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Abstract

Anycast is an internet addressing protocol where multiple hosts share the same

IP-address. A popular architecture for modern Content Distribution Networks

(CDNs) for geo-replicated services consists of multiple layers of proxy nodes for

service and co-located DNS-servers for load-balancing among different proxies.

Both the proxies and the DNS-servers use anycast addressing, which offers sim-

plicity of design and high availability of service at the cost of partial loss of routing

control. Due to the very nature of anycast, redirection actions by a DNS-server

also affects loads at nearby proxies in the network. This makes the problem of op-

timal distributed load management highly challenging. In this paper, we propose

and evaluate an analytical framework to formulate and solve the load-management

problem in this context. We consider two distinct algorithms. In the first half

of the paper, we pose the load-management problem as a convex optimization

problem. Following a Kelly-type dual decomposition technique, we propose a

fully-distributed load-management algorithm by introducing FastControl packets.

This algorithm utilizes the underlying anycast mechanism itself to enable effec-

tive coordination among the nodes, thus obviating the need for any external con-

trol channel. In the second half of the paper, we consider an alternative greedy
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load-management heuristic, currently in production in a major commercial CDN.

We study its dynamical characteristics and analytically identify its operational and

stability properties. Finally, we critically evaluate both the algorithms and explore

their optimality-vs-complexity trade-off using trace-driven simulations.

Keywords: Performance Analysis; Decentralized and Distributed Control;

Optimization

1. Introduction

With the advent of ubiquitous computing and web-access, the last decade has

witnessed an unprecedented growth of Internet-traffic. Popular websites, such

as bing.com, registers more than a billion hits per day, which need to be pro-

cessed efficiently in an online fashion, with as little latency as possible. Content

Distribution Networks (CDN) are de facto architectures to transparently reduce

latency between the end-users and the web-services. In CDNs, a collection of

non-origin servers (also known as proxies) attempt to offload requests from the

main servers located in the data-centers, by delivering cached contents on their

behalf [13]. Popular examples of internet services using CDN includes web ob-

jects, live-streaming media, emails and social networks [23]. Edge-servers with

cached contents serve as proxies to intercept some user requests and return con-

tents without a round-trip to the data-centers. Online routing of user-requests to

the optimal proxies remains a fundamental challenge in managing modern CDNs.

Routing to a remote proxy may introduce extra round-trip delay, whereas routing

to an overloaded proxy may cause the request to be dropped.

Anycast is a relatively new paradigm for CDN-management and there are al-

ready several commercial CDNs in place today using anycast [8], [6], [26]. With

anycast, multiple proxy-servers, having the same user-content, share the same

IP-address. Anycast relies on internet-routing protocols (such as, BGP) to route

service-requests to any one of the geo-replicated proxies, over a cheap network-

path [28]. Anycast based mechanisms have the advantage of being simple to

deploy and maintain. Being available as a service in IPv6 networks, no global

topology or state information are required for its use [2].

Although anycast routing can simplify the system-design and provide a high

level of service-availability to the end-users [22], it comes at the cost of partial

loss of routing-control. This is because, a user-request may be routed to any one

of the multiple geo-replicated proxies having the same anycast address. Since

the user-to-proxy routing is done by the Internet routing protocols, which is not
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Proxy 1

IP: 192.168.0.1

Proxy 2

IP: 192.168.0.1

User 1

User 2

192.168.0.1

192.168.0.1

DNS server

Figure 1: An example of Anycast-enabled CDN. User 1 and 2 obtain the anycast IP-address from

the DNS server (blue-dotted arrow) and are then routed over the Internet either to Proxy 1 or to

Proxy 2 for service (red solid arrow). Note that both proxies have the same IP-address (Anycast

addressing). The fraction of users landing on a given proxy is dictated by the Internet routing

protocols and is beyond the control of CDN operators. This lack of load-awareness often leads to

overloading of certain proxies.

under the control of the CDN-operator, the user-request may end up in an already

overloaded proxy, deteriorating its loading-condition further. Figure 1 illustrates

the problem of load-management with Anycast.

There have been several attempts in the literature to cope up with the lack of

load-awareness issue with network-layer anycast. Papers [16], [9] consider “Ac-

tive Anycast” where additional intelligence is incorporated into the routers based

on RTT and network congestion. It is specifically targeted to reduce pure latency

rather than server overload, thus yielding sub-optimal performance in a CDN set-

ting. Alzoubi et al. [1] formulates the anycast load-management problem as a

General Assignment Problem, which is NP-hard. The paper [10] proposes a new

CDN architecture which balances server-load and network-latency via detailed

traffic engineering.

In this paper, we focus our attention to a state-of-the-art CDN-architecture,

such as FastRoute [8], which uses DNS-controlled-redirection for overload con-

trol in the proxies. Since DNS (Domain Name System) is the first point-of-contact

of users to the internet, DNS-redirection is a popular and effective way to miti-

gate overload [19], [24]. In this architecture, the proxies are logically arranged

in layers of anycast rings, with each layer having a distinct Anycast IP-address.
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See Figure 3 for an example. The provisioned capacities of the proxies increase

as we move from the outer-layers to the inner-layers of the anycast rings. DNS is

responsible for moving load across different layers by intelligently responding to

users with different anycast addresses. Each proxy is equipped with a co-located

authoritative DNS server. We will collectively refer to a proxy and its co-located

DNS-server simply as a node. Figure 2 and Figure 3 provide a high-level overview

of the proposed CDN-architecture.

An overload is said to occur when any proxy receives more service-requests

than its processing-capacity. Since DNS is the primary control knob in this archi-

tecture, each DNS-server at a node is responsible for redirecting traffic to other

layers to alleviate overload in the co-located proxy. A fundamental problem with

this approach is that not all users, that hit a given proxy, can be redirected success-

fully by the co-located DNS. This is because, due to anycast routing, DNS-path

and the data-flow paths are independent. Hence, an user’s Local DNS (LDNS)

could be obtaining a DNS-response from some authoritative DNS-server in a

node, which is different from the DNS server co-located with the proxy which

the user hits. An example is shown in Figure 2. Hence, intuitively, the ability for

a DNS-server at a node to control overload at the corresponding co-located proxy

depends on the fraction of oncoming traffic to the proxy that are routed by the co-

located DNS-server to the node itself. Informally, we refer to the above quantity

as the self-correlation [8] of a given node. A formal definition of correlation in

this context will be given in Section 2.

Poor self-correlation could impair a node’s ability to control overload in iso-

lation. Hence, successful load management in layered CDN should involve coor-

dinated action by DNS-servers in multiple nodes to alleviate overload. Thus the

problem reduces to the DNS-plane determining the appropriate offload or redirec-

tion probabilities at each node to move traffic from the overloaded proxies to the

next layer. This control-decision could be based on variety of information such as

load on each proxy, DNS-HTTP correlation etc. From a practical point of view,

not all of these quantities are easily measured and communicated to wherever is

needed. Thus a centralized solution is not practically feasible and the challenge is

to design a provably optimal, yet completely distributed load management algo-

rithm.

Our key contributions in this paper are as follows:

• In section 2, we present a simplified mathematical model for DNS-controlled

load-management in modern anycast-based CDNs. Our model is general

enough to address the essential operational problems faced by the CDN-



5

Node 1

Co-located Co-located
DNS Proxy

User

Co-located Co-located
ProxyDNS

C12

Node 2

Figure 2: Two FastRoute CDN nodes with their corresponding co-located DNS and Proxy servers.

