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Tools based on the bifurcation and continuation method have been found to be extremely useful for studying

multiparameter nonlinear dynamical systemsunder state andparameter-constrained conditions. Because of inherent

limitations of the existingmethodologies, however, application of continuation techniques to certain types of problems

has remained cumbersome and even computationally challenging. This paper provides an alternate direct approach

in MATLAB® using its continuation subroutine MATCONT to extend the capabilities of continuation techniques in

an attempt to accommodate a wide variety of constrained dynamics problems. Published results in the literature are

first reproduced for validation of the proposed approach. A control problem of scheduling gains for the longitudinal

flight dynamics of an aircraft is next presented to showusefulness of the proposedmethodology, followed by solutions

to an aircraft conceptual design problem involvingwingmorphingwith eigenvalue constraints, with the difficulties of

the selected problems increasing in that order.

Nomenclature

b = wing span, m
CD, CL, CY = coefficients of drag, lift, and side force,

respectively
Cl, Cm, Cn = aerodynamic rolling, pitching, and yawing

moment coefficients, respectively
c = mean aerodynamic chord, m
Ix, Iy, Iz = roll, pitch, and yaw moments of inertia, kg ⋅m2

Ma = Mach number
m = mass of aircraft, kg
p, q, r = body axis roll, pitch, and yaw rates, respectively,

deg ∕s
S = wing planform area, m2

Tm = maximum available engine thrust, N
V = velocity of aircraft, m∕s
α, β = angle of attack and sideslip angle, respectively,

deg
δe; δa; δr = elevator, aileron, and rudder deflection angles,

respectively, deg
η = thrust as fraction of maximum available thrust
μ, γ = wind-axis angles, deg
ρ = air density, kg∕m3

ϕ, θ = Euler bank and pitch angles, respectively, deg

I. Introduction

DYNAMICS of many physical systems from science and
engineering are governed by a set of nonlinear ordinary

differential equations,

_x � f�x;U� (1)

where x ∈ Rn is the vector of n-state variables of the system,
U ∈ Rm is the vector of m-control parameters, f is the nonlinear
vector field governing system dynamics, and a dot over x indicates
the time derivative of x. For a set of fixed parameters, U � U0, the
system of equations (1) can be integrated from a chosen initial
condition, x�t � 0� � x�0�, to study the time evolution of x. This
procedure can be repeated an infinite number of times, starting from
different initial conditions for an innumerous fixed combination of
parameters values in order to thoroughly examine system dynamics.
This is undoubtedly an exhaustive and cumbersome exercise, amajor
problem with this exercise being the selection of initial conditions,
which is a nontrivial task when dealing with systems that are
nonlinear. An alternate and more efficient approach to analyzing
nonlinear dynamical systems [Eq. (1)] is based on the asymptotic
bifurcation and continuation method. The bifurcation and
continuation method begins with the computation of steady states
of the equilibrium type of Eq. (1), which amounts to solving the set of
simultaneous algebraic equations

_x � f�x;U� � 0 (2)

and computing the eigenvalues (governing local dynamics of the
system around equilibrium states [1]) of the Jacobian matrix,
J � �∂f∕∂x�, at each equilibrium state. The numerical scheme to
solve both the problems together popularly known as a continuation
algorithm is of a predictor–corrector type [2], which is described in
the next section in some detail. A continuation algorithm is designed
to solve the systemof equations (2) as a function of a single parameter
of the system u ∈ U, known as the continuation parameter, while it
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requires remaining (m − 1) parametersp ofU to remain fixed at their
starting values, the equivalent system of equations to be solved thus
being

_x � f�x; u;p � fixed� � 0 (3)

Other types of problems may require p varying as some
(predefined or arbitrary) functions of the continuation parameter as
p � p�u�, the equivalent system of equations being solved in this
case being

_x � f �x; u;p � p�u�� � 0 (4)

Solutions of Eqs. (3) and (4) are classified as parameter-constrained
equilibrium states of the system. The other type of equilibrium states is
state-constrained equilibrium states,which, as the name itself suggests,
are required to satisfy certain constraints on the states of the system.
The system of equations to be solved in this case is

f�x;U� � 0; g�x� � 0 (5)

