset of coalescence. One interpretation of
this failure, put forth by Morin et al. (2016), is that the Gurson model does not account
for inhomogeneous yielding.

More recently, Reddi et al. (2019) have combined the Gurson model and an isotropic
version of the void coalescence model proposed by Keralavarma and Chockalingam (2016)
into a multisurface model of porous material plasticity. Even more recently, Vishwakarma
and Keralavarma (2019) have carried out a preliminary strain localization analysis on the
multi-surface model along with three-dimensional cell model analyses. They found that
the strain to the onset of coalescence in the cell model simulations correlates well with
the strain at which plastic instability is predicted using the criterion of Rice (1976). In
addition, the orientation of the localization plane coincided approximately with the orien-
tation of the planar band along which void coalescence was predicted by the multi-surface
model (see Fig.16 of Vishwakarma and Keralavarma, 2019). Thus, the development of
inhomogeneous yielding models presents perspectives for addressing the question at hand,
in a fundamental way.

An equally important question is how to account for the influence of strain-hardening,
which plays a key role in localization phenomena. Currently available models of void
coalescence, or more generally of inhomogeneous yielding, are based on classical limit
analysis for ideally plastic solids. The chief concern of this paper is to carry out a strain-
localization analysis assuming a constitutive relation that accounts for (i) inhomogeneous
yielding, and (ii) strain hardening; the latter being introduced using a variant of Gurson’s
heuristics.

From a practical standpoint, the instability-based failure criterion is shown to bear a
closed-form expression suitable for structural computations. The developed criterion is

2



F(σ) = 0

n

FC(σ, n) = 0

Elastic

(a) (b)

Figure 1: Alternative modes of yielding of a porous elementary cell by (a) homogeneous yielding (diffuse
plasticity) and (b) inhomogeneous yielding along planar bands with normal, n.

neither of the critical-strain type nor of the critical internal-state-variable type, although
it may be cast in either form under special types of loading. Thus, in the second part of
the paper, the criterion is supplemented with a damage-free plasticity model along with a
heuristic damage evolution equation, within an uncoupled approach, so as to enable direct
comparisons with finite-element micromechanical computations. Uncoupled plasticity and
damage growth models are frequently used to model ductile failure by void growth to
coalescence in metals (Pineau et al., 2016). Classical models of this kind, such as the
Beremin (1981) or Johnson and Cook (1985) models, are based on the Rice and Tracey
(1969) equation for the growth of isolated voids under remote axisymmetric loading. In
particular, they do not account for the influence of shear on the critical conditions for
fracture initiation.

2. Formulation

2.1. Plastic constitutive relation

Inhomogeneous yielding refers to a mode of deformation inside a porous cell such that
the plastic strain concentrates along bands of voids, as shown schematically in Fig. 1 for
the case of shear-dominated loading. The process of void coalescence begins when the
mode of yielding changes from diffuse throughout the matrix to concentrated within the
inter-void ligaments. This type of strain concentration is different from strain localization
in the sense of Rice (1976) which implies infinite concentrations.

For simplicity, focus is laid on isotropic response so that every orientation is a potential
one for coalescence. The (orientation-dependent) effective yield criterion for inhomoge-
neous yielding developed by Keralavarma and Chockalingam (2016) reads:

FC(σ, n) := 3
σ2
sh

σ̄2
b

+ 2fb cosh

(

β(fb)
σn

σ̄b

)

− 1− f 2
b = 0 (1)

where n denotes the unit vector normal to the band of concentrated strain, σn = n · σn
and σsh =

√

n · σ2n− σ2
n are, respectively, the normal and shear stresses resolved in the

band (smeared to a plane in the continuum description) and fb is the porosity inside the
band. Also, σ̄b is an “average” flow stress of the matrix inside the band, which is in
general larger than the average flow stress σ̄ in the entire cell due to the inhomogeneity of
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plastic flow and strain hardening around the voids1. The parameter β in (1) is a function
of fb:

β(fb) =

√

5

6
ln

(

1

fb

)

[

√
b2 + 1−

√

b2 + f 2
b + b ln

(

b+
√

b2 + f 2
b

fb(b+
√
b2 + 1)

)]−1

(2)

with b given by

b =

√

1

3
+

5

288

1

fb
(1 + fb − 5f 2

b + 3f 3
b ) (3)

In a statistically isotropic porous material with equiaxed and randomly distributed
voids, the orientation of the band normal vector n is determined solely by the state of
stress. Assuming a band thickness equal to the void size (Benzerga, 2002), fb is ap-
proximately related to the overall porosity as fb = f 2/3. The orientation of the strain
concentration band is determined by minimizing the effective yield stress or, equivalently,
maximizing the value of the yield function FC(σ, n), over all possible orientations n.
Keralavarma (2017) showed that the unit vector, nc, that maximizes FC(σ, n) must be
either an eigenvector of σ or a linear combination of two eigenvectors corresponding to
unequal principal stresses. In the former case, coalescence occurs by internal necking of
the ligaments along a band aligned with the major principal plane, when the normal stress
satisfies criterion (1). In the latter case coalescence occurs under combined tension and
shear of the ligaments along a band whose normal vector is generally found to lie on the
plane defined by the maximum and minimum principal stress for realistic values of the
porosity (f ∼ O(0.1) or smaller).

Therefore, an isotropic coalescence criterion is given by FCiso

(σ) := FC(σ, nc) = 0,
where nc is viewed as an isotropic function of σ, determined as above. Let s1 ≥ s2 ≥ s3
denote the ordered set of principal values of the normalized stress tensor s := σ/σeq, and

n1, n2, n3 denote the corresponding principal directions. Here, σeq :=
√

3
2
σ

′ : σ′ denotes

the von Mises equivalent stress where σ

′

is the stress deviator. Introducing the stress
triaxiality, T , and the Lode parameter, L, as

T :=
σm

σeq

, L := −27

2
det

(

σ

′

σeq

)

(4)

with σm = 1
3
tr(σ), the normalized principal stresses can be rewritten as:

s1 = T +
2

3
cos θ, s2 = T − 2

3
cos
(

θ +
π

3

)

, s3 = T − 2

3
cos
(

θ − π

3

)

(5)

where θ := 1
3
cos−1(−L) is the so called Lode angle. By definition, θ ∈

[

0, π
3

]

, so that the
condition s1 ≥ s2 ≥ s3 is satisfied. Assuming that the vector nc lies in the n1 − n3 plane,

1In fact, Keralavarma and Chockalingam (2016) assumed σ̄b = σ̄, which is true when the first transition
occurs from diffuse to concentrated plasticity in the ligaments. However, it is observed in cell model
simulations that strain hardening in the ligaments can lead to the cell reverting to a diffuse mode of
yielding, such that when void coalescence occurs at higher strain levels, the average plastic strain in the
ligaments can be higher than the average for the entire cell.
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FCiso

(σ) can be expressed in the following approximate, yet accurate form (Reddi et al.,
2019)

FCiso

(σ) = 3c2sh

(

σeq

σ̄b

)2

+ 2fb cosh

(

βcn
σeq

σ̄b

)