Note that, although the user gets served by the proxy at Node 2, it obtains the anycast IP-address

from the DNS server at Node 1. Thus, in case of overload, this user can not be redirected from

node 2 by altering the DNS-response from the co-located DNS server at node 2.

operators yet tractable enough to draw meaningful analytical conclusions

about its operational characteristics.

• In section 3, we formulate the load management problem as a convex op-

timization problem and propose a Kelly-type dual algorithm [11] to solve

it in a distributed fashion. The key to our distributed implementation is the

Lagrangian decomposition and the use of FastControl packets, which ex-

ploits the underlying anycast architecture to enable coordination among the

nodes in a distributed fashion. To the best of our knowledge, this is the

first instance of such a decomposition technique employed in the context of

load-management in CDNs.

• In section 4, we consider an existing heuristic load-management algorithm

used in FastRoute, Microsoft's CDN for many first party websites and ser-

vices it owns [15]. We model the dynamics of this heuristic using non-linear

system-theory and analytically derive its operational characteristics, which

conform with the qualitative observations. To provide additional insight, a

two-node system is analyzed in detail and it is shown, rather surprisingly,

that given the “self-correlations” of the nodes are sufficiently high, this

heuristic load-management algorithm is able to control an incoming-load

of any magnitude, however large. Unfortunately, this theoretical guarantee
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L1

L1

Node 1

Node 2

L2

L2

(Node= Proxy+ Co-located DNS-server)

Users

Figure 3: A CDN architecture with two anycast layers. Solid arrows denote user’s DNS path.

Node 1’s DNS returns the anycast address for Layer 1, so, due to anycast, the user gets redirected

to other nodes in L1. Node 2’s DNS returns the anycast address for L2. So the user is redirected

to the data-center.

breaks down once this correlation property no longer holds. In this case, the

dual algorithm proposed in section 3 performs better than the heuristic.

• In section 5, we critically evaluate relative performance-benefits of the pro-

posed optimal and the heuristic algorithm through extensive numerical sim-

ulations. Our simulation is trace-driven in the sense we use real correlation

parameters collected over months from a large operational CDN [8].

2. System Model

Nodes and Layers: We consider an anycast-based CDN system consisting of

two logical anycast layers: primary (also referred to as L1) and secondary (also

referred to as L2). See Figure 3 for a graphic depiction. The primary layer (L1)

hosts a total of N nodes. Each node consists of a co-located authoritative DNS and

a proxy server. See Figure 2 for a schematic diagram. The proxy servers are the

end-points for user-requests (e.g. HTTP). The ith proxy has a (finite) processing-

capacity of Ti user-requests per unit time. The secondary layer (L2) consists of a

single data-center, with practically infinite processing-capacity. Since the proxies

in L1 are geographically distributed throughout the world, an average user is typi-

cally located near to at least one proxy, resulting in relatively small user-to-proxy

round-trip latency. On the other hand, the single data-center in L2 is typically

located further from the average user-base, resulting in significantly high user-to-

data-center round-trip latency. Total response time for a user is the sum of round-



7

trip latency and processing time of the server (either proxy or the data-center),

which we would like to minimize.

Anycast Addressing : As discussed earlier, all proxies in the primary layer

share the same IP-address I1 and the data-center in L2 has a distinct IP-address

I2. This method of multiple proxies sharing the same IP-addresses is known as

anycast addressing and is widely used for geo-replicated cloud services [27], [1].

Control actions : When a DNS-request by an user 1 arrives at a node i in L1,

requesting for the IP-address of a server, the co-located DNS-server takes one of

the following actions

• (1) It either returns the address I2 (which offloads the user-request to the

data-center) or,

• (2) it returns the anycast address I1 (which, instead, serves the user-request

in some proxy in the primary layer L1 itself).

This (potentially randomized) binary decision by the co-located DNS-server of

node i could be based on the following local variables measurable at node i :

1. DNS-influenced request arrival rate at node i’s co-located DNS-server,

denoted by Ai requests per unit time2. Each DNS-request accounts for a

certain amount of user-generated load which is routed to L1 or L2 according

to the DNS-response by node i; We normalize Ai so that each unit of Ai

corresponds to a unit of user-load; As an example, if 10% of DNS responses

at node i returns the address I2, then the total amount of load shifted to the

data-center (L2) due to node i’s DNS is 0.1Ai.

2. User-load arrival rate at node i’s co-located proxy, denoted by Si(t) re-

quests per unit time. This is clearly a function of the DNS-arrivals Ai’s

and the redirection-decisions of the co-located DNS of different nodes (See

Eqn.(2)). The variable Si(t) is available locally at node i (e.g., HTTP

connection-request arrival-rates at the co-located proxy-server, in case of

web-applications). We assume that the workloads induced by different user-

requests have very small variability (which is true for web search query

traffic, e.g.).

1In the Internet DNS-requests are actually generated by the Local DNS (LDNS) of the user and

are recursively routed to an authoritative DNS server. However, to keep the model and the analysis

simple, we will assume that individual DNS-queries are submitted by the users themselves.
2We assume that Ai’s are piecewise constant and do not change considerably during the tran-

sient period of the load-management algorithms discussed here.
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Anycasting and inter-node coupling: When a DNS-request arrives at a node

i and the co-located DNS-server returns the L1 anycast-address I1, the corre-

sponding user-request may be routed to any of one of the N proxy-servers (all

having the same IP-address I1) in the primary layer for service. The particular

proxy, where the user-request actually gets routed to, depends on the correspond-

ing ISP’s routing policy, network congestion and many other factors. We assume

that a typical DNS-query, which is routed to L1 by the node i, lands at node j’s

proxy for service with probability Cij , where

N
∑

j=1

Cij = 1, ∀i = 1, 2, . . . , N (1)

In our system, we have determined the matrix C ≡ [Cij] empirically by setting

up an experiment similar to the one described in [24], using data collected over

several months.

In the ideal case, we would like to have C ≈ I , where I is the N ×N identity

matrix. In this case, the nodes operate in an isolated fashion and situations like

Figure 2 rarely takes place. However, as reported in [8], in real CDN-systems

with ever-increasing number of proxies, the node are often highly-correlated. In

this paper, we investigate the consequences that arise from non-trivial correlations

among different nodes and its implications for designing load-management algo-

rithms for CDNs.

System Equations: Assume that, due to action of some control-strategy π,

the co-located DNS at node i decides to randomly redirect 1 − xπ
i (t) fraction of

incoming DNS-queries (given by Ai) to Layer L2 at time t (0 ≤ xπ
i (t) ≤ 1). Thus

it routes xπ
i (t) fraction of the incoming requests to different proxies in the layer

L1. Hence the total user-load arrival rate, Si(t), at node i’s co-located proxy may

be written as

Si(t) =
N
∑

j=1

CjiAjx
π
j (t), ∀i = 1, 2, . . . , N (2)

A local control strategy π is identified by a collection of mappings π =

(

xπ
i (·), i =

1, 2, . . . , N

)

, given by xπ
i : Ωt

i × t→ [0, 1], where Ωt
i is the set of all observables

at node i up to time t.
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3. An Optimization Framework

3.1. Motivation

The central objective of a load-management policy π in a two-layer Anycast-

CDN is to route as few requests as possible to the Data-Center L2 (due to its high

round-trip latency), without overloading the primary-layer L1 proxies (due to their

limited capacities). Clearly, these two objectives are at conflict with each other

and we need to find a suitable compromise. The added difficulty, which makes

the problem fundamentally challenging is that, each node is an autonomous agent

and takes its redirection decisions on its own, based on its local observables only.