The k constraint equations, gi�x� � 0, i � 1; : : : ; k, added to the
original set ofn algebraicEq. (2) (representing equilibriumstates of the
system), require (n� k) algebraic equations to be solved together now
for the equilibrium states that satisfy the imposed constraint relations.
Direct equality constraints such as the type in Eq. (5) and indirect
equality constraints, for example, based on control of time response
characteristics via feedback-control parameters or system design
parameters (both attempted later as illustrative example problems), can
be attemptedwithin the framework of continuationmethodologies.An
extended bifurcation analysis (EBA) procedure proposed by
Ananthkrishnan and Sinha [3] was found to be useful for trim and
stability analysis of systems under state-constrained conditions. The
two-step EBA procedure involved computing parameter schedules,
pi(u), i � 1; 2; : : : k, first, which kept the system in equilibrium states
satisfying the constraints gi�x� � 0, i � 1; : : : ; k, and afterward
carrying out another continuation of the systemmodel augmentedwith
the parameter schedules [as in Eq. (4)] in the second step.Details of the
EBA procedure can be found in [4]. Carrying out EBA continuation
particularly in the popularly used AUTO [5] continuation framework
requires overcoming several roadblocks in handling systems with
constraints. Foremost among them is 1) the requirement of an
extremely accurate starting point (steady state) to begin the
continuation in general for any problem (otherwise, continuation may
not start or terminate abruptly) and 2) that for constrained system
analysis the second step of the EBA requires another continuation,
which runs into two further problems. The first is, again, the need for an
accurate starting point that satisfies the constraints on the state(s), and
the second is the inclusion of parameter schedules computed in the first
step, either in the form of a polynomial fit with a certain degree of
smoothness or a lookup table, needing an interpolation. The need for a
methodology that overcomes the previously mentioned problems has
therefore always existed.
In this paper, a direct continuation methodology that overcomes

all of the issues listed previously, with a minor modification in
the continuation procedure, is proposed. The direct methodology
eliminates the need for the second step of the EBA procedure
and enables one to deal with problems that could not be studied under
the framework of the EBA procedure, thereby extending the scope
of the continuation-algorithm-based methodologies. The direct
methodology is implemented in the MATLAB®-based continuation
subroutine MATCONT [6], which allows users further access to a
host of other subroutines in MATLAB, thus making it possible to
apply both direct constraints, represented by explicit constraint
equations, and indirect constraints on the system.
Three different example problems illustrating usefulnessof the direct

methodology have been attempted in this paper. The methodology is
first applied to study constrained dynamics of the F-18 high angle-of-
attack research vehicle (HARV) model in a level-flight trim condition,
and the results are validated against those available in the literature. The
secondexample shows the implementationof thedirectmethodology to

automate gain scheduling of a simple feedback-control law for the
longitudinal dynamics of the F-18/HARV model over the entire range
of level-flight trims. Computing wing configuration parameters for
an airplane in flight, required for satisfying handling qualities
requirementsover the entire range of level-flight trims, is takenupas the
third example problem.
The paper is organized as follows. Section II presents basic

descriptions of a continuation algorithm and the proposed direct
continuationmethodology. Illustrative examples of the application of
the direct methodology to aircraft flight dynamics problems are
presented in Sec. III, and in Sec. IV, concluding remarks with future
directions of work are presented.

II. Basic Description of Numerical
Continuation Algorithm

A continuation algorithm is essentially based on computing steady
states of the system of equations (2) as a function of one of the system
parameters,

f�x�; u�;p� � 0 (6)

whereu ∈ U is thevarying parameter, also known as the continuation
parameter, and p ∈ U are other parameters kept fixed in a
continuation; the asterisk indicates the equilibrium condition.
Continuation with respect to the parameter u marches from a given
starting solution point [satisfying Eq. (6)] following a predictor–
corrector marching scheme, finally resulting in a solution branch
x� � x��u��. Along a continuation path, the Jacobian matrix
�∂f∕∂x� needs to be evaluated at each equilibrium point, the
eigenvalues ofwhich, simultaneously computed,mark the stability of
the equilibrium points all along the solution branch. For this to
happen, a necessary condition is that f must be smooth (at least C1

continuous) as demanded by the implicit-function theorem [7].
Along a continuation path, the singularity of �∂f∕∂x� at an
equilibrium point corresponding to the critical value of the
continuation parameter u � ucr, known as the bifurcation point,
results in a change in stability and/or the number of equilibrium
solutions. Additional solution branches emerge from bifurcation
points depending on the type of loss of stability [8], which advanced
continuation algorithms, such as AUTO, are designed to identify and
compute in a continuation. Comprehensive details of numerical
aspects of a continuation algorithm can be found in [2]. Several types
of bifurcations of different types of steady states (equilibrium,
periodic, toroidal, quasi-periodic, and so on) of nonlinear dynamical
systems described by Eq. (1) and the resulting onset of new types of
solutions [1,8] can all be captured in a continuation run as functions
of u, thus revealing the global dynamic behavior of a system with
respect to u. Further, a continuation algorithm can also handle Eq. (6)
augmented with equality constraints of the type