− 1− f 2
b (6)

where cn and csh are the values of the normal and shear stresses on the plane perpendicular
to nc, normalized by the Mises stress σeq, given by

cn = (1 + η)
s1 + s3

2
, csh =

[

(

s1 − s3
2

)2

− η2
(

s1 + s3
2

)2
]1/2

(7)

and the parameter η is given by

η = min

{

fbβ
2

3− fbβ2
,

∣

∣

∣

∣

s1 − s3
s1 + s3

∣

∣

∣

∣

}

(8)

The unit vector nc that maximizes FC(σ, n) is given by

nc =

√

1

2

[

1 + η
s1 + s3
s1 − s3

]

n1 +

√

1

2

[

1− η
s1 + s3
s1 − s3

]

n3 (9)

Notice that, at sufficiently large stress triaxialities when |s1−s3| ≪ |s1+s3|, nc approaches
the direction of the maximum absolute principal stress n1 or n3; i.e. coalescence occurs
by internal necking in the absence of shear. At lower triaxialities and realistic porosities,
it is found that η = fbβ

2/(3 − fbβ
2) ≪ 1, so that the angle between nc and the major

principal direction n1 will be close to 45◦ on the n1 − n3 plane; and coalescence occurs
under combined tension and shear.

Plastic flow post the onset of coalescence is governed by the normality flow rule

dp = λ̇N, N =
∂FC

∂σ

iso

(10)

where dp is the Eulerarian rate of plastic deformation, N(σ) is the flow direction tensor
normal to the yield surface, and λ̇ is the plastic multiplier. Since the isotropic yield
surface FCiso

(σ) = 0 is the envelope of the family of surfaces defined parametrically
by FC(σ, n) = 0, with n as the parameter, FCiso

(σ) = FC(σ, nc) at any point on the
isotropic yield surface, where nc is the value of n that extremizes FC(σ, n); see Eq.(9).
Further, the normal to a level surface of FCiso

(σ) will be collinear with the normal to the
corresponding level surface of FC(σ, nc). Hence, one can also write

N =
∂FC

∂σ
(σ, nc) (11)

Strain hardening is specified by writing the yield stress in the band σ̄b as a monotoni-
cally increasing function of a work conjugate ‘effective’ plastic strain in the band, εpb ; i.e.
σ̄b = σ̄b(ε

p
b). The rates of evolution of the internal variables in the model, εpb and f , can

be written in the form
ε̇pb = λ̇Qp, ḟ = λ̇Qf (12)
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where the expressions for Qp and Qf are obtained in the usual way by equating the
microscopic and mesoscopic rates of plastic work and by requiring mass conservation,
respectively. The resulting expressions read (Vishwakarma and Keralavarma, 2019)

Qp =
σ : N

f(1/fb − 1)σ̄b

Qf = (1− f)tr(N) (13)

Note that, unlike the expression for Qf , which is rigorous to the neglect of elasticity, the
above expression for Qp is not rigorous. Rather, it is based on heuristics first introduced
by Gurson (1977), which assumes the existance of a fictitious homogeneously deforming
material of volume equal to the volume of plastically deforming material in the RVE,
whose rate of dissipation equals that of the entire RVE. For a rate independent material,
the plastic multiplier λ̇ ≥ 0 is obtained from the consistency condition λ̇ḞC = 0.

2.2. Localization analysis

According to Rice’s criterion, failure by plastic instability occurs when the determinant
of the acoustic tensor

A(n) := n · Ct · n, (14)

with C
t the elasto-plastic tangent modulus, vanishes for any material plane with unit nor-

mal n. The expression for Ct depends on the plastic constitutive behavior of the material
at the onset of instability. Recent analysis using a multi-surface model, which accounted
for the competition between homogeneous yielding of a porous material accoring to the
Gurson (1977) criterion, and inhomogeneous yielding using criterion (6), showed that the
above instability condition is always satisfied after the onset of coalescence, irrespective
of the loading path (Vishwakarma and Keralavarma, 2019). Further, the orientation of
the localization plane n is predicted to be nearly identical to the coalescence plane nc (see
Fig.16 in Vishwakarma and Keralavarma, 2019). Therefore, we adopt the criterion

det (A(nc)) = 0 (15)

to determine failure by localization instability using n ≈ nc from equation (9).
The elasto-plastic tangent modulus Ct evaluates to

C
t = C− 1

D (CN)⊗ (CN), D := N : CN− ∂FC

∂σ̄b

H(εpb)Qp −
∂FC

∂f
Qf (16)

where N is the plastic flow direction tensor during inhomogeneous yielding, given by (11),
C is the elastic stiffness tensor and H(εpb) = ∂σ̄b/∂ε

p
b is the instantaneous strain hardening

rate in the coalescence band. Using (1) in (11), the tensor N can be expressed in the
following form

N = Nnc ⊗ nc +
1

2
S(mc ⊗ nc + nc ⊗mc), mc :=

σnc − σnn
c

|σnc − σnnc| (17)

where mc is a unit vector along the direction of shear stress on the plane of coalescence,
and N and S are given by

N :=
∂FC

∂σn

=
2βfb
σ̄b

sinh

(

βcn
σeq

σ̄b

)

, S :=
∂FC

∂σsh

=
6cshσeq

σ̄2
b

(18)
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Recall that the parameters cn and csh are functions of the loading parameters T and L
via Eqs. (7) and (5). Eq.(17) represents the general form of tensor N when plastic flow
is localized into planar bands at the meso-scale, as illustrated in Fig. 1(b). The uniaxial
deformation mode observed during void coalescence by internal necking in axisymmetric
cell model simulations is a special case of (17) corresponding to S = 0.

Simplified expressions for the terms Qp and Qf appearing in (16)2 can be obtained by
substituting (17)1 in (13), yielding

Qp =
(N cn + Scsh)
f(1/fb − 1)

σeq

σ̄b

, Qf = (1− f)N (19)

Using (17)1 and (16)1 in (14), and assuming isotropic elasticity with C = 2µIs + λI ⊗ I,
where I

s and I are the symmetric fourth and second order identity tensors respectively,
and λ and µ are the Lamé constants, the acoustic tensor A(nc) evaluates to

A(nc) = µI− 1

Dµ2S2mc⊗mc+

[

(λ+ µ)− 1

D (λ+ 2µ)2N 2

]

nc⊗nc− 1

Dµ(λ+2µ)NS(mc⊗nc+nc⊗mc)

(20)
Calculating the determinant of the above tensor, we obtain

det (A(nc)) =
1

Dµ2(λ+ 2µ)
[

D − µS2 − (λ+ 2µ)N 2
]

(21)

Using (17)1 in (16)2 yields

D = µS2 + (λ+ 2µ)N 2 − ∂FC

∂σ̄b

H(εpb)Qp −
∂FC

∂f
Qf (22)

On account of (21) and (22), the strain localization criterion (15) takes the form:

C(T, L, f) := −∂FC

∂σ̄b

H(εpb)Qp −
∂FC

∂f
Qf = 0 (23)

which turns out to be independent of the elastic constants. In fact, the above-defined
function C is proportional to the plastic hardening modulus (parameter h in Rudnicki and
Rice, 1975; Rice, 1976), so that the localization criterion amounts to vanishing hardening
modulus. Localization criteria for several other plasticity models reduce to the above form,
independent of the elastic constants, when normality is satisfied and the intermediate
principal value of the plastic flow direction tensor N vanishes, as in the case of the present
model (see Rice, 1976, Sections 3.3–3.4 for examples). In addition to T , L and f , the
terms in Eq.(23) also depend on σeq and σ̄b, which will be specified in the next section.