As an example, a simple locally-greedy heuristic for node i would be to redirect

requests to L2 (i.e. decrease xi(t)) whenever its co-located proxy is overloaded

(i.e., Si(t) > Ti) and redirect requests to L1 (i.e., increase xi(t)) whenever the

co-located proxy is under-loaded (i.e., Si(t) < Ti). This policy forms the basis of

the greedy control-strategy used in [8].

This greedy strategy appears to be quite appealing for deployment, due to its ex-

treme simplicity. However, in the next subsection 3.2, we show by a simple exam-

ple that, in the presence of significantly high cross-correlations among the nodes

(i.e. non-negligible value of Cij, i 6= j), this simple heuristic could lead to an

uncontrollable overload situation, an extremely inefficient operating point with

degraded service quality. This example will serve as a motivation to come up with

a more efficient distributed load-management algorithm, that we develop subse-

quently.

3.2. Locally Uncontrollable Overload: An Example

Consider a two-layered CDN, hosting only two nodes a and b in the primary

layer L1, as shown in Figure 4. The (normalized) DNS-request arrival rates to the

nodes a and b are Aa = 1 and Ab = 1. Suppose the processing capacities (also

referred to as thresholds) of the co-located proxies are Ta = 0.7 and Tb = 0.7
respectively. With the correlation components [Cij] as shown in Figure 4, the

user-loads at the co-located proxies are given as

Sa(t) = 0.1xa(t) + 0.5xb(t) (3)

Sb(t) = 0.9xa(t) + 0.5xb(t) (4)

Since 0 ≤ xa(t), xb(t) ≤ 1, it is clear that under any control policy x(t) the

following holds

Sa(t) ≤ 0.1× 1 + 0.5× 1 = 0.6 < 0.7 = Ta, ∀t
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a b
Caa

= 0.1

Cab = 0.9

Cba = 0.5

Cbb = 0.5

Aa = 1 Ab = 1

Ta = 0.7

xa(t) xb(t)

Tb = 0.7

L1

Traffic to
L2

Aa(1− xa(t))

Traffic to
L2

Ab(1− xb(t))

Figure 4: A two-node system illustrating locally uncontrollable overload at the node b

Thus, the proxy at node a will be under-loaded irrespective of the load-management

policy π in use. Consequently, under the greedy-heuristic (formally, Algorithm 2

in Section 4), the co-located DNS-server at node a will greedily increase its L1

redirection probability xa(t) such that xa(t) ր 1 in the steady-state (note that,

node a acts autonomously as it does not have node b’s loading information). This,

in turn, overloads the co-located proxy in node b because the steady-state user-

load at proxy b becomes

Sb(∞) = 0.9xa(∞) + 0.5xb(∞)

= 0.9× 1 + 0.5xb(∞)

≥ 0.9 > 0.7 = Tb.

Since node b is overloaded in the steady-state, under the action of the above

greedy heuristic, it will (unsuccessfully) try to avoid the overload by offloading

the incoming DNS-queries to L2, as much as it can, by letting xb(t) ց 0. Thus

the steady-state operating point of the algorithm will be xa(∞) = 1, xb(∞) = 0,

with node b overloaded. It is interesting to note that poor self-correlation of node

a (Caa = 0.1) causes the other node b to overload, even under the symmetric

DNS-request arrival patterns. Also, this conclusion does not depend on the de-

tailed control-dynamics of the offload probabilities (viz. the instantaneous values

if ẋ1(t) and ẋ2(t)). Since the overload condition at the node-b can not be overcome

by isolated autonomous action of node-b itself, we say that node-b is undergoing

a locally uncontrollable overload situation.

From the CDN-system point-of-view, the above situation is an extremely ineffi-

cient operating-point, because a large fraction (45% in the above example) of the

incoming user-requests either gets dropped or severely-delayed due to the over-

loaded node-b. This poor operating point could have been potentially avoided
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provided the nodes somehow mutually co-ordinate their actions3. It is not diffi-

cult to realize that the principal reasons behind the locally uncontrollable overload

situation in the above example are as follows:

• (1) distributed control with local information

• (2) poor self-correlation of node a (Caa = 0.1)

The factor (1) is fundamentally related to the distributed nature of the system and

requires coordinations among the nodes. In our distributed algorithm [1] we ad-

dress this issue by introducing the novel idea of FastControl packets. This strategy

does not require any explicit state or control-information exchange.

Regarding the factor (2), we intuitively expect that the local greedy-heuristic

should work well if the self-correlation of the nodes (i.e. Cii) are not too small. In

this favorable case, the system will be loosely coupled, so that each node accounts

for a major portion of the oncoming load to itself. In section 4, we will return to

a variant of this local heuristic used in FastRoute [8] and derive analytical condi-

tions under which the above intuition holds good.

In this section, we take a principled approach and propose an iterative load-

management algorithm, which is provably optimal for arbitrary system-parameters

(A,C). In this algorithm, it is enough for each node i to know its own local DNS

and user-load arrival rates (i.e., Ai and Si(t) respectively) and the entries corre-

sponding to the ith row and column of the correlation matrix C (i.e., Ci·, C·i). No

non-local knowledge of the dynamic loading conditions of other nodes j 6= i is

required for its operation.

3.3. Mathematical formulation

We consider the following optimization problem. The variables x and S have

the same interpretation as above. The cost-functions, constraints and their con-

nection to the load-management problem are discussed in detail subsequently.

Minimize W (x,S) ≡
N
∑

i=1

(

gi(Si) + hi(xi)
)

(5)

3Another trivial solution to avoid overload could be to offload all traffic from all nodes to L2,

i.e. xi(t) = 0, ∀i, ∀t. However, this is highly inefficient because it is tantamount to not using the

proxies in the Primary layer L1 at all.
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Subject to,

Si =
N
∑

j=1

CjiAjxj, ∀i = 1, 2, . . . , N (6)

x ∈ X,S ∈ ΣT

Discussion. The first component of the cost function, gi(Si), denotes the cost for

serving Si amount of user-requests by the ith proxy in L1 per unit time. Clearly,

this cost-component grows rapidly once the proxy is nearly over-loaded, i.e. Si ≈
Ti. In our numerical work, we take gi(·) to be proportional to the average aggre-

gate queuing delay for an M/G/1 queue with server-capacity Ti [5], i.e.,

gi(Si) =







ηiSi

1−
Si

Ti

, if Si ≤ Ti

∞, otherwise
(7)

Here ηi is a positive constant, denoting the relative cost per unit increment in la-

tency.