g�x�; u�;p� � 0 (7)

as long as Eqs. (6) and (7) are coupled and the numerical problem is
well defined. This translates into the requirement that theremust be at
least as many parameters available in p as the number of added
constraint equations, and the parameters used in a continuation of
Eqs. (6) and (7) must influence the constraints [3]. Currently
available continuation algorithms are not designed to distinguish
between equations of steady states and equality constraint equations;
therefore, they compute the Jacobian matrix of the system of
equations (6) and (7) together in a continuation, which is given by

J�x; u;p1;p2� �
�

fx�x; u;p1;p2�j
gx�x; u;p1;p2�j

fp1
�x; u;p1;p2�

gp1
�x; u;p1;p2

�

(8)

In Eq. (8), p1 is the vector of parameters from U to be used as
additional variables to make the continuation problem well defined,
while p2 are remaining parameters still to be kept fixed. Once the
problem is well defined, continuation with u can be carried out as
before; however, the eigenvalues of the inflated Jacobian matrix due
to additional equations of constraints do not result in correct stability
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information of the constrained equilibrium solutions, which is still
based on the eigenvalues of the (1,1) entry of Eq. (8) alone. This
problemcan be solved by extracting the (1,1) entry fromEq. (8) along
a continuation and computing eigenvalues of (1,1) separately. This
procedural change, though minor, overcomes the major limitation of
using the continuation algorithm in carrying out trim and stability
analysis of dynamical systems represented by Eq. (1) in constrained
conditions. This direct procedure not only helps get rid of the a priori
scheduling of p1 as function of u (requiring interpolation or
polynomial fitting), but it also completely gets rid of the second step
of the EBA technique, except that solution branches originating at
bifurcation points cannot not be computed now; this procedure
computes only solutions satisfying the equality constraints. A second
continuation run may still be needed if one were interested in
computing bifurcated solution branches (the procedure explained in
[3]), but if there is no such requirement (and, indeed, that is the case
with many practical problems), one may solve a host of problems
related to constrained cases using this small change in procedure
itself. The advantages of usingMATCONTover AUTO continuation
algorithm becomes obvious here for the simple reason that various
MATLAB subroutines can be directly incorporated in MATCONT
and a variety of problems solved as we will see in the example cases
presented in this paper. Spetzler and Narang-Siddharth [9] used a
similar methodology in COSY, a proprietary continuation code, to
perform constrained analysis of multiparameter dynamical systems.
Their paper also suggested a method to trace out the solution
branches emanating from a bifurcation point. The procedure is
explained here for the sake of completeness.
The presence of bifurcation points on an equilibrium curve

suggests the existence of additional solution branches emerging from
the bifurcation points. These solution branches also follow the same
parameter schedules; however, these branches do not obey the
constraints imposed on the system and are therefore termed off-
nominal solutions. Off-nominal solution branches can be computed
in a second continuation by solving the augmented set of equations

F�x; y; u;p� �

0

@

f�y; u;p�
f�x; u;p�
g�x; u;p�

1

A � 0 (9)

where the state variables x trace the nominal solution branches
satisfying the constraints g�x; u;p� � 0, while the dummy state
variables y trace the off-nominal solution branches.
The described methodology was implemented in MATCONT,

which is an open-source continuation toolbox in the MATLAB
computing environment. The source codewas appropriately modified
to enable constrained bifurcation analysis as well as the tracing of
branching solutions. In the following sections, three different
constrained aircraft flight dynamics problems are attempted to
illustrate the usefulness of the methodology. Among selected
problems, the first one is for validation of the methodology against the
results available in literature, and the other two are new applications.