2.3. Uncoupled model of ductile failure

The format of the localization criterion clearly shows that failure is determined by
the competition between strain hardening in the coalescence band (first term) and the
softening due to void growth in the band (second term). Since the localization indicator
C(T, L, f) is a monotonically decreasing function of the porosity f , the criterion

C(T, L, f) ≤ 0 (24)
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could be used to check for ‘failure’ of a material element in a plasticity simulation. The
underlying assumption is that the onset of localization is quickly followed by complete
material failure, so that the plastic strain at the onset of localization represents an accurate
lower bound measure of the failure strain.

Loading history dependence is implicit in Eq.(23) through the values of the equivalent
stress σeq, the flow stress in the localization band σ̄b and the porosity f . These are
determined by (i) the pre-localization plasticity model, (ii) the effect of strain hardening
in the coalescence band, and (iii) the evolution law for the porosity, respectively. They
are specified in order in what follows.

2.3.1. Pre-localization plasticity model

We adopt an uncoupled approach whereby the elasto-plastic behavior of the material
is assumed to be independent of the damage variable –the porosity– prior to localization.
For simplicity, we use the rate independent J2 flow theory with the yield criterion

F(σ) := σeq − σ̄ = 0 (25)

and the plastic deformation rate dp given by the associated flow rule. Accordingly, the
von Mises equivalent stress σeq equals the material flow stress σ̄, which can be written as
an arbitrary monotonically increasing function of the scalar equivalent plastic strain, εpeq,
assuming isotropic hardening:

σ̄ = σ̄(εpeq), εpeq :=

∫ t

0

√

2

3
dp : dp dt (26)

where t denotes a time-like quantity. Note that, due to the choice of the uncoupled
approach and the J2 plasticity model, the value of σeq can be written as an explicit
function of the plastic strain, independent of the loading history. However, the value of
σeq becomes history dependent for other choices of the pre-localization plasticity model,
such as coupled damage-plasticity models.

2.3.2. Strain hardening in the band

Homogenized models of porous plasticity, such as (1), are derived using limit analysis,
which assumes ideal plastic behavior for the matrix. Therefore, heuristic approaches
are necessary to account for the effect of strain hardening, such as the energy based
method proposed by Gurson (1977). In the present case, the observation from coupled
damage-plasticity analysis that the onset of macroscopic instability, in the sense of Rice, is
predicted immediately after the onset of void coalescence (Vishwakarma and Keralavarma,
2019) suggests a straightforward method for determining the flow stress in the coalescence
band σ̄b at the onset of instability, as follows.

The onset of coalescence corresponds to a bifurcation from diffuse to localized plas-
ticity at the microscale. Hence, both the pre- and the post-localization yield criteria,
Eqs. (25) and (6) respectively, must be simultaneously satisfied at the transition. Since
the equivalent stress σeq equals the material flow stress σ̄ given by Eq.(26), the only un-
known quantity in (6) is the flow stress in the coalescence band σ̄b, which must, in general,
be obtained by iterative solution of Eq.(6). However, the argument of the ‘cosh’ function
in (6) is smaller than unity, except for very large values of the triaxiality (T > ∼4), which
fall outside the range of interest. Hence, an approximate closed form expression for σ̄b is
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obtained by neglecting the fourth and higher order terms in the Taylor series expansion
of the ‘cosh’ function, leading to

σ̄b ≈
√

3c2sh + fbβ2c2n
1− fb

σ̄ (27)

Note that the value of σ̄b obtained above depends on the loading history through its
dependence on f (via fb), whose rate of evolution is history dependent as specified below.

2.3.3. Porosity evolution

The rate of evolution of the porosity f can be written as the sum of the nucleation
rate of new voids and the rate of growth of existing voids; i.e.

ḟ = ḟnuc + ḟgr (28)

Phenomenological models are frequently used to model void nucleation, such as the model
proposed by Chu and Needleman (1980), which assumes a statistical distribution of second
phase particles of varying nucleation strengths. Here, a pre-existing population of voids
is assumed and void nucleation is disregarded.

The rate of growth of existing voids depends on the loading path, and can be related
to the hydrostatic part of the plastic deformation rate obtained from porous plasticity
models, due to plastic incompressibility of the matrix. Void growth is driven by the
hydrostatic component of the stress, and is hence primarily sensitive to the triaxiality T .
An approximate expression for ḟgr obtained using the classical Gurson (1977) model has
the form (Pineau et al., 2016)

ḟgr =
3

2
qf sinh

(

3

2
T

)

˙εpeq (29)

where q is a heuristic parameter introduced by Tvergaard (1982) to improve the cor-
respondence between the predictions of the Gurson model and axisymmetric cell model
simulations for the void growth rates. Assuming dilute porosities, second and higher order
terms in f have been neglected in the derivation of the above equation.

Besides its primary dependence on T , recent studies have shown that ḟgr has a sec-
ondary, intrinsic dependence on the Lode parameter L (Benallal et al., 2014; Leblond
and Morin, 2014). More significantly, there is an apparent effect of L due to induced
anisotropy (void shape changes resulting from finite deformations). This apparent effect
dominates over the intrinsic one and must be accounted for in some approximate way
when using an isotropic model. By definition, the value of L falls in the range [−1, 1],
where L = −1 represents axisymmetric tensile stress states (uniaxial tension with super-
posed hydrostatic stress), L = 0 represents generalized shear (pure shear with superposed
hydrostatic stress) and L = 1 represents axisymmetric compression (uniaxial compression
with superposed hydrostatic stress). Three dimensional voided cell simulations suggest
that the void growth rates for loading paths close to axisymmetric compression (L = 1)
are significantly smaller compared to other loading paths at fixed T (see e.g. Vishwakarma
and Keralavarma, 2019, Fig.4b). On the other hand, the porosity rates in the cell model
simulations exhibit relatively small variations in the range from L = −1 to 0.
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Based on the above observations from several cell model studies, a heuristic Lode
dependent correction is proposed for the void growth law, which reads

ḟgr = f

[

3

2
q sinh

(

3

2
T

)

− cH(L)L3

]

˙εpeq (30)

whereH(·) denotes the Heaviside step function, and c is a positive constant that quantifies
the Lode parameter’s influence on void growth. The Lode dependent correction is effective
only for positive values of L, and significant only for stress states close to L = 1 due to the
cubic power of L. Moreover, as will be discussed in context below, the Lode dependence
in the porosity rate equation is not as important as the Lode dependence implied by the
coalescence equations (6)–(9), although both couple through the failure criterion (23).

3. Model Assessment

Unless otherwise noted, the values of the two heuristic parameters in the void growth
law (30) are chosen as q = 1.25 and c = 1 in the results to be presented. On the other
hand, we emphasize that failure criterion (23) does not contain any parameters beyond
those used to describe plastic flow.