The second component of the cost function hi(xi) denotes the cost due to round-

trip-latency of requests routed to the Data-center (L2). As an example, in a popu-

lar model [20] the delay incurred by a single packet over a congested path varies

affinely with the offered load. Since the rate of traffic sent to the secondary layer

by node i is Ai(1− xi), according to this model, the cost-function hi(xi) may be

taken as follows

hi(xi) = θiAi(1− xi)
(

di + γiAi(1− xi)
)

(8)

where di is a (suitably normalized) round-trip-latency parameter from the node

i to the data-center in L2 and θi, γi are suitable positive constants. We use the

cost-functions in Eqns. (7) and (8) for our numerical work. A typical plot of the

cost-surface for the case of a two-node system as in Figure 4 is shown in Figure

5.

The constraint set X = [0, 1]N represents the N -dimensional unit hypercube

in which the (controlled) redirection probabilities must lie and the set ΣT captures
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x1x2

Figure 5: A typical plot of cost-surface for a two-node system as a function of their redirection

probabilities x1, x2(0 ≤ x1, x2 ≤ 1).

the capacity constraints of the proxies which are downward closed, e.g., if the

proxy i has capacity Ti then we have

ΣT = {S : Si ≤ Ti, ∀i = 1, 2, . . . , N}

The functions gi(·), hi(·) are assumed to be closed, proper and strictly convex [3].

We also assume the functions gi(·) to be monotonically increasing. Hence, we can

replace the equality constraint (6) by the following inequality constraint, without

loss of optimality

N
∑

j=1

CjiAjxj ≤ Si, ∀i = 1, 2, . . . , N

This is because, if the optimal S∗
i is strictly greater than the LHS, we can strictly

(and feasibly) reduce the objective value by reducing S∗
i to the level of LHS, re-

sulting in contradiction.

Hence, the above load management problem is equivalent to the following opti-

mization problem P1 :



14

Minimize W (x,S) =
∑N

i=1

(

gi(Si) + hi(xi)
)

Subject to,

N
∑

j=1

CjiAjxj ≤ Si, ∀i = 1, 2, . . . , N (9)

x ∈ X,S ∈ ΣT , (10)

where, X = [0, 1]N and ΣT = {S : Si ≤ Ti, ∀i = 1, 2, . . . , N}.

Since with the above assumptions, the objective function and the constraint

sets of the problem P1 are all convex [3], we immediately have the following

lemma:

Lemma 3.1. The problem P1 is convex.

Hence a host of methods [4] can be used to solve the problem P1 in a central-

ized fashion. However, we are interested in finding a load balancing algorithm for

each node, which collectively solve the problem P1 with locally available loading

information only. This problem is explored in the next subsection.

3.4. The Dual Decomposition Algorithm

In this section we derive a dual algorithm [11], [14], [7] for the problem P1

and show how it leads to a distributed implementation with negligible control

overhead.

By associating a non-negative dual variable µi to the ith constraint in (9) for all i,
the Lagrangian of P1 may be written as follows:

L(x,S,µ) =
N
∑

i=1

(

gi(Si)− µiSi)
)

+
N
∑

i=1

(

hi(xi) + Aixi

(

N
∑

j=1

µjCij

)

)

(11)

This leads to the following dual objective function [3]

D(µ) = inf
x∈X,S∈ΣT

L(x,S,µ) (12)
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We now exploit the separability property of the dual objective (11) to reduce the

problem (12) into following two one-dimensional sub-problems:

S∗
i (µ) = inf

0≤Si≤Ti

(

gi(Si)− µiSi

)

x∗
i (µ) = inf

0≤xi≤1

(

hi(xi) + Aiβi(µ)xi

)

,















(13)

where the scalar βi(µ) is defined as the (scaled) linear projection of the dual-

vector µ on the ith row of the correlation matrix, i.e.

βi(µ) =
N
∑

j=1

µjCij = CT
i µ, (14)

and Ci is the ith row of the correlation-matrix C.

Discussion. The scalar βi(µ) couples the offload decision of node i with the state

of the entire network through Eqn. (13). Once the value of βi(µ) is available

to the node i, the node has all the required information at its disposal to locally

solve the corresponding sub-problems (13), for a fixed value of µ. The solutions

of these one-dimensional sub-problems may even be obtained in closed form in

some cases. Also, note that βi(µ), being a scalar, is potentially easier to com-

municate than the entire N dimensional vector µ. In sub-section 3.6, we exploit

this fact and show how this factor βi(µ) may be made available to each node i
on-the-fly.

With the stated assumptions on the cost functions, there is no duality-gap [3]. Con-

vex duality theory guarantees the existence of an optimal dual variable µ∗ ≥ 0

such that, the solution to the relaxed problem (13), corresponding to µ∗, gives an

optimal solution to the original problem P1. To obtain the optimal dual variable

µ∗, we solve dual P∗
1 of the problem P1, given as follows

Problem P∗
1:

Maximize D(µ) (15)

µ ≥ 0
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The dual problem P∗
1 is well-known to be convex [3]. To solve the problem

P∗
1, we use the Projected Super-gradient algorithm [17], which will be shown to

be amenable to a distributed implementation.

At the kth step of the iteration, a super-gradient g(µ(k)) of the dual function D(µ)
at the point µ = µ(k) is given by ∂D(µ(k)) = Sobs(k)−S(k) [3], where Sobs

i (k)
is the observed rate of arrival of incoming user-load at the proxy of node i, i.e.,

Sobs
i (k) ≡

N
∑

j=1

CjiAjx
∗
j(k), (16)

and x∗
i (k) and S∗

i (k) are the primal variables obtained from Eqn. (13), evaluated

at the current dual variable µ = µ(k). Following a projected super-gradient step,

the dual variables µ(k) are iteratively updated component-wise at each node i as

follows:

µi(k + 1) =

(

µi(k) + α
(

Sobs
i (k)− S∗

i (k)
)

)+

(17)

Here α is a small positive step-size constant, whose appropriate value will be

given in Theorem (3.3). Since the problem-parameters might vary slowly over

time, a stationary algorithm is practically preferable. Hence, we chose to use a

constant step-size α, rather than a sequence of diminishing step-sizes {αk}k≥1.

The above constitutes theoretical underpinning of steps (5) and (6) of the pro-

posed distributed load-management algorithm in CDN, described in Algorithm 1.

3.5. Convergence of the Dual Algorithm

To prove the convergence of the above algorithm, we first uniformly bound the

ℓ2 norm of the super-gradients g(µ(k)):

g(µ(k)) ≡ Sobs(k)− S(k) =

( N
∑

j=1

CjiAjx
∗
j(k)− S∗

i (k)

)N

i=1

We start with the following lemma.
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Lemma 3.2. If the total external DNS-request arrival rate to the entire sys-

tem is bounded by Amax (i.e.
∑

i Ai ≤ Amax) and the maximum processing-

capacity of individual proxies is bounded by Tmax (i.e. Ti ≤ Tmax, ∀i) then,

for all k ≥ 1

||g(µ(k))||22 ≤ A2
max +NT 2

max (18)

PROOF. See Appendix 7.1.

Upon bounding the super-gradients uniformly for all k, the convergence of

the dual algorithm follows directly from Proposition 2.2.2 and 2.2.3 of [4]. In

particular, we have the following theorem:

Theorem 3.3. For a given ǫ > 0, let the step-size α in Eqn. (17) be chosen as

α = 2ǫ
A2

max+NT 2
max

. Then,

• The sequence of solutions, produced by the dual algorithm described

above, converge within an ǫ-neighbourhood the optimal objective value

of the problem P1.