III. Applications of Direct Continuation Methodology
to Aircraft Flight Dynamics

A. State-Constrained Maneuver Analysis

Aircraft most often fly maneuvers that are constrained in states.
Multiple available controls are deployed simultaneously to keep an
aircraft in constrained trim states. One of themost basicmaneuvers of
aircraft is the cruise (level) flight condition. In a cruise flight
condition, aircraft are required to fly straight (sideslip angle,
β � 0 deg), at constant altitude (flight-path angle, γ � 0 deg), and
with wings level (bank angle, ϕ � 0 deg).
To compute all possible trims and the stability of trims for an

aircraft within prescribed limits of control inputs, i.e., to investigate
global dynamics of aircraft in the cruise flight condition, the direct
methodology is applied to the equations,

_x � f�x; δe; δa; δr; η� � 0; β � 0; γ � 0; ϕ � 0 (10)

In Eq. (10), the first set of algebraic equations represents aircraft
six degrees-of-freedom rigid-body motion equations (given in the
Appendix) set to zero for the steady state, and other equality relations
are constraint equations. The aircraft chosen for this analysis is F-18/
HARV available in the public domain. Inertia and geometric
properties of the F-18/HARV model along with aerodynamic data
available in the angle-of-attack range−4 ≤ α ≤ 90 deg complete the
model [10]. A continuation of Eq. (10), with elevator deflection angle
δe varying as the continuation parameter and throttle η, aileron
deflection angle δa, and rudder deflection angle δr also varying along
simultaneously, to keep the states constrained as required [3], is now
directly carried out. Further, in this case, off-nominal solution
branches are also computed using the procedure outlined in Sec. II.
Results of the continuation are plotted in Figs. 1a–1c.
State variables plotted in Fig. 1a are all constrained as seen from

sideslip angle β and bank angleϕ plots and the flight-path angle γ plot
in Fig. 1b; nominal values of all three variables are zero as demanded
by the constraints. Loss of aircraft stability in the level-flight
condition is marked by the presence of Hopf bifurcation and
pitchfork bifurcation points at critical elevator deflection angles as
indicated on the α–δe plot in Fig. 1a.
The throttle η required schedule against elevator deflection δewith

stability information resulting from direct computation is also plotted
in Fig. 1b. Minimum thrust required (corresponding to minimum
drag) level-flight trim with stability, a useful performance indicator,
can be directly read from the plot. These results for F-18/HARV,
obtained using the direct continuation, match the results available in
[10] obtained by using the EBA procedure. A loss in stability and
resulting bifurcations at critical angles of attack are due to the
phugoid and spiral mode eigenvalues as seen from the root locus plot
in Fig. 1c. Root locus plots useful in control design (next example)
and performance plots useful for aircraft designers are simultaneous
outcomes of the direct continuation, which succinctly shows
usefulness of the direct methodology. Off-nominal solution branches
show departure from the level trim state, in this case spiral
divergence, as one would expect from a single real (spiral mode)
eigenvalue crossing zero resulting in a static bifurcation [1].

B. Gain Scheduling

Stability losses for F-18/HARV in the level-flight condition in the
previous example were identified to be due to phugoid and spiral
modes, as shown in Fig. 1c (marked by the real part of eigenvalues
crossing zero from below). Thesemodes can be stabilized locally at a
trim state with the help of a feedback-control law, the process known
as stability augmentation [11]. For aircraft, stability augmentation is
also needed for handling and flying quality requirements, which
demand that aircraft transient behavior in thewhole range of trims in a
particular flight condition be identical or within some bounds [12].
There are variousmethods for stability-augmentation-control design,
and based on the technique used, they can be classified as linear or
nonlinear. In linear control, the input is proportional to the linearized
output, and it is widely used due to the ease of implementation.
However, recently researchers have also used nonlinear flight-control
design techniques such as robust control [13] and sliding mode
control [14] in the entire flight envelope to ensure appropriate
handling qualities in the presence of model uncertainties. In this
paper, the design of linear feedback-control laws for two tasks, first
for assigning the short-period mode eigenvalues as desired by
handling and flying qualities and second for keeping the short-period
mode eigenvalues at the desired location for all level-flight trims, is
carried out as a second example problem to show the usefulness of the
direct continuation methodology. Some basics of feedback-control
law design methodology are presented next.
Consider a linearized system written in the state-space form as

Δ _x � AΔx� BΔu (11)

y � CΔx (12)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, and
y ∈ Rr is the output vector. A ∈ Rn×n is the Jacobian matrix of the
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system evaluated at a trim condition, also known as the system
matrix. B ∈ Rn×m is the control matrix, and C ∈ Rr×n is the output

matrix.Δ represents perturbation from the equilibrium condition, for

example, Δx � x − x�, where x� is the magnitude of state variables
at the equilibrium condition. Consider a full-state feedback law
augmented to the system, Eq. (11), as