3.1. Fracture locus

For the special case of proportional loading, the values of the triaxiality T and the
Lode parameter L remain constant throughout the loading history. In this case, the strain
to failure εfeq, defined as the value of εpeq at failure, is a function of T and L, and can be
used as a measure of the material’s intrinsic ductility. The equation εfeq = εfeq(T, L) is
often referred to in the literature as the equation of the fracture locus. The porosity
can be determined as a function of the equivalent plastic strain by integrating Eq.(29),
yielding:

f(εpeq) = f0 exp

{[

3

2
q sinh

(

3

2
T

)

− cH(L)L3

]

εpeq

}

(31)

where f0 is the value of f at εpeq = 0. Failure occurs when εpeq = εfeq and f(εfeq) satisfies
the condition

C(T, L, f(εfeq)) = 0 (32)

which defines an implicit equation for the fracture locus in mixed stress and plastic strain
space.

For example, assuming an initial porosity f0 = 0.001 and isotropic hardening in (26)1
defined through:

σ̄ = σ0

(

1 +
εpeq
ε0

)n

(33)

where σ0 is the initial yield stress, ε0 a reference plastic strain and n the strain hardening
exponent, Eq.(32) is solved to obtain εfeq(T, L) for a range of values of T and L. Resulting
plots of the failure loci in T -L-εfeq space are shown in Fig. 2 for two values of the hardening
exponent.

For a nearly ideally plastic material (n = 0.01) the predicted strain to failure decreases
rapidly with increasing triaxiality T , irrespective of the value of L, Fig. 2(a). The effect
of the Lode parameter L is small compared to that of the triaxiality towards large values
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Figure 2: Three-dimensional fracture loci in the space of triaxiality T , Lode parameter L, and the
equivalent strain to failure εfeq, under proportional loading and for a power law hardening material with
σ0 = 420 MPa, ε0 = 0.002, and hardening exponent (a) n = 0.01 (b) n = 0.1, in Eq. (33).
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Figure 3: Variation of the strain to failure εfeq as a function of (a) T for constant L = 0 and (b) L for
constant T = 1, for several representative values of the strain hardening exponent n.

of T . However, for low to moderate values of T ≤ 1, the strain to failure exhibits a char-
acteristic convex non-monotonic dependence on the Lode parameter, with significantly
lower ductilities predicted under shear dominated loading paths with |L| ≪ 1 compared
to axisymmetric paths with |L| ∼ 1. Recall that the void growth law (30) is indepen-
dent of L in the range L ∈ [−1, 0]; indicating that the reduction in ductility for shear
dominated loadings compared to axisymmetric tensile loadings (L = −1) is solely due
to the Lode dependence of the failure criterion, Eq.(23). Importantly, the above result
suggests that the shear induced damage effect and reduction in ductility observed in some
experiments could be attributed to the Lode dependence of the failure criterion.

The fracture locus for a material with moderate strain hardening capacity n = 0.1 is
shown in Fig. 2(b). Notice that the strains to failure under shear dominated loading paths
with |L| ≪ 1 are significantly larger than in the case n = 0.01, while the failure strains
for axisymmetric loading paths show relatively little variation with n. This indicates
that failure under shear dominated loading is primarily determined by the localization
criterion (23), which depends strongly on strain hardening through the terms H(εpeq)
and σ̄b. Conversely, failure under axisymmetric loading paths appears to be primarily
determined by void growth, Eq.(30), with a relatively smaller influence of n through the
localization criterion. Fig. 2(b) also exhibits a convex variation of εfeq with L at fixed T
as in Fig. 2(b), although the Lode effect on the strain to failure is small, except close to
axisymmetric compressive loading paths with L = 1, even at low triaxialities.

The effect of strain hardening on ductility is further illustrated in Fig. 3, which shows
the variation of the strain to failure εfeq as a function of T and L for several values of the
hardening exponent n in the common range 0 < n < 0.5. Fig. 3(a) shows the variation of
εfeq as a function of T for generalized shear loadings with L = 0 and various values of n.
Note that the variation of εfeq with T is nearly linear on the semi-log scale irrespective of
the value of n, which indicates that the ductility decreases exponentially with increasing
T , as observed in classical experiments (Pineau et al., 2016).

On the other hand, the variation of the ductility with L at fixed T = 1 in Fig. 3(b) is
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non-monotonic, with a minimum in ductility predicted for some value of L in the range
−1 < L < 0 for low to moderate values of the hardening exponent. This is a consequence
of the fact that inhomogeneous yielding tends to occur at small plastic strain levels for
shear dominated loading paths, which is associated with a sharp increase in the damage
growth rate (Reddi et al., 2019). Therefore, in the absence of significant strain hardening,
which stabilizes plastic flow, the instability criterion is satisfied at relatively small plastic
strains for shear dominated loading paths. Although not perceptible for values of n ≥ 0.2,
a non-monotonic variation of εfeq with L is predicted for values of n as large as 0.3 in
Fig. 3(b). The results in Fig. 3 also show that the ductility increases monotonically with
the value of the hardening exponent, irrespective of the loading path, although the effect
of n is most significant for shear dominated loading paths with |L| ≪ 1.

3.2. Comparison with cell model simulations

The predictive capability of the failure criterion (23), and the uncoupled model for-
mulated in Section 2.3, is now assessed against two recent sets of three dimensional finite-
element cell model simulations by Vishwakarma and Keralavarma (2019) and Dunand
and Mohr (2014). In this type of model, pioneered by Tvergaard (1982) and Koplik and
Needleman (1988), a periodic cell, usually containing a single void in an elasto-plastic ma-
trix, is subjected to a prescribed loading path until failure occurs by plastic collapse of the
ligaments separating the voids, marking the onset of coalescence. Mesoscopic (cell level)
measures of stress and strain rate are obtained by volume averaging the corresponding
microscopic quantities in the cell:

σ = 〈σmic〉, de = 〈de
mic〉, dp = 〈dp

mic〉 (34)

where 〈·〉 denotes the volume average over the cell, and the subscript ‘mic’ refers to mi-
croscopic quantities. For a cell subjected to periodic boundary conditions, the mesoscopic
stress σ and deformation rate d = de+dp are power conjugate quantities. The mesoscopic
equivalent stress and strain measures are then defined in the usual way as indicated in
Section 2.3.1.

It is important to mention here that void coalescence, as observed in cell model analysis
using a single voided unit cell, corresponds to a deformation mode akin to that illustrated
in Fig. 1(b), which is different from strain localization in the macroscopic sense. However,
given the rapid softening associated with the onset of coalescence observed in the cell
model studies for most loading paths, it is expected that macroscopic localization will
occur shortly after the onset of coalescence. Hence, it is reasonable to compare the
failure strain predicted using an instability based criterion such as (23) to the strain to
coalescence observed in cell model studies, under the assumption that the latter represents
an accurate lower bound estimate of the former.