• The rate of convergence of the algorithm to the ǫ-neighborhood of the

optima after k-steps is given by c/
√
k where c ∼ Θ(

√
N).

The above result states that the rate of convergence of the dual algorithm de-

creases roughly at the rate of Θ(
√
N), where N is the total number of nodes in

the system. This is expected as more nodes in the system would warrant greater

amount of inter-node coordination to converge to the global optimum.

3.6. FASTCONTROL Packets and Distributed Implementation

In the previous subsection, we derived a provably optimal load-management

algorithm for CDNs, which is implementable online, provided each node i knows

how to obtain the value of the coupling-factors βi(µ(k)) at each step, in a decen-

tralized fashion. To accomplish this, we now introduce the novel idea of FAST-

CONTROL packets. In brief, it exploits the underlying anycast architecture of
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the system (Eqn.(2)) for in-network, on-the-fly computation of the coupling factor

βi(µ(k)) (Eqn. (14)) for all i.

General Descriptions. FASTCONTROL packets are special-purpose control pack-

ets (different from the regular data-packets), each belonging to any one of N dis-

tinct classes, which we refer to as categories. The category of each FASTCON-

TROL packet is encoded in its packet-header and hence it takes extra log(N) bits

to encode the categories. Physically, these control packets originate from the users

and are monitored by the proxies. However, the rates at which these packets are

generated, are controlled by the DNS servers of the nodes i and are proportional

to the dual variables µi(k), by a mechanism detailed below.

Generation of FastControl packets. These packets are generated in a controlled

manner by using a javascript embedded in responses to user DNS-requests (simi-

lar to how data was generated to calculate the C matrix offline [8]). The javascript

forces users to download a small image from an URL that is not affected by the

load management algorithm. DNS-servers in each node are configured to respond

back with anycast IP address for the primary layer (i.e. I1) for this special DNS-

query. The use of various categories of FastControl packets will be clear from the

description of the following distributed protocol used for determining βi(µ(k)):

• At step k, the DNS server of each node i forces generation of FASTCON-

TROL packets of category j (through its response to DNS-queries) at the

rate

rij(k) = γµi(k)
Cji

Cij

, j = 1, 2, . . . , N (19)

Note that this step is locally implementable at each node, since the value of

the dual variable µi(k) is locally available at the node i. Here γ > 0 is a

fixed system parameter, indicating the rate of control packet generation.

• At each step k, each node i also monitors the rate of reception of FAST-

CONTROL packets of category i, denoted by Ri(k), at its co-located proxy.

Using equation (19), the total rate of reception Ri(k) of ith category FAST-

CONTROL packets at node i is obtained as follows

Ri(k) =
N
∑

j=1

rji(k)Cji =
N
∑

j=1

γµj(k)
Cij

Cji

Cji

= γβi(µ(k))
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}
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Figure 6: Node-i implementing the dual algorithm

Thus,

βi(µ(k)) =
1

γ
Ri(k) (20)

Hence, the value of βi(µ(k)) at node i can be obtained locally by monitoring the

rate of receptions of FASTCONTROL packets at the co-located proxy. A complete

pseudocode of the algorithm is provided below. See Figure (6) for a schematic

diagram of a node implementing the algorithm.
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Algorithm 1 Distributed Dual Decomposition Algorithm Running at Node i

1: Initialize: µi(0)← 0
2: for k = 1, 2, 3, . . . do

3: Monitor Ai(k), S
obs
i (k), Ri(k);

4: Set βi(k)← 1
γ
Ri(k);

5: Update Primal variables:

Si(k) ← inf
0≤Si≤Ti

(

gi(Si)− µi(k)Si

)

xi(k) ← inf
0≤xi≤1

(

hi(xi) +Ai(k)βi(k)xi
)

6: Update Dual variable:

µi(k + 1)←
(

µi(k) + α(Sobs
i (k)− Si(k))

)+

7: Via DNS-response, force users to generate FASTCONTROL packets of category j,

destined to L1, at the rate

rij(k + 1) = γµi(k + 1)
Cji

Cij
, ∀j = 1, 2, . . . , N

8: For an incoming DNS-query, respond with the anycast IP-address for L1 with

probability xi(k) and IP-address for L2 with probability (1− xi(k)).
9: end for

We make the following observations :

• The full knowledge of the matrix C at node i is also not necessary. It is

sufficient that node i knows the ith row and column of the matrix C.

• The optimality of the algorithm does not depend on the diagonally domi-

nance property of the correlation matrix C, an essential requirement for the

greedy heuristic (discussed in the next section) to work reasonably well.

• The parameter γ in Eqn. (19) is directly related to the amount of control-

overhead required for the distributed algorithm.

This completes the description of the proposed load-management algorithm,

which is completely distributed and provably optimal. In the following section,

we concentrate our attention on the load-management heuristic used in FastRoute
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and evaluate its performance. We will numerically compare the relative benefits

of these two algorithms in Section 5.

4. The Greedy Load-Management Heuristic

In this section, we focus exclusively on the distributed load management heuris-

tic implemented in FastRoute [8], a commercial layered-CDN. This heuristic ig-

nores inter-node correlations altogether. Thus, when an individual proxy be-

comes overloaded, the co-located DNS-server modifies its DNS-response to redi-

rect more traffic to the data-center (L2) and vice versa. This simple mechanism is

reported to work well in practice when there is high correlation (60-80%) between

the node receiving the DNS-query and the node receiving the corresponding user-

request. However, in the event of sudden bursts of traffic, e.g., Flash Crowds, this

greedy heuristic often leads to an uncontrollable overload situation which neces-

sitates manual intervention [8].

Algorithmic challenges: With only local information available at each DNS-

server, it faces the following dilemma: offload too little to L2 and the collocated

proxy, if overloaded, remains overloaded; offload too much and the users are di-

rected to remote data-centers and receive an unnecessarily delayed response, due

to high round-trip latency. The coupling among the nodes because of inter-node

correlation makes this problem highly challenging and gives rise to the so-called

uncontrollable overload, discussed earlier in section 3.2.

A pseudo-code showing the general structure of FastRoute’s heuristic, running

at a node i, is provided below. An explicit control-law modeling the heuristic will

be given in section 4.1.

Algorithm 2 Decentralized greedy load-management heuristic used in FastRoute

[8], running at the node i
1: for t = 1, 2, 3, . . . do

2: if the ith proxy is under loaded (Si(t) ≤ Ti) then

3: increase xi(t) proportional to −(Si(t)− Ti)
4: else

5: decrease xi(t) proportional to (Si(t)− Ti)

6: end if

7: end for

Motivation for analyzing the heuristic: The optimal algorithm of section-3

requires the knowledge of the correlation matrix C and needs to utilize addi-
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tional FASTCONTROL packets for its operation. In this section we analyze per-

formance of the greedy heuristic, currently implemented in FastRoute [8], which

does not have these implementation complexities. Since this heuristic completely

ignores the inter-node correlations (given by the matrix C), it cannot be expected

to achieve the optima of the problem P1, in general. Instead, we measure its per-

formance by a coarser performance-metric, given by the number of proxies that

undergo uncontrollable overload condition (refer to section 3.2) under its action.