Δu � −KΔx (13)

where Δu is the control signal given by Δu � u − u�; u� is the
magnitude of the control variable at the equilibrium condition x�. The
K ∈ Rm×n matrix is known as the feedback gain matrix, which
determines the control response to the perturbation. A simple control
input for the case in which n � 2 and m � 1 results in

Δu � −�k1Δx1 � k2Δx2� (14)

The corresponding closed-loop system can then be represented as

Δ _x � �A − BK�Δx (15)

A fundamental theorem in modern control theory states that
if a system is controllable, i.e., the rank of the matrix κ �
�B AB A2B · · · An−1B � is n, where n is the dimension of the
system, then there exists a gainmatrix such that the eigenvalues of the
closed-loop system, Eq. (15), can be assigned exactly as desired.
However, in general, it is neither feasible nor required to feedback all
the states. Usually, only the measured variables are used as feedback
elements, resulting in the output feedback-control law:

Δu � −Ky � −KCΔx (16)

The corresponding closed-loop system is

Δ _x � �A − BKC�Δx (17)

It is an established result that the number of eigenvalues that can be
exactly assigned to the system is equal to the rank of the matrix C

[15], which also signifies the number of output variables. Generally,
in flight-control systems, the variables fα; qg are used as measured
output for the longitudinal dynamics, and fβ; �p; rg are used as
measured output variables for the lateral dynamics, suggesting ranks
2 and 3, respectively. Thus, two longitudinal dynamics eigenvalues
and three lateral-directional dynamics eigenvalues can be controlled
by the feedback law in Eq. (16).
As the system is linearized at a particular trim condition, the gains

computed will result in the desired response only at that operating
trim condition.A change in the trim conditionwill require a change in
the gain values for the same desired controlled response. Thus, it is
essential to compute the gains over the whole range of trims in a
particular flight condition to ensure that the system has uniform
desirable controlled response over the complete range of trims. In
control terminology, this exercise is called gain scheduling. A vast
amount of literature is available on this topic, discussing various
numerical methods of gain scheduling. In this work, a gain-
scheduling exercise is carried out using the direct continuation
approach for the F-18/HARVmodel in the level-flight trim condition.
The feedback law is designed with the output variables,

y � �α; q�T . The elevator is used as the control parameter, which
means that the rank of the matrix is rank�B� � 1. One control
parameter associatedwith two output variables results in two nonzero
entries in the gain matrix K � �0; k1; k2; 0�T , for longitudinal
dynamics of aircraft, where k1 and k2 determine the control inputs
corresponding to the changes in α and q. Thus, two eigenvalues can
be assigned at their desired values. The eigenvalues can be chosen
depending on the desired frequency and damping characteristics of
themode. In this example, the desired short-periodmode eigenvalues
are fixed at λSP � ξr 	 iξi � −1.5	 i1.33, which is different from
the open-loop short-period mode eigenvalues for the F-18 model in
the entire range of level-flight trims plotted in Fig. 2.
Keeping short-period eigenvalues fixed at all trims in the level-

flight condition amounts to the two constraint functions

g�x; u;p� �
 

λr;SP�x; u;p� − ξr

λi;SP�x; u;p� − ξi

!

(18)

Fig. 1 Bifurcation diagrams and root locus plots of F-18/HARV in

straight and level flight trim condition.
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which are implicitly (indirect constraints) exercised via the control of

eigenvalues of the Jacobianmatrix [of entry (1,1) in Eq. (8)] resulting

from the simultaneous equation for the level-flight trim states of

aircraft as

F�x; u;p� �

0

B

B

B

B

@

f�x; u;p�
γ

λr;SP�x; u;p� − ξr

λi;SP�x; u;p� − ξi

1

C

C

C

C

A

� 0 (19)

with x � �V;α; β; �p; q; r;ϕ; θ�, u � δe, and p � �η; k1; k2�. Since
F ∈ Rn�3, x ∈ Rn, p ∈ R3, and n � 8, the problem is well defined

with the number of equations equal to the number of unknowns.Here,

u ∈ R varies as the continuation parameter. To start the continuation,

an initial condition is required for all the variables, including the

gains. The initial condition, satisfying the equality constraints,

Eq. (19) in this case, was determined separately by using the

eigenstructure assignment technique presented in [16]. Closed-loop

short-period and phugoid mode eigenvalues are plotted in Fig. 3;

feedback gain schedules resulting from constrained continuation are

plotted in Fig. 4. Figure 3 shows that for all values of level-flight trims

short-period mode eigenvalues are fixed at the same desired location.