First, we assess the model against the simulations of Vishwakarma and Keralavarma
(2019) who considered a power law hardening material with the flow stress σ̄ given by
Eq.(33) using σ0 = 420 MPa, ε0 = 0.002 and n = 0.1 or n = 0.01. The loading parameters
were varied in the ranges T ∈ [2

3
, 3] and L ∈ [−1, 1]. Other parameters were the initial

void volume fraction f0 = 0.001, Young’s modulus E = 210 GPa and Poisson’s ratio
ν = 0.3. These authors have also considered two cell aspect ratios, α = 1 (cubic cell)
and α = 2 (tetragonal cell). The cubic cell was used only for axisymmetric loadings. For
general triaxial loadings, when void coalescence occurs under combined tension and shear
of the ligaments, the tetragonal cell is typically used (Tvergaard, 2009; Barsoum and
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Faleskog, 2011; Dunand and Mohr, 2014). The choice of a tetragonal cell with sufficiently
large α ensures that coalescence occurs in layers along the (short) transverse ligaments of
the unit cell; and avoids practical difficulties in the detection of the onset of coalescence,
especially under loading paths where a cubic cell shows a propensity of localization along
multiple directions, such as L = 0 (multiple symmetric shear bands) or L = 1 (coalescence
in layers or columns).

The range of failure strains obtained in the above-mentioned ranges of T and L is
quite broad. Thus, for clarity, the results are shown in Fig. 4 for low to moderate stress
triaxialities and in Fig. 5 for moderate to high stress triaxialities. All results pertain
to α = 2 to facilitate comparison with generalized shear (L = 0) and axisymmetric
compression (L = 1) loading paths. In the cell simulation (solid lines), the strain to failure
is determined by the onset of coalescence by plastic collapse of the ligaments, which is
marked by ×; see Vishwakarma and Keralavarma (2019) for details of the method used
to detect the onset of coalescence. In the uncoupled model (dotted lines), the ductility is
limited by failure criterion (23), as marked by an open circle in figures 4 and 5.

The salient features of the cell simulations are as follows. For axisymmetric tensile
loadings (L = −1), the equivalent stress drops abruptly beyond the onset of coalescence,
Fig. 4(a), so that the strain to coalescence is a reasonable measure of intrinsic ductility.
The onset of coalescence also coincides with an increase in the rate of porosity growth as
observed in Fig. 4(b). For states of generalized shear (L = 0), plastic collapse (× marks)
occurs at roughly the same strain levels as in the L = −1 case2; but the subsequent
softening is more gradual, Fig. 4(c). Finally, for axisymmetric compressive stress states
(L = 1), Figs. 4(e,f), the ductilities are significantly larger than the other two cases. Also,
the transition to inhomogeneous flow is accompanied neither with an abrupt stress drop
nor an acceleration in porosity growth. This effect has been highlighted as early as the
works of Gologanu et al. (2001) and Benzerga and Besson (2001). The behavior at high
triaxialities in Fig. 5 is qualitatively similar to Fig. 4, albeit the failure strains are much
smaller.

Now, we turn to the analytical model predictions. By definition, the uncoupled model
does not predict any softening in the effective response. The potential limitations of this
will be discussed further below. An immediate consequence, however, is that the stress–
strain response is independent of T and L. On the other hand, the porosity depends on the
loading parameters thanks to Eq. (30). The value of the Tvergaard parameter q = 1.25
in (30) is chosen such that the predicted porosity rates for axisymmetric tensile loading
paths approximately match the cell model simulations over a broad range of values of T .
The chosen value of q is in fact the same as in an earlier similar study by Koplik and
Needleman (1988). Notice that the same value of q also leads to a reasonable agreement
for the porosity rates at L = 0 with the cell model simulations, justifying the assumption
in Eq.(30) that void growth is Lode independent for negative values of L. The value of
the second heuristic parameter c = 1 is chosen such that the reduction in void growth
rates predicted by Eq.(30) for axisymmetric compression (L = 1) approximately matches
the cell model simulations over the same range of T .

Note that, in addition to T , L and f , the failure criterion of Eq.(23) depends on the

2except at T = 2/3 for which the ductility is lower in shear, a trend that is exacerbated at low
hardening capacity of the matrix.
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Figure 4: Comparison of the effective response of porous cells obtained from the cell model simulations of
Vishwakarma and Keralavarma (2019) (solid lines) and the uncoupled model (dotted lines) for moderate
values of the triaxiality T . Equivalent stress vs. strain: (a) L = −1 (c) L = 0 and (e) L = 1. Porosity vs.
equivalent strain: (b) L = −1 (d) L = 0 and (f) L = 1. The × marks indicate the onset of coalescence
in the cell model simulations, and the open circles mark the failure strains predicted by Eq.(23) in the
uncoupled model.
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Figure 5: Comparison of the effective response of porous cells obtained from the cell model simulations
of Vishwakarma and Keralavarma (2019) (solid lines) and the uncoupled model (dotted lines) for high
values of the triaxiality T . Equivalent stress vs. strain: (a) L = −1 (c) L = 0 and (e) L = 1. Porosity vs.
equivalent strain: (b) L = −1 (d) L = 0 and (f) L = 1. The × marks indicate the onset of coalescence
in the cell model simulations, and the open circles mark the failure strains predicted by Eq.(23) in the
uncoupled model.
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Figure 6: Comparison of the effective response of porous cells subjected to axisymmetric tensile loading
(L = −1) obtained from the cell model simulations of Vishwakarma and Keralavarma (2019) for cell
aspect ratios α = 2 (solid lines) α = 1 (dashed lines) and the uncoupled model (dotted lines): (a)
equivalent stress vs. strain, and (b) porosity vs. equivalent strain. The × marks indicate the onset of
coalescence in the cell model simulations, and the open and filled circles mark the failure strains predicted
by Eq.(23) for α = 2 and α = 1, respectively.

porosity in the coalescence band fb, which can be approximately related to the porosity f
as fb = f 2/3 in a statistically isotropic material containing a random distribution of voids.
However, for a tetragonal lattice with cell aspect ratio α = 2, coalescence always occurs
along the close packed direction of voids due to the smaller initial ligament thicknesses.
Assuming that the thickness of the coalescence band scales with the size of the voids, this
leads to the relation (Vishwakarma and Keralavarma, 2019)

fb = (2f)2/3 (35)

The remaining equations in Section 2 remain unchanged irrespective of the distribution
of the voids. The predicted failure strains using the uncoupled model are shown using the
open circles in Figs. 4-5. It is clear that the model predictions are in good quantitative
agreement with the triaxiality dependence of the coalescence strains observed in the cell
model simulations, although the ductility is underestimated for axisymmetric compression
(L = 1) for T > 1. In fact, failure strains predicted by the instability criterion for
axisymmetric compression are in closer agreement with the maximum in the true stress-
strain response rather than the onset of coalescence in the cell model simulations. This
could be partially due to the choice of the cell aspect ratio α = 2, which effectively
prevents the occurrence of coalescence in columns.