Depending on target applications, this metric is often practically good enough for

gauging the performance of CDNs.

4.1. Analysis of the Greedy Heuristic

As before, let xi(t) denote the probability that an incoming DNS-query to

the node i at time t is returned with the anycast address of the primary layer L1.

Hence, the total rate of incoming load to the proxy i at time t is given by,

Si(t) =
N
∑

j=1

CjiAjxj(t), i = 1, 2, 3, . . . , N (21)

The above system of linear equations can be compactly written as follows

S(t) = Bx(t) (22)

Where,

B ≡ CTdiag(A). (23)

Let the vector T denote the processing-capacities (thresholds) of the proxies.

As described above, FastRoute’s greedy heuristic (2) monitors the overload-metric

Si(t) − Ti and if it is positive (i.e., the node i overloaded), it reduces xi(t) (i.e.,
dxi(t)
dt

< 0) and if the overload-metric is negative (i.e., the node i under-loaded),

it increases xi(t) (i.e.,
dxi(t)
dt

> 0) proportional to the overload. We consider the

following explicit control-law complying with the above general principle:

dxi(t)

dt
= −βR(xi(t))

(

Bx(t)− T
)

i
, ∀i (24)

The factor R(xi(t)) ≡ xi(t)(1 − xi(t)) is a non-negative damping component,

having the property that R(0) = R(1) = 0. This non-linear factor is responsible

for restricting the trajectory of x(t) to the N -dimensional unit hypercube 0 ≤
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x(t) ≤ 1, ensuring the feasibility of the control (24)4. The scalar β > 0 is a

sensitivity parameter, relating the robustness of the control-strategy to the local

observations at the nodes.

The following theorem establishes soundness of the control (24):

Theorem 4.1. Consider the following system of ODE

ẋi(t) = −R(xi(t))(Bx(t)− T )i, ∀i (25)

where R : [0, 1]→ R+ is any C1 function, satisfying R(0) = R(1) = 0.

Let x(0) ∈ int(H), where H is the N -dimensional unit hypercube [0, 1]N .

Then the system (25) admits a unique solution x(t) ∈ C1 such that x(t) ∈
H, ∀t ≥ 0.

PROOF. See Appendix 7.2.

The following theorem reveals an interesting feature of the greedy algorithm,

which states that, along any periodic trajectory the average load at any node i
is equal to the threshold Ti of that node, and hence they are stable on the average.

Theorem 4.2. Consider the system (24) with possibly time-varying arrival

rate vector A(t) such that the system operates in a periodic orbit. Then the

time-averaged user-load on any node i is equal to the threshold Ti of that

node, i.e.

1

τ

∫ τ

0

Si(t)dt = T̄ , ∀i, (26)

where the integral is taken along a periodic orbit of period τ .

PROOF. See Appendix 7.3.

4Remember that xi(t)’s, being probabilities, must satisfy 0 ≤ xi(t) ≤ 1, ∀t, ∀i
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4.2. Avoiding Locally Uncontrollable Overload

Having established the feasibility and soundness of the control-law (24), we

return to the original problem of locally uncontrollable overload, described in

Section 3.2. In the following, we derive sufficient conditions for the correlation

matrix C and the DNS-request arrival rate vector A, for which the system is

stable, in the sense that no locally uncontrollable overload situation takes place.

Characterization of the Stability Region

For a fixed correlation matrix C, we show that if the arrival rate vector A

lies within a certain polytope ΠC , the system is stable in the above sense, under

the action of the greedy load-management heuristic. The formal description and

derivation of the result is provided in Appendix 7.4, which involves linearization

of the ODE (24) around certain fixed points. Here we outline a simple and intu-

itive derivation of the stability region ΠC .

We proceed by contradiction. Suppose that node i is facing a locally uncontrol-

lable overload at time t. Hence, by definition, the following two conditions must

be satisfied at node i

Si(∞)− Ti > 0, and xi(∞) = 0 (27)

Here Eqn. (27) denotes the fact that FastRoute node i is overloaded, i.e., the in-

coming traffic to node i’s proxy is more than the capacity of the node i. Eqn. (27)

denotes the fact that this overload is locally uncontrollable, since even after node

i’s DNS-server has offloaded all incoming DNS-influenced arrivals to L2 (the best

that it can do with its local information), it is facing the overload situation. The

above two equations imply that the following condition holds at the node i:

∑

j 6=i

CjiAjxj(∞) > Ti, (28)

where we have used Eqn. (21) and the fact that xi(∞) = 0. Since 0 ≤ xj(∞) ≤ 1,

a necessary condition for uncontrollable overload (28) at node i is
∑

j 6=i CjiAj >
Ti. Thus, if

∑

j 6=i CjiAj ≤ Ti, then the locally uncontrollable overload is avoided

at the node i by the greedy heuristic. Taking into account all nodes, we see that if

the external DNS-query arrival rate A lies in the polytope ΠC defined as

ΠC = {A ≥ 0 :
∑

j 6=i

CjiAj ≤ Ti, ∀i = 1, 2, . . . , N} (29)
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then the locally uncontrollable overload situation is avoided at every node and the

system is stable.

Somewhat surprisingly, by exploiting the exact form of the control-law (24), we

can show that a two-node system (as depicted in Figure 4) is able to control DNS-

load A of any magnitude, under certain favorable conditions on the correlation

matrix C.

Special Case

[Two-node System]

Consider a two-node CDN discussed earlier in Section 3 (see Figure 4). Let

the correlation matrix C for the system be parametrized as follows:

C(α, β) =

(

α 1− α
1− β β

)

(30)

Then we have the following theorem :

Theorem 4.3. 1) The system does not possess any periodic orbit for any val-

ues of its defining parameters: A,C(α, β),T . Thus the two-node CDN never

oscillates.

2) If α > 1
2

and β > 1
2

then the system is locally controllable (i.e., no locally

uncontrollable overload) for all arrival rate-pairs (A1, A2).
3) If α < 1

2
and β < 1

2
then a sufficient condition for local controllability of

the system is A1 <
T1

1−α
, A2 <

T2

1−β
.

PROOF. The proof of part-(1) follows from Dulac’s criterion [25], whereas proof

for part-(2) and (3) follows from linearization arguments. See Appendix 7.5 for

details.

We emphasize that the part-(2) of the Theorem 4.3 is surprising, as it shows that

the system remains locally controllable, no matter how large the incoming DNS-

request arrival rate be (c.f. Section 3.2) . The 2D vector-field plot in Figure 7

illustrates the above result. In Figure 4(a), the matrix C is taken to be one sat-

isfying the condition of part (2) of lemma 4.3. As shown, all four phase-plane

trajectories with different initial conditions converge to an interior fixed point

(x1(∞) > 0, x2(∞) > 0).
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Figure 7: 2D vector-fields of a two-node system illustrating locally controllable (Fig. 4(a)) and

locally uncontrollable (Fig. 4(b)) overloads.

For the purpose of comparison, in Figure 4(b) we plot the 2D vector-field of a

locally uncontrollable system (e.g., the system in Fig. 4). It is observed that

all four previous trajectories converge to the uncontrollable attractor (x1(∞) =
1, x2(∞) = 0). From the vector-field plot, it is also intuitively clear why a peri-

odic orbit can not exist in the system.