Each point on the and plots in Fig. 4 is the feedback gains

corresponding to the level-flight trim conditions in Fig. 1a, ensuring

that the short-period mode eigenvalues of the closed-loop system are

fixed as desired. The phugoid mode eigenvalues were not controlled

in this case. Root locus plot of phugoidmode (as seen fromFig. 3b) is

naturally restricted to the left half complex plane, thus, ensuring

stability of this mode at all level-flight trims as well. In general, this

may not always be the case, and a careful selection of starting gain

values may be necessary to keep the closed-loop phugoid mode

stable. It is worth pointing out here that the desired short-period

eigenvalues are not from the set of open-loop short-period
eigenvalues (plotted in Fig. 2), thus showing the generic nature of the
selected problem of gain scheduling. Also, the linearization of the
aircraft model is part of a continuation at each trim point; system
matrix A and control matrix B are automatically generated at each
trim point. Alternatively, the gain-scheduling task is carried out by
first locating all the trim states of the system, linearizing the system at
each trim state, calculating the eigenvalues of the linearized system,
and then computing the feedback gains at every trim point [16]. The
automated procedure of gain scheduling using the direct continuation
methodology thus reduces time and effort significantly.

C. Wing Morphing for Desired Handling Qualities

The gain-scheduling exercise carried out in the previous example
to keep the eigenvalues at the desired locations in the whole range of
trim points requires an active control system onboard an aircraft. An
alternate solution to this problem would be to schedule aircraft
configuration parameters themselves so that constraints on
eigenvalues are satisfied at all trims in a particular flight condition.
This would essentially require changing aerodynamic characteristics
of the airplane with changing trims. In this exercise, parameters
related to wing shape and orientation are scheduled to place phugoid
and Dutch-roll mode eigenvalues of an airplane model at the desired
fixed locations; therefore, this exercise is appropriately called wing
morphing [17].
Recently, Khatri et al. [18] used a constrained bifurcation and

continuation procedure to size horizontal and vertical stabilizers for
an airplane based on handling and flying qualities requirements; the
task required a large number of repetitive continuation runs. In this
work, we extend the design methodology presented in [18] to
configure wing parameters based on the handling qualities
requirements. As this exercise would require a bare aerodynamic
model in terms of wing design variables, we use the same model of a
twin turboprop, lightweight, six-seater, business transport aircraft asFig. 3 Closed-loop short-period and phugoid mode eigenvalues.

Fig. 4 Closed-loop feedback gains.

Fig. 2 Open-loop root locus plots of short-period and phugoid mode eigenvalues for F-18/HARV model in level-flight condition.
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used in [18] to illustrate the application of the direct continuation
methodology to the wing-morphing problem. Aerodynamics of the
aircraft is modeled with the stability derivatives parameterized with
respect towing design variables, thereby suitable for incorporation in
the continuation-based methodology. The aerodynamic model,
primarily consisting of empirical relations/analytical expressions
collected mainly from textbooks [19,20], is a relatively low-fidelity
one but adequate enough to demonstrate the capabilities of the direct
continuation methodology for the problem at hand.
The design procedure is as follows. First, the aircraft is trimmed at

the level-flight trim condition. Constraints on the eigenvalues are
formulated as follows:

g�x; u;p� �
�

λr�x; u;p� − ξr
λi�x; u;p� − ξi

�

(20)

This exercise has been carried out for phugoid and Dutch-roll
modes separately to gain better insight into how wing parameters
have to be scheduled in the whole range of level-flight trims, even
though there may be fringe influence of the parameters on both the
modes together. The wing aspect ratio ARwing and wing incidence
angle iwing are used as free variables to hold phugoid mode
eigenvalues fixed at the desired location, and wing sweep Λwing and
wing dihedral Γwing angles are used for holding Dutch-roll mode
eigenvalues fixed at the desired locations. It is assumed that these
parameters do not have significant effects on weight, CG, and
moment of inertia values. In both the cases, constraints are implicitly
exercised via directly controlling the eigenvalues of entry (1,1) of the
inflated Jacobianmatrix [Eq. (8)] as was done in the previous case, an
exercise conveniently carried out in MATCONT.