The effect of the cell aspect ratio is now examined for the case L = −1 (axisymmetric
tension), for which cell model results are available for both cubic (α = 1) and tetragonal
(α = 2) distributions of voids. Fig. 6 compares the equivalent stress-strain and poros-
ity growth curves for α = 2 (solid lines) and α = 1 (dashed lines). As is known from
earlier cell model studies, the effective response is independent of void distribution at
small plastic strain and porosity levels; although the cell aspect ratio has a significant
influence on the onset of coalescence marked by the × symbols. Irrespective of the triax-
iality, coalescence occurs earlier for α = 2 compared to α = 1 due to the smaller initial
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Figure 7: Strain to failure εfeq versus (a) the stress triaxiality T , and (b) Lode parameter L, obtained
from the cell model simulations of Vishwakarma and Keralavarma (2019) (points) and the uncoupled
model (dashed lines) for f0 = 0.001 and a power law hardening material with n = 0.1.

ligament thicknesses along the transverse direction of the unit cell. The uncoupled model
predictions are shown using dotted lines in Fig. 6, where the strains to failure are marked
by the open circles for α = 2 and filled circles for α = 1. The uncoupled model captures
the effect of void distribution on the strains to failure, although there is an apparently
significant quantitative discrepancy with the cell model results for the case T = 2. Further
investigation shows that the localization indicator for T = 2 and α = 1 showed significant
oscillations and a tendency towards localization at lower plastic strains (see Vishwakarma
and Keralavarma, 2019, Fig.3c), closer to the prediction from the uncoupled model, al-
though the ad hoc critical value of the localization indicator was only attained later. As
mentioned previously, detection of the onset of coalescence turns out to be more difficult
for the case of the cubic void distribution, which is the reason for adopting the tetragonal
cell aspect ratio in the recent 3D cell model studies. All the fracture loci shown in the
rest of this paper are obtained for α = 2.

Fig. 7(a) shows cross-sections of the failure locus in the plane of the triaxiality T and
the strain to failure εfeq for the three values of L examined in Figs. 4 and 5. On the
other hand, Fig. 7(b) shows cross-sections of the same failure locus in the L–εfeq plane for
various values of T . Note that intermediate values of L are used, which were not included
in previous plots. The equivalent strains to the onset of coalescence in the cell model
simulations are shown using line-points, while the dashed lines show predictions from the
uncoupled model. All the curves in Figs. 7(a,b) are characteristic of the same “material”
for which f0 = 0.001 and n = 0.1. The qualitative as well as quantitative variation of
the strain to failure with T and L is well reproduced by the model. In particular, the
uncoupled model captures the exponential decrease of the ductility with T irrespective
of the value of L, the relatively minor effect of L on the strains to failure in the range
−1 ≤ L ≤ 0, and the significant increase in ductility for L = 1 towards lower values of T .

As discussed previously, the strain to failure is determined by the competition between
strain hardening in the matrix and the softening due to void growth in the coalescence
band, as quantified by the first and second terms, respectively, in Eq.(23). As such,
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Figure 8: Strain to failure εfeq versus (a) the stress triaxiality T , and (b) Lode parameter L, obtained
from the cell model simulations of Vishwakarma and Keralavarma (2019) (points) and the uncoupled
model (dashed lines) for f0 = 0.001 and a power law hardening material with n = 0.01.

the strain hardening behavior of the matrix has a significant influence on the ductility
predictions obtained using the uncoupled model (c.f. Fig. 2). The simulated and predicted
failure loci, projected onto the T -εfeq and L-εfeq planes, are compared in Figs. 8(a) and
(b) respectively, for a very low strain hardening capacity n = 0.01. The reduced strain
hardening capacity has a dramatic effect on the ductility under generalized shear loading
conditions, with significantly lower strains to failure predicted for loading paths with
|L| ≪ 1 compared to axisymmetric loading paths, irrespective of the value of T . This is a
consequence of the fact that porous microstructures favor early strain localization under
generalized shear loading paths. In the absence of significant strain hardening, which
stabilizes plastic flow, strain localization in the ligaments occurs at very small plastic
strains, consistent with the cell model simulations. Note that the predicted values of the
strain to failure using the uncoupled model are again in good quantitative agreement with
the results of cell model simulations.

Next, we assess the model against the simulations of Dunand and Mohr (2014) who
considered lower triaxialities in the range 0.2 ≤ T ≤ 1 and a Voce-like saturation strain
hardening model for the matrix, specified in rate form as

σ̄(εpeq = 0) = σ0, H(εpeq) = H0

(

1− σ̄

σ∞

)r

(36)

where H(εpeq) =
∂σ̄
∂εpeq

is the instantaneous hardening rate. The material parameters were

E = 185 GPa, ν = 0.3, σ0 = 450 MPa, σ∞ = 1.2 GPa, H0 = 20 GPa and r = 2. These
authors also considered a tetragonal cell with α = 2 and initial porosity f0 = 0.007. In
addition, they accounted for the deformation induced rotation of the principal axes of
the void, by ensuring that the orientation of the principal axes of the void remains fixed
relative to the principal axes of loading.

Fig. 9 shows the comparison between the strains to failure obtained from the cell model
simulations of Dunand and Mohr (2014), and the uncoupled model based on criterion (23)
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Figure 9: Comparison between the cell model simulations of Dunand and Mohr (2014) for the strain to
failure εfeq as a function of the Lode parameter L for several values of the stress triaxiality T ≤ 1 (line-
points) and predictions from the uncoupled model (dashed lines). The initial porosity was f0 = 0.007
and strain hardening in the matrix is given by Eq.(36).

supplemented with the pre-coalescence Mises plasticity model, the band hardening equa-
tion (36) and the porosity growth law (30). The comparison is depicted in the plane of
strain to failure versus Lode parameter. The model predictions are in good quantitative
agreement with the Lode dependence of the ductility observed in the cell model results
for values of T ≥ 0.5. However, for a low value of T = 0.3 (close to uniaxial tension), the
model appears to significantly underestimate the ductility towards axisymmetric loading
paths with |L| ∼ 1. This is most probably a consequence of induced anisotropy due to
void shape evolution, whose effect becomes much more significant at low triaxiality levels
when porosity growth is slow.

Axisymmetric cell model simulations indicate that under uniaxial tension with T =
1/3, significant void distortion occurs, although the porosity growth rate is negligible; and
void coalescence does not occur up to very large strains, consistent with the results in
Fig. 9. Based on this observation, Thomas et al. (2016) have proposed a modification of
the void growth law of the form

ḟ = κf sinh [κ (T − 1/3)] ˙εpeq (37)

where the limiting value of the parameter κ ≈
√
3 for highly prolate spheroidal voids,

obtained from void shape dependent models, is to be used at low triaxialities. However,
the above modification entails that the damage growth rate asymptotes to zero at T = 1/3
irrespective of the value of the Lode parameter. On the other hand, the results of Fig. 9
show that the predicted strains to failure using damage law (30) remain accurate for shear
dominated loading paths with |L| ≪ 1, even for triaxialities as low as T = 0.3. This result
essentially points to the limits of applicability of isotropic models in predicting fracture
at low triaxialities.
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To further illustrate this point, consider some limit cases of the failure criterion (23).

Note that the terms −∂FC

∂σ̄b
, ∂FC

∂f
and Qp in (23) are always positive, while H and Qf

can have either sign. For a non-hardening or softening matrix (H ≤ 0), localization
is predicted at the onset of inhomogeneous loading if Qf ≥ 0. On the other hand, if
damage growth is negative or zero (Qf ≤ 0), localization never occurs if the matrix
exhibits positive strain hardening (H > 0). This limitation of the model results from
the assumption of isotropy (neglect of void shape changes), and failure is not predicted
under certain low triaxiality loading paths such as pure shear or uniaxial compression.
Anisotropic models that accurately capture void shape effects on damage growth are
needed to predict failure under low triaxiality (T ≤ 1/3) loading paths such as pure shear
(see Torki and Benzerga, 2018), which is outside the scope of the present paper.