Application of Theorem 4.3. Consider a setting where, instead of making locally

greedy offloading decisions, nodes are permitted to partially coordinate their ac-

tions. Also assume that there exists a partition of the set of nodes into two non-

empty disjoint sets G1 and G2, such that their effective self-correlation values

α(G1) and β(G2), defined by

α(G1) =

∑

i∈G1

∑

j∈G1
Cij

|G1|
, β(G2) =

∑

i∈G2

∑

j∈G2
Cij

|G2|

satisfy the condition (2) of Theorem 4.3, i.e. α(G1) >
1
2
, β(G2) >

1
2
. Then if the

nodes in the sets G1 and G2 coordinate and jointly implement the greedy policy,

then the system is locally controllable for all symmetric arrivals.

5. Numerical Evaluations

We use the operational FastRoute CDN to identify relevant system parame-

ters for critical evaluations of the optimal algorithm and the heuristic. Currently,

FastRoute has many operational nodes, spreading throughout the world [8]. We
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show a sample result with N = 60 nodes. The inter-node correlation matrix C is

computed using system-traces spanning over three months.

For our performance evaluations, we use the cost-functions given in Eqns. (7) and

(8). Different (normalized) parameters appearing in the cost-functions are chosen

as follows

γi = 1, θi = 10, ηi = 1, Ti = 0.7, di ∼ Ui[0, 1] ∀i (31)

where Ui[0, 1]’s denote i.i.d. uniformly distributed random variables in the range

[0, 1]. The DNS-query arrival rates Ai’s are assumed to be i.i.d. distributed ac-

cording to a Poisson variable with mean Ā, which varies across the range [0.1, 10].
The optimal solutions of the Lagrangian relaxations in Eqns. (13) for the above

cost-functions can be obtained in closed form as follows :

S∗
i (µ) = Ti max

(

0, 1−
√

ηi
µi

)

(32)

and,

x∗
i (µ) =











1, if c2i > 0

1 + c2i
2c1i

, if c2i ≤ 0 and 2c1i ≥ −c2i
0, o.w.

(33)

where c1i ≡ Aiθi and c2i ≡ θidi − βi(µ).
For each value of Ā, we run the simulation NE = 100 times, by randomizing over

both Ai and di, ∀i. The mean and standard-deviation of the resulting optimal cost

values are plotted in the Figure 8(a). As expected, the average cost increases as

the overall DNS-query arrivals to the system increases. However, the resulting

cost remains finite always. This implies that none of the proxies are overloaded.

The above observation is in sharp contrast with the situation using the greedy-

heuristic, the subject of Figure 8(b). Here we plot the number of overloaded

proxies for different values of Ā, keeping all other system-parameters the same.

While the greedy algorithm does yield acceptable result for small values of Ā <<
Ti = 0.7, we see that as many as four proxies undergo locally uncontrollable

overload for relatively large values of Ā.

Thus, depending on the computed correlation-matrix C and a projected bound of

the DNS-query arrival rate A, we can make an informed decision about the choice

of the algorithms to employ in a CDN and the inherent complexity-vs-optimality

trade-off it entails.
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Figure 8: (a) Statistical variation of the cost of the optimal algorithm with mean load (DNS-query

arrival rate) Ā. (b) Average number of nodes undergoing uncontrollable overload condition under

the action of the greedy algorithm (Threshold Ti = 0.7 for all nodes). Total number of nodes in

the system included in this study is N = 60.

6. Conclusion

In this paper we formalize the load management problem in modern CDNs

utilizing anycast. We first formulate the problem as a convex optimization prob-

lem and study its dual and an associated algorithm. The novel idea of FAST-

CONTROL packets facilitates distributed implementation of the proposed dual al-

gorithm. Next we analyze stability properties of a greedy heuristic, currently in

operation in a major commercial CDN. We find that the optimal algorithm sig-

nificantly out-performs the heuristic for moderate-to-high value of system load.

However, the heuristic performs satisfactorily given that the system is loosely-

coupled and the offered load is low. Thus an informed choice between these two

algorithms may be made depending on the range of system-parameters and the

desired optimality/complexity trade-off for a particular CDN. Future work would

involve investigating the amount of FASTCONTROL packets necessary for the dual

algorithm to work in the presence of random packet-loss and delayed feedback.

Also, It would be interesting to generalize the findings of Theorem 4.3 for the case

of more than two nodes.
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7. Appendix

7.1. Proof of Lemma 3.2

PROOF. We have,

||gk||22 =
N
∑

i=1

(Sobs
i (k)− Si(k))

2 (34)

≤
N
∑

i=1

(

Sobs
i (k)

)2
+

N
∑

i=1

S2
i (k) (35)

≤
N
∑

i=1

(

N
∑

j=1

CjiAjxj(k)
)2

+NT 2
max (36)

≤
(

N
∑

i=1

N
∑

j=1

CjiAj

)2
+NT 2

max (37)

=
(

N
∑

j=1

Aj

N
∑

i=1

Cji

)2
+NT 2

max (38)

≤ (
N
∑

j=1

Aj)
2 +NT 2

max (39)

≤ A2
max +NT 2

max (40)

Here Eqn. (35) follows from non-negativity of Sobs
i and Si, Eqn. (36) follows

from the defining equation of Sobs
i and the constraint that Si ≤ Ti (viz. Eqn. (13)),
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Eqn. (37) follows from the constraint 0 ≤ xi ≤ 1, ∀i, Eqn. (38) follows from the

change of order of summation and finally Eqn. (39) follows from the fact that C

is a correlation matrix and hence its rows sum to unity (viz. Eqn. (1)).

7.2. Proof of Theorem 4.1

PROOF. First we show that, any solution of the system (24) (if exists) must lie in

the unit hypercubeH. We prove it via contradiction. On the contrary to the claim,

assume that for some solution of the system (24), there exists a component xi(·)
and a finite time 0 ≤ τ < ∞ such that xi(τ) < 0. Since xi(·) is continuous and

xi(0) > 0, by intermidiate value theorem, there must exist a time 0 < t0 < τ
such that xi(t0) = 0. Now consider the differential equation corresponding to

the ith component of the system (25). We substitute for all other components

{xj(t), j 6= i} on the RHS of the following equation.

ẋi(t) = −R(xi)(
∑

j

Bijxj(t)− Ti), xi(t0) = 0 (41)

Since the vector x(t) is C1 and the regularizer R(·) is assumed to be C1, the RHS

of the equation (41) is C1. Hence (41) admits a unique local solution. However

note that the following is a solution to (41)

xi(t) = 0, ∀t ≥ t0 (42)

This is because R(0) = 0. By uniqueness, (42) is the only solution to (41). This

contradicts the fact that xi(τ) < 0. Hence x(t) ≥ 0, ∀t ≥ 0. In a similar fashion,

we can also prove that x(t) ≤ 1, ∀t ≥ 0. This proves that all solutions to (24)

must lie in the compact setH.

To complete the proof, we observe that the RHS of the system (24) is locally

Lipschitz at each point in the compact set H. Thus the global existence of the

solution of (24) follows directly from Theorem 2.4 of [12].