1. Constraint Formulation for Phugoid Mode Eigenvalues

The simultaneous equations to be solved together in a continuation
in this case are

F�x; u;p� �

0

B

B

@

f�x; u;p�
γ

λr;PH�x; u;p� − ξr
λi;PH�x; u;p� − ξi

1

C

C

A

� 0 (21)

where

x � �V;α; β; �p; q; r;ϕ; θ�; u � δe; p � �η; iwing; ARwing�

2. Constraint Formulation for Dutch-Roll Mode Eigenvalues

The simultaneous equations to be solved together in a continuation
in this case are

F�x; u;p� �

0

B

B

@

f�x; u;p�
γ

λr;DR�x; u;p� − ξr
λi;DR�x; u;p� − ξi

1

C

C

A

� 0 (22)

where x � �V; α; β; �p; q; r;ϕ; θ�, u � δe, and p � �η;Γwing;Λwing�.

IV. Results and Discussions

Three separate continuation runs each for the phugoid mode
control and for the Dutch-roll mode control starting from different
initial conditions are performed. Frequencies and damping ratios
corresponding to the three cases along with the eigenvalues are given
in Table 1. They are characteristic values corresponding to three
different level-flight trims atα � 1 deg (type I),α � 3 deg (type II),
and α � 5 deg (type III). These trim conditions are used as the
starting points for the three continuation runs. In each continuation
run, the eigenvalues at the starting trim condition are the reference
values to be held constant for all other trim solutions. In the first set of

computations, the phugoidmode eigenvalues are held constant, while
in the second set, the Dutch-roll mode eigenvalues are held constant.
Continuation plots for phugoid mode control are plotted in

Figs. 5a–5c. As noticed from Fig. 5a, for all values of trims starting
from each of the three starting points given previously, phugoidmode
eigenvalues are fixed at the same desired location. There is no control
over short-period mode eigenvalues in this exercise; therefore, they
move freely, though inside the stable region in the complex plane.
The lateral mode eigenvalues are also not controlled, and hence they
move freely as well in the complex plane. The roll and the Dutch-roll
mode eigenvalues stay in the stable region, but the spiral mode
crosses the imaginary axis to become unstable. The spiral mode
(as well as roll mode) eigenvalues for the three cases are
indistinguishable as they overlap with each other.
Schedules of thewing aspect ratio andwing incidence angle for the

phugoid case, the outcome of the continuation runs, turn out to be as
shown in Fig. 5b. Stability information, which is a natural outcome of
the continuation, is marked on wing parameter schedules as well as
on the aircraft-state variables (only longitudinal variables are plotted;
lateral directional variables are all zero). Plots of schedules and state
variables in Fig. 5b show a stretch of a solid line (consisting of stable
level-flight trim solutions) and a connected stretch of a dotted line
(representing unstable level-flight trim solutions). Since this whole
exercise was carried out using full-order aircraft equations, stability
information on these plots corresponds to the location of the
eigenvalues of all themodes of aircraft. In all three cases, the unstable
trims are due to the spiral mode becoming unstable.
The flight-path angle γ shown in Fig. 5c is zero as demanded by the

constraint equation. The Mach number is approximately constant in
all three cases for all trims, confirming that fixing the frequency of the
phugoid mode for all modes also fixes the trim speed as per the
approximate phugoid frequency formula [4], ωn ≈

���

2
p

�g∕V��,
which is only dependent on the trim speed. While type I solutions
demand higher speeds and equivalently higher throttle settings,
solutions for the type I case may not be desirable as the variation in
aspect ratio is much larger in comparison to types II and III solutions.
Also, in this case, variation in short-period mode parameters is much
higher. Hence, an important conclusion derived from this exercise is
that types II and III solutions and the correspondingwing aspect ratio/
incidence angle schedules may be used for wing morphing for
phugoid control. Based on stability considerations, type II schedules
have stable trims for a larger range of angle of attack, and hence this is
the most suitable solution branch of the three, whereas type III
schedules can be recommended for minimum thrust required in the
whole range of angles of attack.
The second set of continuation results for control of the Dutch-roll

mode eigenvalues is plotted in Figs. 6a–6c. As seen from the root
locus plot in Fig. 6a, the Dutch-roll mode eigenvalues are fixed at the
desired types I, II, and III values as demanded by the constraints. Roll
and spiral modes move freely as no constraints on them have been
exercised. For some trim solutions, the spiral mode eigenvalues
cross the imaginary axis and become unstable. Spiral mode (and roll
mode) eigenvalues for the three cases overlap and are hence
indistinguishable. The longitudinal mode eigenvalues, which are
unconstrained, move freely in the stable region of the complex plane,
showing the significant influence of wing dihedral and sweep angles
on the longitudinal dynamic modes. It is important to point out here
that the empirical data required to model the dihedral and the sweep
angles in the aerodynamics of the aircraft were limited to positive
angles. Therefore, the trims corresponding only to the positive
dihedral and sweep angles are plotted.