4. Discussion

Several issues are now addressed, which concern the basis of the uncoupled model, its
suitability for engineering practice, the insights it provides on the failure of ductile solids,
and its domain of validity.

4.1. Strain localization versus void coalescence

The concept of ductile failure as a plastic instability is not new. It has been the
prevalent view ever since the Gurson model (1977) and Rice’s localization theory (1976)
have concurrently emerged as potent frameworks for analyzing ductile fracture. The
rationale is that porosity-induced strain softening can lead to loss of ellipticity of the
incremental problem in rate-independent plasticity. Furthermore, most cell model studies
to date exhibit a maximum in the true stress long before the onset of void coalescence
by micro-scale flow localization. The intrinsic softening thus leaves the possibility wide
open for a macroscopic instability to set an effective limit on ductility. Examples of
localization analyses that employed constitutive relations for porous plastic solids go back
to Yamamoto (1978); Needleman and Rice (1978); Ohno and Hutchinson (1984); Perrin
(1992); Ponte Castañeda and Zaidman (1994); Rousselier (1991) and more recently Danas
and Ponte Castañeda (2012); Morin et al. (2019).

The key question is: what is the most appropriate structure of the porous material’s
constitutive relation to be used in a localization analysis of this sort? For the sake of
discussion, it is both useful and necessary to adopt the recently introduced terminology of
homogeneous yielding for void-growth dominated plasticity versus inhomogeneous yielding
for either void-coalescence dominated plasticity or void-distortion under shear-dominated
loadings (Torki and Benzerga, 2018). The viewpoint underlying the recent development
of porous material plasticity models (see Keralavarma and Chockalingam 2016; Torki
et al. 2015 and references therein) is that a constitutive relation that accounts a priori

for the potential competition between homogeneous yielding and inhomogeneous yielding
is necessary to settle some of the outstanding issues in ductile fracture modeling. In
particular, whether ductility is limited by plastic instability or by void impingement can
only be ascertained when a suitable framework of this sort is available.

An obvious, albeit non-trivial, alternative to the above line of investigations is to not
rely on any constitutive description of the behavior of a porous material, and explore fully
computational solutions. Direct numerical simulations of this kind are still not accessible
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enough to draw unequivocal conclusions. In order to discriminate mesoscale inhomoge-
neous yielding from macroscopic plastic instabilities (shear bands), such simulations need
to involve many voids and be three-dimensional while exploring the space of remote stress
states. An effort in this direction has recently been attempted by Tekoğlu et al. (2015)
who carried out an imperfection band analysis, and hence did not address the compe-
tition between inhomogeneous yielding and strain localization. Instead, they examined
how early the onset of void coalescence would occur after macroscopic strain localization.
They found that the outcome depends on stress triaxiality, and this rather curious result
seems to be rooted in their ad hoc definition of the onset of void coalescence.

Another outstanding issue is that of what role, if any, does a nonuniform void distribu-
tion play on the effective response of a porous plastic solid and, by way of consequence, on
the aforementioned competition between plastic instability and failure by void impinge-
ment. In spite of numerous previous attempts at tackling this issue, it is fair to say that
it remains largely unsettled. Notwithstanding this difficulty, it is likely that nonuniform
void distributions would have a negligibly small effect on homogeneous yielding and a
potentially large effect on inhomogeneous yielding (see the appendix of Benzerga 2002).
This in itself hints at the need for the recently developed line of inhomogeneous yielding
models.

In this paper, failure by plastic instability has been investigated using an isotropic,
multi-surface porous plasticity model. In doing so, we have also used recent results by
Vishwakarma and Keralavarma (2019) who have shown that Rice’s localization condition
is actually not met until inhomogeneous yielding sets in. This was shown under various
loading programs in terms of driving stress triaxiality and Lode parameter values. This
result has fundamental consequences in light of the above discussion, and ought to be
re-examined when void distribution effects can be studied. The result also has a profound
practical importance, especially since the strain at the onset of plastic instability as well
as the orientation of the localization plane were both found to be close to their microscopic
counterparts at the onset of coalescence. This aspect has been taken advantage of here,
in developing a triaxiality and Lode parameter dependent failure criterion.

4.2. Structure of failure criterion

The development of failure criteria that are simple enough to be widely adopted in
engineering practice has value. A key question relates to the structure of the said failure
criterion. A recent line of models seems to have accepted that a critical strain criterion
is the format by default. Typically, a stress-based criterion is assumed, which is then
transformed using the hardening law into a space of the failure strain εfeq, triaxiality T
and the Lode parameter L (Bai and Wierzbicki, 2008; Dunand and Mohr, 2011). The
validity of several assumptions underlying such transformations are little discussed and
are much more constraining than may be thought.

Importantly, failure criteria based solely on attainment of a critical strain cannot
account for the loading history dependence of damage growth, which is a strongly non-
linear function of the plastic strain as determined from experiments and micromechanical
analysis. Hence, such models are restricted to proportional or nearly proportional load-
ing histories; though such restrictions are rarely heeded in practice. Alternative criteria
based on attainment of a critical value of the damage parameter, such as the porosity,
coupled with a history dependent damage evolution law, can account for the loading path
dependence. However, such models are also limited in their ability to account for the in-
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fluence of the matrix plastic behavior, specifically the strain hardening law, on the critical
conditions for failure. Damage growth models such as (30) are only weakly dependent
on strain hardening through the pre-localization plasticity model. However, the strains
to failure in the cell model simulations depend strongly on strain hardening, especially
under shear dominated loading conditions (c.f. Figs. 7-8).

Instability based failure criteria, such as the one developed here, falls into neither of
the above categories; and can account for the competition between strain hardening and
void growth induced softening, which determines the critical conditions for failure in the
cell model simulations. For the special case of proportional loading, the void growth law
can be integrated in closed form to write the porosity as an explicit function of the total
plastic strain, Eq.(31); and the failure criterion can be expressed in the space of εfeq, T
and L, analogous to the critical strain models; see Eq.(32).

The importance of performing the instability analysis on a plasticity model that ac-
counts for inhomogeneous yielding at the microscale can be seen by examining the results
of Danas and Ponte Castañeda (2012), who performed a similar localization analysis us-
ing a void shape dependent plasticity model assuming diffuse yielding at the microscale.
Their conclusion was that void shape evolution leads to a monotonic reduction in ductility
as a function of L from −1 to 1, and that strain hardening in the matrix had little influ-
ence on the strain at which loss of ellipticity is predicted. Both the above conclusions are
contrary to the results of cell model simulations, indicating that it is essential to account
for inhomogeneous yielding at the mesoscale prior to carrying out a localization analysis.

4.3. Origin of stress-state dependence

A major advantage of failure criterion (23) over phenomenological criteria is its mi-
cromechanical basis. It thus enables the stress-state dependence to be analyzed for both
the intrinsic fracture locus as well as, in time, of apparent fracture loci, as accessed in
laboratory experiments.

There are two distinct but related causes for the Lode dependence of the limit strain.
The first lies in the growth of damage, as embodied in the modified porosity evolution
equation (30). When all is accounted for, this contribution is relatively small, parameter-
ized and not fully intrinsic.