7.3. Proof of Theorem 4.2

PROOF. Let τ be the period of the orbit. Consider the ith differential equation

ẋi(t) = −R(xi)(Si(t)− Ti) (43)

dxi

R(xi)
= −(Si(t)− Ti)dt (44)
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Since xi(·) belongs to the interior of the compact set H, 1
R(xi(t))

does not have a

zero in the denominator for the enire orbit. Hence 1
R(xi(t))

is continuous and its

Riemann integral exists [21]. Integrating both sides from 0 to τ , we have

∫ τ

0

dxi

R(xi)
=

∫ τ

0

(Si(t)− Ti)dt (45)

Let J(xi) be an anti-derivative of 1
R(xi)

. Hence using the fundamental theorem of

calculus [21], we can write the LHS of (45) as

J(xi(τ))− J(xi(0)) =

∫ τ

0

Si(t)dt− τTi (46)

Since the orbit is assumed to have a period τ , we have xi(τ) = xi(0). Hence

J(xi(τ))− J(xi(0)) = 0. Thus we have

S̄i ≡
1

τ

∫ τ

0

Si(t)dt = Ti

7.4. Formal Derivation of the Stability Condition

Let us write the system (24) conveniently as ẋ = F (x). Consider a fixed point

x of the system such that the kth node faces an uncontrollable overload condition.

By Hartman-Grobman theorem [25], it is enough to consider linearized version

of the system to determine the stability of fixed points. The first-order Taylor

expansion about the fixed point x yields the following:

ẋ ≈ F (x̄) +
∂F (x)

∂x
|x=x(x− x̄) =

∂F (x)

∂x
|x=x(x− x̄)

Where,
∂F (x)
∂x
|x=x denotes the Jacobian [18] of the system (24) evaluated at the

fixed point x = x and Bij = CjiAj . The second equation follows because x is

assumed to be a fixed point (and consequently F (x) = 0).
Next we proceed to explicitly compute the Jacobian of the system (24) at a given

point x. Note that the ith row of the system equation is given by

Fi(x) ≡ −xi(1− xi)(
∑

j

Bijxj − T ) (47)

Thus for i 6= j, we have

∂Fi

∂xj

= −xi(1− xi)Bij (48)
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and for i = j, the diagonal entry is given by

∂Fi

∂xi

= −
(

xi(1− xi)Bii + (1− 2xi)(
∑

j

Bijxj − T )

)

= −
(

xi(1− xi)Bii + (1− 2xi)(Si − T )

)

(49)

Since the node k is assumed to undergo an uncontrollable overload condition, we

necessarily have xk = 0. Hence from Eqns (48) and (49), in the kth row of the

Jacobian matrix, the off-diagonal entries are all zero and the diagonal entry is

−(Sk − T ). Hence if Sk − T < 0, at least one eigenvalue of the Jacobian matrix

at the fixed point x is strictly positive and hence the fixed point x is unstable. This

implies that a sufficient condition to avoid uncontrollable overload at node k is

given by
∑

j 6=k

CjkAj ≤ Tk (50)

where we have used the fact that xi(t) ≤ 1, ∀i and xk = 0. The derivation of the

sufficient condtion for absence of uncontrollable overload condition is completed

by taking intersection of hyperplanes (50) for all k = 1, 2, . . . , N. �

7.5. Proof of Theorem 4.3

PROOF. part-(1) [non-existence of periodic orbits]

We use Dulac’s criterion to prove the non-existence of periodic orbits for the gen-

eral two-node system. For ease of reference, we recall Dulac’s criterion below :

Theorem 7.1 (Dulac’s criterion [25]). Let ẋ = f(x) be a continuously differen-

tiable vector-field defined on a simply connected subset R of the plane. If there

exists a continuously differentiable, real-valued function g(x) such that ∇ · (gẋ)
has one sign throughout D, then there are no closed orbits lying entirely in D.

Now we return to the proof of the result. Let H2 = [0, 1]2 be the unit square,

where by virtue of theorem 4.1, the trajectory of the two-node system lies for all

time t ≥ 0. Thus, it suffices to show that there does not exist any periodic orbit

in its interior H̊2 ≡ D. It is obvious that the region D is simply connected. Now

consider the following g(x) for application of the Dulac’s criterion,

g(x) =
1

x1x2(1− x1)(1− x2)
(51)
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It is easy to verify that g(x) is continuously differentiable throughout the region

D. We next evaluate the divergence

∇ · (gẋ) = −β
(

B11

x2(1− x2)
+

B22

x1(1− x1)

)

(52)

It is easy to verify that the term within the parenthesis is always strictly positive

throughout the region D. Hence, by Dulac’s criterion, there are no closed orbits

in D. This proves the result.

part-(2) and (3) [controllability of the system]

Let the arrival rates to node 1 and 2 be given by A1 and A2. Let x1 and x2 denote

the operating point of the system at the steady-state. Our objective is to find

sufficient conditions on the arrival rate vector (A1, A2), under which the operating

points (x1, x2) such that either x1 = 0 or x2 = 0 (i.e. full offload to Layer-II)

are avoided in the steady-state. This will ensure that no uncontrollable overload

situation takes place in the system. First we consider the fixed point

x1 = 0, x2 = 1 (53)

This fixed point will be stable if both the eigenvalues of the Jacobian matrix at

this point be negative. From Eqns. (48) and (49) we have the following two

conditions:

S1 > T, S2 < T

i.e.,

(1− α)A2 > T, βA2 < T

i.e.,

T

1− α
< A2 <

T

β
(54)

Similarly, analyzing the stability of the fixed points around the point x1 = 1, x2 =
0, we obtain that this fixed point will be unstable if

S1 < T, S2 > T

i.e.,

αA1 < T, (1− β)A1 > T
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i.e.,

T

1− β
< A1 <

T

α
(55)

Note that if α + β > 1, both the above regions (54) and (55) will be empty and

the fixed points (1, 0) and (0, 1) will be always unstable. Thus the operating point

will not converge to these undesirable fixed points in the steady-state.

Now consider the (possibly feasible) fixed point (x1, x2) such that

x1 = 0, S2 = T (56)

The above condition translates to,

x1 = 0, A2x2β = T

x1 = 0, x2 =
T

A2β
(57)

This fixed point will be feasible provided T
A2β

< 1. The Jacobian matrix about

this fixed point is evaluated as

∂F (x)

∂x
|x = −

(

(1− β)T
β
− T 0

T
A2β

(1− T
A2β

)B21
T

A2β
(1− T

A2β
)B22

)

From the Jacobian matrix above, we conclude that both of its eigenvalues are

negative provided the following two conditions hold

A2 >
T

β
, β <

1

2
. (58)

Doing similar analysis around the fixed point (S1 = T, x2 = 0), we conclude that

the above fixed point will be stable for all arrival rates A1 >
T
α

and α < 1
2
.

Finally, to obtain efficient operating region for the system (with no uncontrol-

lable overload situation), we take union over stability region of all undesired fixed

points and take the complement of it. Hence, if α > 1
2
, β > 1

2
all the undesri-

ble fixed points are unstable and hence the uncontrollable overload situation is

avoided for all DNS-request arrival rates A. This proves part (2) of the theorem.

On the other hand, if either α < 1
2

or β < 1
2

holds, then a sufficient condition for

the stability of the system is given by

A1 <
T

1− α
,A2 <

T

1− β

This proves part (3) of the theorem.
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