Table 1 Constrained magnitudes of frequency and damping ratio

Phugoid (case 1) Dutch-roll (case 2)

Type
ωn,
rad∕s ζ λr λi

ωn,
rad∕s ζ λr λi

I 0.118 0.129 −0.015 0.117 2.724 0.151 −0.411 2.693
II 0.165 0.080 −0.013 0.164 2.078 0.154 −0.320 2.053
III 0.200 0.070 −0.014 0.200 1.806 0.165 −0.298 1.781
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The flight-path angle γ plot inFig. 6b shows the imposed level-flight
constraint. The schedules of wing dihedral and wing sweep angles are
plotted in Fig. 6c. The trim solutions shown in Fig. 6b for types I and II

have similar stability characteristics with all the solutions being stable
at low angles of attack/elevator deflection and unstable at higher angles
of attack/elevator deflections. The type III solution branch consists of

Fig. 6 Root locus plots and bifurcation diagrams for Dutch-roll mode

control in straight and level flight trim condition.
Fig. 5 Root locus plots and bifurcation diagrams for phugoid mode

control in straight and level flight trim condition.
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anunstable stretch (dotted line) due to the unstable spiralmode at lower
angles of attack and a stable stretch (solid line) at higher angles of
attack/elevator deflection. Trim solutions for the types I and II cases
correspond to large sweep angles for Dutch-roll mode control and thus
are not of practical interest. Thus, type III solutions are recommended
for a lower throttle requirement and also for acceptable magnitudes of
sweep and dihedral angles.
One of the important deductions from these computations is that

the wing-morphing exercise does not ensure stability over the entire
range of level-flight trim solutions, as is evident from the unstable
spiral mode eigenvalues in both the cases. The use of vertical
stabilizer parameters can be incorporated further for controlling the
spiral mode in addition to controlling the Dutch-roll mode, which in
turnwould also have effects on the rollmode characteristics. All these
complex studies can be carried out using the direct continuation
methodology on a nonlinear aircraft model systematically without
compromising on the rigor of analysis that such studies demand.

V. Conclusions

Development of the direct continuation methodology serves as a
big step forward for the community of researchers dealing with
problems of dynamical systems operating under constraints. Aminor
procedural change implemented in MATCONT, a MATLAB-based
continuation algorithm, overcomes several drawbacks of the two-
step EBA continuation procedure proposed earlier in the literature
for the analysis of dynamical systems with constraints. The direct
methodology is illustrated with application to three problems
otherwise considered computationally challenging in aircraft flight
dynamics. The direct methodology implemented in MATLAB is
expected to allow users to make use of a host of other subroutines
available in MATLAB to solve more challenging problems
associated with multiparameter dynamical systems such as aircraft.
Aircraft conceptual design, optimization, and control offer some such
problems that one can expect to attempt within the framework of the
direct methodology as shown in this paper through some examples.
As of now, not much significance of off-nominal solution branches

originating fromconstrained solutions has been found, except that they
indicate divergence from constrained conditions, which can be already
deciphered from the type of bifurcations. If at all necessary, an
additional step is required to compute off-nominal solution branches,
as seen from the first example; this step still needs to be integratedwith
the direct methodology, which is part of an ongoing effort.

Appendix: Aircraft Rigid-Body Dynamics Equation

_V � 1

m

�

T cos α cos β −
1

2
ρV2SCD −mg sin γ

�

_α � q −
1

cos β

�

�p cos α� r sinα� sin β

� 1

mV

�

T sin α� 1

2
ρV2SCL −mg cos μ cos γ

��

_β � 1

mV

�

−T cos α sin β� 1

2
ρV2SCY �mg sin μ cos γ

�

� �p sin α − r cos α�

_p �
�

Iyy − Izz

Ixx

�

qr� 1

2Ixx
ρV2SbCl

_q �
�

Izz − Ixx

Iyy

�

pr� 1

2Iyy
ρV2ScCm

_r �
�

Ixx − Iyy

Izz

�

pq� 1

2Izz
ρV2SbCn

_φ � p� q tan θ sinφ� r tan θ cosφ

_θ � q cosφ − r sinφ

sin γ � cos α cos β sin θ − sin β sinφ cos θ

− sin α cos β cosφ cos θ

sin μ cos γ � sin θ cos α sin β� sinφ cos θ cos β

− sin α sin β cosφ cos θ

cos μ cos γ � sin θ sinα� cos α cosφ cos θ
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