That the effect of L on porosity growth is small can be seen in two ways. For a frozen
microstructure, constrained to remain isotropic, refined analyses of Gurson’s hollow sphere
problem show that the effect of L on the effective yield surface is secondary relative to
that of T (Leblond and Morin, 2014; Benallal et al., 2014). On the other hand, in actual
evolution problems, as in cell model analyses, the cumulated effect remains small for
−1 ≤ L ≤ 0 and may become noticeable when L approaches 1; see Fig. 4 of Vishwakarma
and Keralavarma (2019). However, the latter effect is mostly due to induced anisotropy
so that any interpretation based on L would be ill-founded.

Thus, any significant effect of L on porosity growth is apparent, not intrinsic, and
manifests through void shape evolution effects. In order to account for this, within the
confines of an isotropic model, equation (30) introduces a Lode dependent term, which
aims at capturing the slow-down in void growth for L nearing 1. One consequence is
that equation (30) must be parameterized to represent a more complex situation where
induced anisotropy affects the outcome.

At this juncture, it is appropriate to compare the proposed evolution law (30) with
that introduced by Nahshon and Hutchinson (2008). First, in our formulation, the damage
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Figure 10: Comparison of the fracture loci in the L–εfeq plane predicted by the uncoupled model using
a Lode independent void growth law, Eq.(30) with c = 0, with the cell model simulation results of
Vishwakarma and Keralavarma (2019) for a power law hardening material with (a) n = 0.01 and (b)
n = 0.1.

variable f still has the physical meaning of a void volume fraction. This is not the case in
their model. Second, Nahshon and Hutchinson (2008) assume that damage grows faster
under shear states. This is inconsistent with cell model simulations. It should also be
noted that in their model all Lode dependence enters through the evolution equation of
the damage variable, whereas in the present model the proposed modification underlying
Eq. (30) is secondary, as will become evident below.

The second origin of the Lode dependence of ductile failure is rooted in the nature of
the limiting event: localization of plastic flow in a band whose orientation is determined
by the major and minor principal stresses. Given that the band is generally oriented close
to 45◦ between the maximum and minimum principal directions, the critical condition
for localization depends strongly on the relative magnitude of the shear stresses, or the
Lode parameter, in addition to the porosity and the instantaneous strain hardening rate
in the band. This contribution is embodied in failure criterion (23). It is large, not
parameterized and intrinsic. This is the most important insight gained from the present
analysis.

In order to fully appreciate this, one must first notice that the heuristic modification
of ḟ through Eq. (30) couples through the failure criterion (23). To apportion both
contributions, the fracture loci may be re-evaluated using c = 0 in Eq. (30), that is
using a Lode-independent porosity evolution law. The resulting predictions are compared
with the cell model simulation results in Fig. 10. The only noticeable degradation in the
predictions occurs for Lode parameter values near 1; as expected since L does not affect
the rate of porosity growth for L < 0 in the new law. In particular, the important effect
of strain hardening is captured regardless of the correction underlying Eq. (30).

The fracture loci predicted by the instability model (Figs. 7,8) are cross-sections of
general loci, as illustrated in Fig. 2. In particular, the strain to failure is found to be
a monotonically decreasing function of T for T > 1/3, irrespective of the value of L.
In fact, the model predicts such a trend over a wider range T > 0 with an asymptote

24



at T = 0. This is an artefact of neglecting anisotropic effects. If a mechanism were to
prevail in, say simple shear (T = 0, L = 0), so that a finite shear strain to failure can be
rationalized, then the failure locus could exhibit a non-monotonic trend with respect to
T over a wider range T ≥ 0. Such a mechanism is, however, inherently anisotropic (Torki
and Benzerga, 2018) and the proportional fracture locus would exhibit a discontinuity
at T = 1/3 (Torki, 2019). Such an inherently non-monotonic fracture locus should not
be conflated with apparent trends in experimental tests limited to plane stress loading
(Bai and Wierzbicki, 2008). Indeed, when such loci are shown as εfeq versus T , it must be
noted that the Lode parameter L is not kept constant. In addition, plane stress failure
is often mediated by shear bands, in which case the strain to failure is highly sensitive to
boundary conditions, not just the overall stress state.

4.4. Domain of validity

The simple uncoupled model developed here is applicable within a range of conditions
and under the assumption that the mechanism driving failure is void-mediated. With
this in mind, the model is not to be used without caution if (i) there is significant initial
or induced anisotropy; or (ii) failure is due to macroscopic strain localization requiring
multi-void analyses.

For simplicity, the model assumes isotropic damage growth and neglects void shape
effects, because of which it significantly underestimates the ductility under axisymmetric
loading paths at low T , such as uniaxial tension. Correcting for the above within an
isotropic framework requires additional phenomenological correction of the void growth
law beyond the Lode dependent second term in Eq.(30). While the modification proposed
by Thomas et al. (2016) is a step in this direction, the model developed here is not suitable
for prediction of ductile failure under very low triaxiality, say T ≤ 1/3.

The model also assumes isotropy in the distribution of voids, and requires correction
when microstructural features deem failure by void coalescence more likely along certain
directions than others. This is straightforward only when the direction of coalescence is
known a priori, as in the case of the tetragonal void distribution assumed in the cell model
studies. Often, void coalescence involves a few voids, e.g. at a crack tip, in which case
the local arrangement of voids implies anisotropic response. In principle, the uncoupled
approach adopted here can be generalized to account for anisotropic microstructures, at
the expense of simplicity.

5. Conclusion

A micromechanics-based constitutive relation for porous plastic solids is used together
with a plastic instability criterion to develop a stress state dependent criterion for ductile
failure. Along with a damage-free plasticity model and a Lode-dependent, uncoupled
model of void growth, it is demonstrated that the new model can quantitatively predict
the strains to failure obtained from voided cell simulations over a wide range of loading
paths and strain hardening properties.

• The failure criterion depends on the stress triaxiality T and the Lode parameter L,
in addition to the porosity and the strain hardening behavior of the material. The
T and L dependence appears through the normal and shear stresses on the plane of
localization, whose normal is assumed to lie in the plane defined by the major and
minor principal stresses.
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• The functional form for the failure criterion is obtained by combining an isotropic
version of the void coalescence criterion of Keralavarma and Chockalingam (2016)
together with the plastic instability criterion of Rice (1976). The final form of the
criterion, Eq.(23), clearly shows that failure occurs as a result of the competition be-
tween the strain hardening and void growth induced softening inside the coalescence
band.

• A Lode-dependent correction is proposed for the void growth law obtained from the
Gurson model. Under proportional loading, the void growth law can be integrated to
write the porosity as a function of the plastic strain, which is then used to derive an
implicit equation for the failure locus in the mixed space of T , L and the equivalent
strain to failure εfeq.

• The proposed model is shown to yield quantitative accurate predictions for the
strains to failure obtained from voided cell simulations, for moderate to large values
of T and a wide range of values of L, as a function of the strain hardening parameters
of the material.

• The proposed model can be further extended by adopting a coupled approach
whereby the Gurson model is used as a pre-localization constitutive relation. When
induced anisotropy effects are important, such as under simple shear, anisotropic
multisurface models may be employed.
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